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Abstract

In this paper we present a novel edge detection algorithm for range images based

on a scan line approximation technique. Compared to the known methods in the liter-

ature, our algorithm has a number of advantages. It provides edge strength measures

that have a straightforward geometric interpretation and supports a classi�cation of

edge points into several subtypes. We give a de�nition of optimal edge detectors and

compare our algorithm to this theoretical model. By simulations we show that our

algorithm has a near-optimal performance. We have carried out extensive tests using

real range images acquired by three range scanners with quite di�erent characteristics.

The good results that were achieved demonstrate the robustness of our edge detection

algorithm.

CR Categories and Subject Descriptors: I.4.6 [Segmentation]: edge and feature detec-

tion, pixel classi�cation; I.4.8 [Scene Analysis]: range data.

General Terms: Algorithms.

Additional Key Words: edge detection, scan line approximation, optimality analysis.
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1 Introduction

Many machine vision tasks extensively use range imagery to obtain reliable descriptions

of 3-D scenes. Due to the large amount of data, direct interpretation of range images is

extremely costly in terms of both storage and computation time. Thus, a segmentation

step is usually carried out to group the range data into high-level features suitable for the

subsequent image analysis and interpretation. In the range image domain, vision tasks such

as object recognition [3, 11], model construction [15], con�guration analysis [25], motion

analysis [21, 30], automated visual inspection [26], and robotic grasping operations [1, 2]

have been build in most cases upon scene representations of surface patches. This has led

to the general agreement of de�ning the range image segmentation task as one of dividing

range images into closed regions with application domain speci�c surface properties [16].

Range image segmentation algorithms can be broadly classi�ed into two categories: edge-

based and region-based segmentation. Region-based approaches group pixels into connected

regions based on homogeneity measures, while boundaries between regions are located by

edge detection methods. Both techniques have their strengths and drawbacks. Edge detec-

tion is mostly criticized for its tendency to produce non-connected boundaries. Extensive

postprocessing may be needed to provide the �nal segmentation. Despite of the guaran-

tee of closed regions, region-based techniques su�er from a number of problems. Usually,

they have complex control structures. Also, the region boundaries are generally distorted.

In addition, commonly used region-based techniques such as region-growing and clustering

have several critical design issues to be dealt with. The performance of most region-growing

approaches crucially depends on the selection of initial regions. In clustering-based methods

it is di�cult to adaptively determine the actual number of clusters in range images. Often,

an oversegmentation is achieved and a subsequent merge step is needed to provide the �nal

segmentation. As a matter of fact, a recent experimental comparison

1

[16] reveals that even

the seemingly simple task of segmenting range images into planar surface patches cannot be

regarded as solved. There is still considerable room for improvement with respect to both

segmentation quality and computation time.

Edge detection methods, on the other hand, possess simple control structures and regular

operators such as image convolution, making them suitable for implementation on special-

purpose image processors and parallel computers. Due to the nature of edge-based ap-

proaches, the region boundaries tend to be located precisely. The usefulness of edge detection

is actually twofold. Edge detection has the potential of a complete segmentation. For this

purpose heuristic criteria [2, 20] have been shown to be e�ective to close gaps in edge maps

of range images. Alternatively, we can make use of edge detection to support region-based

segmentation. An edge map may provide an initial segmentation that is further re�ned

by region-based techniques. Edge information can also be incorporated into a region-based

algorithm for a more reliable guidance of region extraction. For instance, edge information

may be useful for seed region extraction. This point will be further discussed in Section 6.

In this paper we propose a simple and robust edge detection algorithm for range images.

Our work was partially motivated by the desire to overcome the following drawbacks inherent

to most of the algorithms known from the literature:

� no straightforward geometric interpretation of edge strength,

1

This comparison is based on a number of objective performance metrics and two large range image sets

acquired by a time-of-ight laser range �nder and a structured light scanner, respectively, that have manually

speci�ed ground truth.
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source real images shown scanners

(real images evaluated)

Al-Hujazi & Sood [2] 4 (several) 1

Berkman & Caelli [4] 0 (0) 0

Ghosal & Mehrotra [12] 3 (several) 1

Ghosal & Mehrotra [13] 2 (2) 1

G�unsel et al. [14] 0 (0) 0

Kaveti et al. [20] 6 (MSU) 1

Krishnapuram & Gupta [22] 7 (?) 2

Mintz [24] 2 (2) 1

Wani & Batchelor [34] 3 (3) 1

Table 1: Summary of recent journal-published edge detection algorithms for range images.

\Real images shown" is counted from �gures in the paper, while \real images evaluated"

is drawn from the text. MSU means the popular image set acquired at State University of

Michigan.

� no support of classi�cation of edge points into detailed edge types,

� no comparison to an optimal (theoretical) edge detector,

� limited tests on real range images.

