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Abstract
Indoor positioning has become an emerging research area because of
huge commercial demands for location-based services in indoor environ-
ments. Channel State Information (CSI) as a fine-grained physical layer
information has been recently proposed to achieve high positioning accu-
racy by using range-based methods, e.g., trilateration. In this work, we
propose to fuse the CSI-based ranges and velocity estimated from inertial
sensors by an enhanced particle filter to achieve highly accurate tracking.
The algorithm relies on some enhanced ranging methods and further miti-
gates the remaining ranging errors by a weighting technique. Additionally,
we provide an efficient method to estimate the velocity based on inertial
sensors. The algorithms are designed in a network-based system, which
uses rather cheap commercial devices as anchor nodes. We evaluate our
system in a complex environment along three different moving paths. Our
proposed tracking method can achieve 1.3m for mean accuracy and 2.2m
for 90% accuracy, which is more accurate and stable than pedestrian dead
reckoning and range-based positioning.
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Introduction 1

1 Introduction

In recent years, location based services have provided new commercial
opportunities based on the locations of users. For example, shop owners
can analyze the customers’ buying behaviours based on their locations.
To obtain these location information, GPS (Global Positioning System) is
often used in outdoor environments. However, GPS signals are typically
too weak to penetrate walls and hence indoor positioning techniques have
attracted increasing research interests. Based on the observation param-
eters, previous indoor positioning research can be divided into two cate-
gories, 1) Pedestrian Dead Reckoning (PDR) based on Inertial Measure-
ment Units (IMUs) and 2) radio-based positioning.
With the development of smart phones, PDR systems can leverage iner-
tial sensors, e.g., accelerometer, magnetometer, and gyroscope, to esti-
mate the relative movement of the target by detecting steps, estimating
stride length and heading orientation. By integrating the estimated relative
movement at sequential time intervals, PDR systems can track the target.
Because of integration, small positioning errors resulting from the noise in
low cost IMUs can be magnified [1].
In contrast to PDR, radio-based positioning relies on the measured radio
parameters, e.g., power and time, to estimate the absolute positions of tar-
gets in a coordinate system instead of integrating the relative movement.
Radio-based positioning can be classified as range-free and range-based
methods. Range is defined as the propagation distance between the tar-
get and an Anchor Node (AN). Fingerprinting as one of the commonly used
range-free method can provide satisfying accuracy but is very labour inten-
sive to build up a radio map [2]. Range-based methods need to convert the
measured radio parameters to range values, which is named as ranging.
They are normally error prone to multipath propagation, especially with
Received Signal Strength Indicator (RSSI), which is a coarse MAC layer
information. Channel State Information (CSI) can be considered as a fine-
grained power, which can distinguish the power from different propagation
paths. It has been recently proposed to achieve highly accurate ranging,
because of its ability to mitigate multipath propagation [3, 4]. After rang-
ing, trilateration algorithms are adopted to calculate the absolute location
of the target in the local coordinate system. However, trilateration algo-
rithms normally neglect the relative movement between sequential times
for a mobile target.
These two positioning methods (PDR and range-based methods) are com-
plementary because PDR can provide information about the relative move-
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ment between sequential times, i.e., velocity, which is missing in range-
based methods. Additionally, the absolute location information provided
by range-based methods can also be used to mitigate the accumulative
errors in PDR.
In this work, we investigate how to accurately track a WiFi target using an
enhanced particle filter to fuse the velocity information estimated by inertial
sensors and highly accurate range information by some enhanced ranging
methods. Our main scientific contributions are summarized as follows.

• We propose an enhanced particle filter to fuse the CSI-based
ranging and velocity information. The two observation parameters,
i.e., ranges and velocity, are fused in the observation likelihood
function defined in Section 3. To achieve high ranging accuracy,
some enhanced CSI-based ranging methods, which were proposed
in our previous work [4], are adopted in our proposed particle filter.
Additionally, we adopt the spatial diversity between different anten-
nas to mitigate the multipath effect in the ranging step in this work.
To mitigate the influence of the ranging errors, a weighting technique
is introduced in the observation likelihood function. Furthermore, we
propose an efficient method to estimate the velocity of the mobile
target using the timestamped values from the accelerometer and
compass sensors in a smart phone.