In order to develop a robust edge detector for range images, all these issues must be discussed.

Usually, edge detection methods assign an edge strength value to each pixel. Then, an edge

map is constructed by a thresholding operation. It is important that the edge strength

has a straightforward geometric interpretation so that we can easily choose the threshold.

Although the central task of edge detection is to reliably detect and locate edge points, a

rich description of edge points including detailed edge types is highly desirable, too. Thus,

the ability of an edge detection method to support the classi�cation into various edge types

is of importance. The optimality of edge detectors has been rarely considered so far in the

literature. As an essential means of performance characterization, however, this issue should

be de�nitely investigated. Finally, not only theoretical performance characterization but

also experimental evaluation is essential to demonstrate the robustness of an edge detection

algorithm. Today, a large number of range scanners with di�erent characteristics (working

principle, sensor geometry, noise, etc.) are available [5, 18]. Therefore, the ease of adaptation

to range images acquired by di�erent range sensors should belong to the e�orts to characterize

the performance of an edge detection method. For example, some algorithms are limited to

range images sampled on a regular grid. Most algorithms known from the literature have

been tested only on a small number of images taken by a single range camera, as illustrated

in Table 1. Note that experiments using synthetic images are not included. In our opinion,

work that stops short of using real images inspires little con�dence in its relevance. From

Table 1 we can see that only one paper, namely [22], has reported experiments using two

di�erent range cameras.

The rest of this paper is organized as follows. We begin with the formulation of the

edge detection problem. Then, we give a brief review of known algorithms in the literature.
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Figure 1: Subtypes of crease edges: (a) convex roof edge, (b) concave roof edge, (c) convex

non-roof edge, (d) concave non-roof edge.

Section 4 is devoted to our new algorithm, followed by an optimality analysis in Section 5.

In Section 6 we show experimental results, applying our algorithm to images that come from

three di�erent range scanners. Finally, a discussion concludes the paper.

2 Edge detection problem in range images

In range images we can distinguish between three basic types of edges. Jump edges are usually

de�ned as discontinuities in depth values. Such edges occur when an object is occluded by

another object or itself. Crease edges are formed where two surfaces meet. Such edges are

characterized by discontinuities in surface normals. Finally, smooth edges are those with

continuous surface normals but discontinuous curvatures. Precise computation of curvatures

is extremely di�cult in range images due to noise, making the detection of smooth edges

almost impossible. Because of this problem and the fact that smooth edges relatively seldom

occur in range images, their detection has been widely ignored in the literature. In this paper

we concentrate our attention to jump and crease edges, too.

Crease edges can be further divided into roof and non-roof edges [22]. Roof edges cor-

respond to local extrema and have either higher or lower depth values on both sides, while

non-roof edges are characterized by discontinuities in surface normals with lower values on

one and higher values on the other side. Since convexity provides another edge classi�cation

scheme, we have totally four possible subtypes of crease edges (see Figure 1). Note that

the distinction between roof and non-roof edges is dependent on the viewpoint and thus of

little practical usefulness. The convexity, on the other hand, is a view-invariant feature and

represents an intrinsic property of objects. In this work we will only make the distinction
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Figure 2: 1-D edge model.

between convex and concave, but not between roof and non-roof edges.

Careful examination of range images reveals that the usual de�nition of jump edges as

discontinuities in depth values is not always adequate. At a constant sampling density for

the whole scene, two adjacent pixels on a highly sloped surface may have quite di�erent

depth values. This is particularly true for some of the range images used in our experiments.

Therefore, a simple thresholding of discontinuities does not work well for jump edge detection.

For this reason we introduce the following de�nition of edges. Consider the 1-D edge model

shown in Figure 2. If we model each side of a pixel locally by a straight line, then the pixel

is considered as an edge pixel if the two lines f

1

(x) and f

2

(x) are di�erent. In this case we

have a jump edge if there exists a di�erence between the function values f

1

(x) and f

2

(x) at

position x

0

(i.e., h = jf

1

(x

0

)� f

2

(x

0

)j 6= 0), and a crease edge otherwise. The edge strength

can be de�ned as h for a jump edge, and the angle between the normals of f

1

(x) and f

2

(x) at

x

0

for a crease edge, respectively. This de�nition properly excludes pixels on a highly sloped

surface from being recognized as jump edges. The 1-D edge model introduced above can be

easily extended to a 2-D one if we model the local environment of an edge point (x

0

; y

0

) by

two planes f

1

(x; y) = a

1

x + b

1

y + c

1

and f

2

(x; y) = a

2

x+ b

2

y + c

2

. Then, the edge strength

is simply

jf

1

(x

0

; y

0

)� f

2

(x

0

; y

0

)j

for a jump edge and

cos

�1

(�a

1

;�b

1

; 1) � (�a

2

;�b

2

; 1)

jj(�a

1

;�b

1

; 1)jj � jj(�a

2

;�b

2

; 1)jj

(1)

for a crease edge. Notice that although both the 1-D and 2-D edge model use planar surface

patches to model the two sides of an edge point, they are useful for curved surfaces as well.