• We implement a network-based positioning system, which runs
our proposed tracking algorithms in a central server. Compared
to terminal-based positioning system, a network-based positioning
system is able to run algorithms with high complexity and analyze
multiple users’ movement paths. In our system, all ANs are imple-
mented on cheap commercial devices and are able to collect inertial
sensor and CSI information from the received WiFi packets.

• We evaluate our system in a complex environment along three differ-
ent moving paths. Our proposed tracking method can achieve 1.3m
for mean accuracy and 2.2m for 90% accuracy, which is more accu-
rate and stable than PDR and range-based positioning methods.

In the remainder of the paper, related works are reviewed in Section 2.
Some preliminaries for particle filters are introduced in Section 3. Our
main contributions are introduced in Section 4, in which the proposed en-
hanced particle filter is described. The ranging and velocity estimation
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mechanisms are presented in Section 5. Section 6 presents the imple-
mentation of the proposed algorithms in a network-based indoor tracking
system. Section 7 presents the evaluation results in a complex indoor en-
vironment. Finally, Section 8 concludes the paper.
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2 Related Work
Inertial sensors have been intensively investigated for indoor tracking due
to fast development of smart phones. Positioning with a smart phone can
leverage the inertial sensors to estimate the target’s moving state and lo-
cate the user. The authors of [5] investigated the mechanisms for PDR-
based tracking including step detection, stride length estimation, and di-
rection estimation. The stride length estimation method in [5] forms the
basis of moving speed estimation in our work. The authors of [6] provided
a system called Zee, which adopts inertial sensors and crowdsouring to
achieve a calibration free WiFi-based positioning system. The authors of
[1] proposed a Wap system, in which particle filter is used to fuse inertial
sensor information and RSSI of WiFi signals for tracking. Different from
our work, they only use the relative changes of RSSI instead of ranges
based on CSI to discover the direction changes and improve room distin-
guishing algorithms because the measured RSSI is a coarse and unstable
parameter.
Channel state information can be considered as a fine-grained power
information and has been firstly proposed by the authors of [7] in a pro-
totype called FILA, in which channel state information is investigated to
estimate the range information and a simple trilateration algorithm with
Linear Least Square (LLS) is further adopted to locate the target. FILA
has demonstrated that channel state information can mitigate multipath
propagation and impressively improve the localization accuracy compared
to RSSI. In FILA, the target laptop is equipped with an off-the-shelf WiFi
network card (IWL5300) to extract CSI based on an improved firmware
[8]. In our previous work [4], we proposed a passive indoor positioning
system, which can extract channel state information from the overheard
packets based on software defined radio techniques. In that work, we
proposed an enhanced trilateration algorithm, which combines Weighted
Centroid and Constrained Weighted Least Square (WC-CWLS). The al-
gorithm outperforms LLS for static targets. Although both works [7, 4]
evaluated the proposed trilateration algorithms for mobile targets, they did
not consider Bayesian estimation methods, i.e., Kalman filter and particle
filter, which are more accurate to track mobile targets. Additionally, CSI
has been investigated for fingerprinting methods and velocity estimation.
In [9], the authors provided a network-based indoor tracking system, which
estimates the velocity of a mobile target from CSI and locates the target
by fingerprinting based on CSI.
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3 Particle Filters
We consider the problem of tracking the location of a mobile target over
time given a stream of noisy observations, e.g, ranges and velocity. Thus,
at time k, we have an unknown system state vector xk including the target’s
location (or some other parameters related to the target’s moving state,
e.g., velocity) and a discrete sequence of noisy measurement vectors z1:k,
taken at times 1, . . . , k.
The target moves according to a non-linear function:

xk = fk(xk−1,vk), (system model)
and the measurement system observes the target according to another
non-linear function:

zk = hk(xk,uk), (observation model)
where vk and uk are the system and measurement noise.
From a Bayesian perspective, the goal is to calculate the “degree of belief”
p(xk|z1:k) in the current state of the system xk, based on the available
measurements z1:k and an initial Probability Distribution Function (PDF)
p(x0) [10]. This degree of belief is the posterior PDF over the state space
of our system.
In contrast to Kalman filters, which assume a Gaussian posterior PDF,
particle filters can deal with a non-Gaussian posterior PDF via Monte Carlo
simulations, which represent the required posterior PDF by a set of random
samples with associated weights. Based on Monte Carlo methods, the
posterior PDF p(xk|z1:k) can be estimated by the following delta function:

p(xk|z1:k) ≈
Ns∑
i=1

wi
kδ(xk − xi

k), (1)

where xi
k is the ith particle and wi

k is the associated weight. Ns is the
total number of particles. For Bootstrap Particle Filter (BPF) [11], which is
commonly used and efficiently implementable, the associated weights can
be calculated as:

wi
k ∝ wi

k−1 · p(zk|xi
k), (2)

in which the associated weights are only determined by the likelihood func-
tion of p(zk|xi

k).
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4 An Enhanced Particle Filter with
Data Fusion and Weighted Likeli-
hood

As introduced in Section 1, tracking methods by using power-based rang-
ing and PDR are complementary. Hence, we propose an enhanced parti-
cle filter to fuse these velocity and range information to provide a tracking
method with high accuracy and stability in this section.
In this work, a Constant Velocity (CV) model is used. The state vector is
defined as,

x = [x, y, vx, vy]
T , (3)

where (x, y) are the Cartesian coordinates of the target and (vx, vy) is a
two-dimensional moving speed vector. Under the CV model, the prediction
function can be written as,

xk = F · xk−1 + ηw, (4)

where

η =


∆T 2/2 0

0 ∆T 2/2
∆T 0
0 ∆T

 ,F =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

 .

∆T is the time interval between two subsequent estimations of the target
location and w is a 2 × 1 independent and identically distributed (i.i.d.)
process noise vector. In particle filters, each particle xi

k is updated based
on Equation (4) from the particles at the previous moment xi

k−1.
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Figure 1: Data Fusion via a Particle Filter
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4.1 Observation Model for Data Fusion
After updating particles based on Equation (4), the associated weight wi

k

should be updated from the weight at the previous moment wi
k−1 based

on the likelihood of the observations conditioned on each particle p(zk|xi
k)

(Equation (2)). In this work, the observation vector obtained at each time
interval contains an estimation of ranges to different ANs and velocity of
the mobile target. Subsequently, the measurement vector is given as zk =
[dk,vk], where dk includes ranges to N different ANs and vk is the velocity
information from the inertial sensors.
To fuse the range information dk and velocity information vk, we can
reasonably assume that the velocity information vk is independent from
ranges because the range information depends on the location of target
but velocity does not. Hence, the likelihood p(zk|xi

k) can be written as

p(zk|xi
k) = p(dk|xi

k) · p(vk|xi
k). (5)

In order to distinguish different likelihoods, we refer to p(zk|xi
k) as the over-

all likelihood, p(dk|xi
k) as the ranging likelihood, and p(vk|xi

k) as the veloc-
ity likelihood.
With this method, the associated weight wi

k can be updated by consider-
ing both range and velocity observations. On one hand, the particles at
the absolute positions (xi, yi), which have low probabilities to observe the
measured ranges dk, will be assigned small associated weights to sup-
press their contributions to the state estimation. On the other hand, the
particles with velocities (vix, v

i
y), which have low probabilities to observe

the measured velocity vk, will be also assigned small associated weights,
especially for some particles with unusual large moving speeds in indoor
environments. This will allow smoothing the estimated moving paths.

4.1.1 Velocity Likelihood

As we work on a two-dimensional tracking system, the measured velocity
information vk is a vector with two components v̂x and v̂y, which can be
measured from inertial sensors. Assuming that these two components are
independent from each other, the velocity likelihood p(vk|xi

k) can be written
as

p(vk|xi
k) = p(v̂x,k|xi

k) · p(v̂y,k|xi
k). (6)

Additionally, these two velocity components are independent from the co-
ordinate components (x, y) in each particle. Hence we can obtain that
p(v̂x,k|xi

k) = p(v̂x,k|vix,k) and p(v̂y,k|yi
k) = p(v̂y,k|viy,k). The estimation of each
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velocity component is assumed to follow a Gaussian distribution. Equation
(6) can be written as

p(vk|xi
k) = p(v̂x,k|vix,k) · p(v̂y,k|viy,k)

=
1

σv
√

2π
exp[−

(v̂x,k − vix,k)2 + (v̂y,k − viy,k)2

2σ2
v

],
(7)

where σv is the variance of velocity estimation.