The reason is that a small local environment can always be reasonably well approximated

by a planar surface patch.

Generally, the detection of crease edges is much more di�cult than that of jump edges.

The crease edge strength in (1) is independent of the position and orientation of the scene

relative to the range scanner. Also, it is invariant to changes of the coordinate system.

Therefore, the term (1) can be regarded as an ideal quantitative characterization of the

strength of a crease edge. Accordingly, we consider an edge detector that supplies this edge
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strength as optimal

2

. For any edge detection method, the deviation from this ideal edge

strength provides thus an e�ective way of performance evaluation.

3 Related work

A variety of methods are available for detecting edges in range images. Most directly, step

edge detection operators developed for the intensity image domain can be used to detect

jump edges. For crease edges we can apply the same edge detector independently to the

three components of the normals of the imaged surfaces and then combine the results to

locate edges, say by taking the maximum of the three channels. The works [7, 19] belong

to this category of edge detection methods and are based on a morphological edge detector

and the Canny operator, respectively.

Another approach to edge detection is residual analysis. Al-Hujazi and Sood [2] con-

sidered the absolute di�erence (residue) between the input image and its smoothed version,

which possesses maxima at the locations of jump and crease edges. Edge detection is done by

locating such maxima. Using the edge model in Figure 2, it has been shown that the residue

for crease edges is proportional to jk

1

� k

2

j. This leads to a non-uniform edge strength, i.e.,

two intersecting planes will produce di�erent edge strengths dependent on their orientation

relative to the scanner. It is also possible that two pairs of intersecting planes with di�erent

angles of intersection will result in the same edge strength. This non-uniformity is certainly

an undesired property.

Mathematical morphology is attractive due to the fact that it involves simple logical

operations and can be implemented in parallel, thus making real-time application possible.

An application of mathematical morphology to edge detection in range images has been

described in [7]. Cheng and Don [8] proposed another morphological approach to detect

convex roof edges only. Such edges are found by looking for the leaf nodes of the skele-

tal tree of a range image constructed by morphological skeleton operations. Krishnapuram

and Gupta [22] have developed two other morphological methods. Essentially, they are a

morphological implementation of residual analysis techniques and the �rst-derivative oper-

ator, respectively. The results of morphological operations are used to classify pixels into

non-edges and edges of several types by rules. However, these two methods don't provide a

quantitative characterization of edge strengths.

Multiscale boundary detection has proven to be e�ective for dealing with discontinuities

occurring at a variety of spatial scales. G�unsel et al. [14] followed this approach by consid-

ering the boundary detection process as a fusion of n di�erent sensory processing modules,

each corresponding to a speci�c scale. The output of each module was modeled to be de-

pendent on all other outputs by being part of a joint a posteriori probability distribution.

Then, the boundary detection was done by maximizing this probability function using the

Bayesian approach.

In [12, 13] operators based on orthogonal Zernike moments were used to recover the

parameters of a general 2-D edge model at each pixel. Similar to [2], this method provides an

edge strength that is proportional to jk

1

�k

2

j and thus su�ers from the same non-uniformity

problem.

2

Any edge strength de�nition that is a monotonic function of (1) corresponds to an optimal edge detector,

too.
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Berkman and Caelli [4] explored the application of covariance techniques to surface repre-

sentation of 3-D objects. It was shown that the covariance approach provides shape descrip-

tors invariant to rigid motions via the eigenvalues of covariance matrices of di�erent orders,

without explicitly using surface parameterizations or derivatives as in the case of curvatures.

These eigenvalues were directly geometrically interpreted and thresholded to detect jump

and crease edges.

In [24] Mintz made use of robust estimators to transform local image windows into

binary (inlier/outlier) windows. In case of discontinuities, the binary window resembles an

inlier/outlier step edge and its location corresponds to the location of the discontinuity in

the original image. For more robustness the �nal decision of edge/non-edge was made by a

consensus of the votes for a pixel resulting from di�erent image windows.

4 Edge detection based on scan line approximation

The edge detection method proposed in this paper is based on the approximation of a scan

line by a set of polynomial functions. First, we apply the approximation separately to the

rows, columns and the two diagonal directions in the image. In the second phase, the results

of the four processes are combined.

4.1 Scan line approximation technique

For description clarity we �rst assume a dense range image z(x; y) regularly sampled in both

coordinate directions. Let f(x; y; z) = 0 be the 3-D surface of an object to be segmented.