4.1.2 Ranging Likelihood

Besides velocity information, range information is another observation in-
put. Assuming that ranges to different ANs are independent from each
other, the ranging likelihood can be written as

p(dk|xi
k) = ΠN

j=1p(d̂j,k|xi
k), (8)

where d̂j,k is the estimated range to the ith AN at the kth moment. In the
remainder of the paper, we refer to p(d̂j,k|xi

k) as individual likelihood.
Because the range information exclusively depends on the location of the
target, the observation function for range can be defined as:

d̂j =
√

(x− xj)2 + (y − yj)2 + uj, (9)

where (xj, yj) are the coordinates of the jth AN and uj is a Gaussian noise
with a variance of σj. Each individual likelihood can be written as

p(d̂j,k|xi
k) =

1

σj
√

2π
e
−

[d̂j,k−
√

(xi−xj)2+(yi−yj)2]
2

2σ2
j . (10)

4.2 Weighted Likelihood for Ranging Informa-
tion

Range estimation d̂j,k is often shifted from the ground truth range dj,k. Cor-
respondingly the individual likelihoods p(d̂j,k|xi

k) from different ANs are of-
ten biased from the real individual likelihoods p(dj,k|xi

k). The ranges esti-
mated by different ANs normally face different ranging errors, especially in
a complex indoor environment with mixed Line Of Sight (LOS) and Non-
LOS (NLOS) conditions. Equation (8) treats all the individual likelihoods
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from different ANs equally. This oversimplification introduces large estima-
tion errors, because in the inaccurate individual likelihoods p(d̂j,k|xi

k) from
certain ANs with large ranging errors will significantly affect the accuracy
of the ranging likelihood estimation p(dk|xi

k).
To mitigate the influence of the large ranging errors on the estimation of
the ranging likelihood p(dk|xi

k), we propose to adopt a weighting technique
on the ranging likelihood p(dk|xi

k) estimation by suppressing the emphasis
on the individual likelihoods p(d̂j,k|xi

k) with larger ranging errors and mag-
nifying the contributions of the individual likelihoods with smaller ranging
errors. To achieve this, we provide a weighted-likelihood BPF with expo-
nential weights on each individual likelihood from different ANs as

p(dk|xi
k) = ΠN

j=1p(d̂j|xi
k)

mj
, (11)

where mj is the exponential weight for the individual likelihood of the jth
AN. To reduce the contribution of the individual likelihoods with large rang-
ing errors, a direct way is to set weights mj to indicate the error of each
range. However, we can not measure the real ranging errors in practice,
because it requires the ground truth location of the target.
Therefore, we need to find a suboptimal solution to set a proper value for
each exponential weight. In general, range errors increase with the esti-
mated range values. Therefore, instead of relying on the ranging errors,
we can use the estimated ranging outputs to infer their corresponding er-
rors and set the exponential weights to be inversely proportional to the
estimated range outputs as

mj =
1/dj∑N
n=1 1/dn

, (12)

which are normalized by
∑N

j=1mj = 1. With this weighting technique,
we expect to mitigate the influence of ranging errors, especially for NLOS
propagation, whose ranging errors are normally larger than for LOS con-
ditions. In the remainder of this paper, we refer to the Particle Filter with
data Fusion and Weighted likelihood as FW-PF.
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Figure 2: Range Estimation using CSI

5 Range and Velocity Estimations
This section introduces how to estimate the two observation parameters
(ranges and velocity) in our proposed particle filter.

5.1 Range Estimation using CSI
More accurate estimation of ranges is a prerequisite to improve the radio-
based tracking accuracy. To achieve high ranging accuracy, we adopt the
same method as our previous work [4], which uses channel state informa-
tion to extract the Power from the Direct Path (PDP). Figure 2 shows the
procedure of this ranging method, which comprises three steps. First, CSI
in frequency domain is converted to CIR (Channel Impulse Response) in
time domain by Inverse Fast Fourier Transform (IFFT). Second, PDP is ob-
tained by extracting the strongest power in CIR. Finally, a NLR (Non-Linear
Regression) model is adopted to calculate the range information from PDP.
Please find details about this ranging method in our previous work [4].
Additionally, most recent WiFi standards (IEEE 802.11n/ac standards)
support MIMO (Multiple Input and Multiple Output), which introduces spa-
tial diversity. Multiple antennas separated by certain distances normally
face different multipath effects. Therefore, we can exploit multiple anten-
nas to smooth and mitigate the multipath effects. In our work, we estimate
the range information based on the procedures in Figure 2 on each an-
tenna and then calculate the average range from all the antennas in one
AN as the input range information to the particle filter.

5.2 Velocity Estimation using Inertial Sensors
Velocity is another observation input in our proposed particle filter. In our
work, the velocity of the mobile target is estimated by analyzing the times-
tamped values of inertial measurement units in a smart phone. To estimate
the two-dimensional velocity, which is a vector value with two components
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âv,min

Figure 4: Vertical Acceleration



12 INF-15-004

ServerTarget

ANsWiFi

Ethernet

(a) Overview of the System

USB

Smartphone

Laptop

IWL 
5300

ePC (ANs)

Ethernet

TimeIMUs

WiFi
Packets

IWL 
5300

TimeHeader IMUs

MIMO

IMUs   Time   CSI

Server

Tracking
Methods

Target

(b) Implementation of the System

Figure 5: Network-based Tracking System



Range and Velocity Estimations 13

on x and y axes in a Cartesian coordinate system, the heading orienta-
tion θ and speed |v|, which is the absolute value of velocity, are estimated
based on compass and accelerometer respectively.

5.2.1 Speed Estimation

As shown in Figure 3, first, the raw values from the accelerometer are
smoothed through a low pass filter using Equation (13) to mitigate the
influence of noise and dynamic pushes.

âv,i = (1− β)av,i + β(âv,i−1), (13)

where av,i is the raw vertical acceleration and β is a constant value ranging
from 0 to 1 (0.9 in our work).
Second, during walking, every step generates one peak and dip in the
measured vertical acceleration âv,i as shown in Figure 4. Therefore, we
can detect the dips and peaks from âv,i as steps.
Third, Equation (14) is used to estimate stride length [5].

l = K(âv,max − âv,min)1/4, (14)

where l is stride length, âv,max and âv,min are the peak and dip values of âv
on each stride respectively, and K is a coefficient calibrated for individuals.
Fourth, because all the accelerometer values are timestamped in the
smart phone, we can calculate the time interval for each stride ∆T and
the speed can be calculated as

|v| = l

∆T
. (15)

5.2.2 Orientation Estimation

To estimate the heading orientation, we adopt the compass [12] in smart
phones, which derives its data from the accelerometer and magnetometer.
The compass reports a value called azimuth α, which is the clockwise
angle from the north. After obtaining α, we need to calibrate α to our local
coordinate system as

θ = (90◦ − α) + ϕ, (16)

where (90◦ − α) is to rotate the azimuth α to the counter-clockwise angle
from the east and ϕ is the counter-clockwise angle from +x in the local
coordinate system to the east.
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5.2.3 Velocity Estimation

After estimating the speed and heading orientation of the mobile target,
we can get the velocity as

v = [|v|cos(θ), |v|sin(θ)], (17)

where |v|cos(θ) and |v|sin(θ) are the x and y components of moving ve-
locity respectively.
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6 Implementation of WiFi Tracking Al-
gorithms in A Network-based Sys-
tem

We have implemented a network-based indoor tracking system, in which
our proposed tracking algorithms are running in a central server. Figure
5(a) presents the overview of this system, which comprises three main
components: target, ANs, and server. Figure 5(b) shows the implementa-
tion details of each component. The main idea behind this system is that
by integrating the inertial sensor information (IMUs in Figure 5(b)) in the
payload of WiFi packets broadcast from the target, the server can read
these IMU information from the received packets, extract the CSI informa-
tion from commercial WiFi cards (Intel WiFi Wireless (IWL) 5300) in ANs,
and finally track the target with these two pieces of information.

6.1 Mobile Target

The mobile target needs to 1) inject the timestamped IMU information from
the smart phone into the payload of the WiFi packets and 2) broadcast
these packets using monitoring mode with an 802.11n High Throughput
(HT) rate, which is required by IWL5300 at the receivers (ANs) to extract
the CSI information [8].

Because most of the WiFi cards in smart phones (including vendors like
Apple, Samsung, Nokia, and HTC) do not support monitoring mode, a
smart phone has to transfer the timestamped IMU values to a laptop (via
USB), which then transmits the WiFi packet using its on-board IWL5300
WiFi card. In the smart phone, the sampling rate of the compass and ac-
celerometer are 100Hz. As soon as the smart phone reads a pair of values
from compass and accelerometer, it will forward these values together with
their timestamps to the laptop over a USB cable by a Java application. The
laptop will prepare the WiFi packet, whose payload includes the values of
compass and accelerometer and their timestamps, and broadcast over the
IWL5300 WiFi card using monitoring mode. The WiFi packet rate is also
100Hz.
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6.2 Anchor Nodes
Anchor nodes are distributed over the area of interest to capture the pack-
ets from the target. To reduce the cost, we adopt ASUS EeeBox PCs
(ePC) as ANs. First, we need to replace the original WiFi card in each ePC
by an IWL5300 card, which is configured in monitoring mode. Second, af-
ter receiving a WiFi packet, each ePC needs to read the timestamp and
IMU information from the payload and extract CSI information. Because
the IWL5300 card supports three antennas, we read CSI from all the three
antennas. Finally, all these information from all ANs are forwarded to the
central server over Ethernet by sockets.

6.3 Server
A desktop PC equipped with a 4-core 3.30GHz i5 CPU is used as the
server to collect the information from ANs and run offline tracking algo-
rithms to analyze the moving trace of the target based on MATLAB. For
the tracking algorithms, we first need to estimate the range and velocity
information based on the algorithms introduced in subsections 5.1 and 5.2
respectively. Since we can get CSI from three antennas in one AN, we cal-
culate the mean value of the estimated ranges from these three antennas
as the input range to the particle filter from this AN. Finally, the range and
velocity information will be fused in our proposed particle filter (FW-PF) to
track the target. Algorithm 1 indicates the procedures of FW-PF.
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Algorithm 1: FW-PF
1 Initialize filter

(I) Initial particles: xi
0 = q(x0), i = 1, . . . , Ns;

(II) Initial weights: wi
0 = 1

Ns
;

2 Update the particles: xi
k = F · xi

k−1 + ηw;
3 Calculate the exponential weights: mj =

1/dj∑N
n=1 1/dn

;

4 Calculate the individual likelihood:

p(dj|xi
k) =

1

σj
√

2π
e
−

[dj−
√

(xi−xj)2+(yi−yj)2]
2

2σ2
j ;

5 Calculate the velocity likelihood:

p(vk|xi
k) = p

1

σv
√

2π
exp[−

(v̂x,k − vix,k)2 + (v̂y,k − viy,k)2

2σ2
v

].

6 Update the unnormalized weights:

ŵi
k = p(vk|xi

k) · ΠN
j=1p(dj|xi

k)mj ;

7 Normalize the weights: wi
k = ŵi

k/
∑Ns

n=1 ŵ
i
n;

8 Calculate Neff: Neff = 1∑Ns
i=1(w

i
k)

2
;

9 if Neff < 0.5 ∗Ns then
10 Resample the particles based on systematic resampling method;

11 Compute the estimated state: xk =
∑Ns

i=1w
i
kx

i
k;

12 Go back to step 2 for the next iteration.
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7 Performance Evaluation
To evaluate the tracking accuracy of our proposed system, we have con-
ducted a set of comprehensive measurements in a complex indoor envi-
ronment.

7.1 Measurement Setup
We have evaluated our system in two scenarios on the third floor of the
INF building at University of Bern. Four ANs are deployed in the first sce-
nario (green and diamond points) and five ANs in the second scenario (red
and rectangular points) as shown in Figure 6. In each scenario, the target
(laptop and smartphone) is held by a person moving along three different
paths (Figure 6) and experiments along each path are repeated five times.
The moving speed is around 0.9m/s for scenario 1 and 0.6m/s for scenario
2. Along these moving paths, the point accuracy, which is the error from
the estimated position to the ground truth position, is calculated every sec-
ond. Three algorithms are evaluated along these moving paths, i.e., PDR
(Pedestrian Dead Reckoning), R-PF (Ranging-only Particle Filter), FW-PF
(our proposed Particle Filter with data Fusion and Weighted likelihood).

7.2 Experiment Results
Figure 7 shows CDF (Cumulative Distribution Function) of positioning er-
rors for the three algorithms in scenario 1 (4 ANs) and scenario 2 (5 ANs).
Since the performance of PDR is not related to the number of ANs, the
CDF curve of PDR positioning errors summarizes all the experiments in
both scenarios. Table 1 summarizes the mean error, standard deviation
and 90% accuracy. Based on these results, we can find the following ob-
servations.

Table 1: Mean Errors and Standard Deviation

Tracking Methods Mean Error Standard Deviation 90% Accuracy
FW-PF (5ANs) 1.3m 0.7m 2.2m
FW-PF (4ANs) 1.6m 0.9m 2.8m
R-PF (5ANs) 1.7m 1.5m 3m
R-PF (4ANs) 1.8m 1.0m 3m

PDR 1.6m 2.5m 4m
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Positioning Error
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Figure 7: CDF of Positioning Errors

First, our proposed FW-PF can achieve higher accuracy and more stable
performance compared to PDR. It is commonly known that PDR is prone
to accumulated errors because it estimates the current location of the tar-
get by integrating the relative movement from the previous locations. Be-
cause of the accumulative errors, it is very accurate at the beginning of the
moving paths by using PDR but the positioning error will increase along
the moving paths. Therefore, for 50% accuracy, PDR can achieve around
0.5m but the accuracy severely deteriorates to around 4m considering 90%
accuracy. In our proposed FW-PF, besides the moving velocity, which can
provide the relative moving information between two sequential time inter-
vals, the range information is considered in the likelihood function, which
can provide additional information to calculate the absolute position in the
local coordinate system. By considering the range information, our pro-
posed FW-PF is more robust to accumulative errors and it achieves around
2.2m for 90% accuracy, which outperforms PDR by 45%. The mean error
is 1.3m, which is 19% better than PDR. Additionally, FW-PF is more stable
than PDR because the standard deviation of FW-PF is 0.7m, which is 72%
smaller than PDR.
Second, our proposed FW-PF outperforms R-PF for accuracy and stability.
For ranging only particle filter (R-PF), the velocity information is not con-
sidered in the likelihood function and the corresponding associated weight
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update. Therefore, some particles with unusual large moving speeds could
be assigned large values of associated weights. For our proposed FW-PF,
the estimated velocity based on inertial sensors is considered in the like-
lihood function. The particles with large shift velocity components from
the estimated velocity will be assigned small values of associated weights.
Hence, their contributions to the final estimation are suppressed. Further-
more, by considering the exponential weights on the ranges from different
ANs, the influence of ranging errors on the likelihood function is further
mitigated. Therefore, our proposed FW-PF outperforms R-PF by around
0.8m for the 90% accuracy with 5 ANs and 0.2m with 4 ANs. Furthermore,
the standard deviation of FW-PF is smaller than of R-PF in both scenarios,
which means that the performance of FW-PF is more stable and estimated
moving paths are more smooth compared to R-PF.
Finally, by increasing the number of ANs, FW-PF can integrate more range
values in the likelihood function and has larger opportunity to have line-of-
sight connection to one certain AN. Therefore, the performance of FW-
PF gets improved by increasing the number of ANs. FW-PF with 5 ANs
outperforms 4 ANs by 21% for the 90% accuracy and 19% for the mean
accuracy.
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8 Conclusions
In this work, we proposed a network-based indoor tracking system, which
fuses the range and velocity information by an enhanced particle filter. Ve-
locity information is estimated by an efficient method based on the times-
tamped values from accelerometer and compass. The range information
is estimated by some enhanced ranging method relying on physical layer
channel state information from WiFi signals. The enhanced particle filter
(FW-PF) is adopted to fuse these two types of information in the likelihood
function and is equipped with a weighting technique to mitigate the influ-
ence of ranging errors. The system is implemented by using some cheap
commercial devices for ANs, which are able to extract the inertial sensor
information and CSI information from the received WiFi packets. We eval-
uated our proposed system in a complex indoor environment. Evaluation
results indicate that our proposed FW-PF is more accurate and stable than
pedestrian dead reckoning and range-only particle filters. The mean accu-
racy achieves 1.3m and 90% accuracy is 2.2m.
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