Then, an image row with a constant y

0

is simply a two-dimensional curve f(x; y

0

; z) = 0 in

the x� z plane. A planar 3-D surface ax+ by+ cz+ d = 0, for example, results in a straight

line ax+cz+e = 0; e = by

0

+d, on the image row. Generally, curve segments f(x; y

0

; z) = 0

corresponding to di�erent surfaces have di�erent function parameters. So, we can partition

an image row into a set of curve segments. In the ideal case all partitioning points lie on

the boundaries between two surfaces and are therefore edge points. The same idea applies

to image columns and the two diagonals as well.

To implement the scan line approximation technique, we have to choose an appropriate

surface function f(x; y; z) = 0. One possibility is the implicit quadratic surface function:

f(x; y; z) =

X

i+j+k�2

a

ijk

x

i

y

j

z

k

= 0 (2)

that covers common surface types such as spheres, cylinders and cones. In this case the

curve segments in the scan lines have the form:

f(x; z) =

X

i+j�2

a

ij

x

i

y

j

= 0:

For the partitioning of scan lines into curve segments, however, this representation su�ers

from a high handling complexity. So, we turn to bivariate polynomials:

z = f(x; y) =

X

i+j�k

a

ij

x

i

y

j

:

To make the scan line approximation as simple as possible, we have chosen k = 2. In [6] it

has been shown that the implicit surface function (2) can only be approximated well by a
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(a) (b)

(c) (d)

Figure 3: Splitting process of a scan line.

bivariate polynomial using k = 4, implying that our use of quadratic bivariate polynomials

may produce some oversegmentation of scan lines. I.e., more partitioning points than the

true edge points will be generated since a continuous part of a scan line may be divided

into more than one curve segment. Fortunately, the edge candidates resulting from such an

oversegmentation usually have a very small edge strength so that they can be easily �ltered

out by a thresholding operation (see the discussion in Section 4.2).

For quadratic bivariate polynomials we need to partition scan lines into curve segments

of the form:

z = ax

2

+ bx + c:

We have used the classical splitting algorithm described by Duda and Hart [9]. A quadratic

approximation function is �rst determined for a whole scan line based on the midpoint

and the two endpoints. Then, whenever the largest error e

max

between the approximation

function and the scan line is greater than a preselected threshold �, the scan line is split into

two parts at the location where e

max

occurs. The splitting algorithm proceeds recursively

until the approximation error e

max

doesn't exceed the threshold �.

It is well known that the simple splitting method of Duda and Hart produces sometimes

spurious segments. For the problem of piecewise linear approximation of curves, Pavlidis

and Horowitz [27] tried to solve this problem by introducing a merge step. As stated in

[10], however, this algorithm is computationally rather expensive. For complex curves, it

produces sometimes worse results than the simple splitting method. For the partitioning into

quadratic curve segments, the usefulness of a merge operation is even more questionable.

Therefore, we use the splitting algorithm without any merging and potentially generate an

oversegmentation. Again, this kind of oversegmentation will not result in any serious problem

because of small edge strength (see Section 4.2).

To illustrate the scan line approximation technique, Figure 3 shows a scan line from a

real range image containing two cylindrical surfaces and the results of di�erent partitioning

levels. The whole scan line is �rst divided into two parts (Figure 3(a)). Then, a further

division of each part leads to totally four curve segments (Figure 3(b)). Two more splitting

operations on the left segment of the right cylinder, and one splitting operation on the right

segment of the left cylinder lead to a total of seven curve segments, which is the �nal result

(Figure 3(c) and (d)). Eventually, there are six edge candidates, corresponding to the interior

partitioning points. Besides the expected one on the boundary between the two surfaces,
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Figure 4: De�nition of discontinuity strength at the boundary of two curve segments.

the splitting algorithm also generates �ve other edge candidates on smooth curves due to

the reasons discussed above. In Section 4.2 it will be shown that all these spurious edge

candidates produce negligible edge strength values so that they can be easily excluded from

further consideration by a thresholding operation.

In summary, the scan line approximation technique considers each scan line as a two-

dimensional curve and splits it into quadratic curve segments. For description ease, we

have assumed a regularly sampled range image in the discussion above. But it is easy to

see that the only condition for applying this technique is that all image rows, columns and

diagonals result from the intersection of a 3-D plane with the objects' surfaces and each

scan line thus corresponds to a curve in a plane. Notice that this condition is satis�ed by a

much wider range of scanners than those of regular sampling in both coordinate directions,

thus substantially extending the applicability of our edge detection algorithm. For instance,

structured light scanners like that described in [31] typically don't have the property of

regular sampling. However, the measured points of a scan line in 3D space lie in a plane

spanned by the scan line in the image plane and the focal point of the camera. Therefore,

our algorithm is certainly applicable to this type of range images. Actually, some of the tests

described in Section 6 are based on this type of range images.

4.2 Edge detection and classi�cation

We only consider the end points of a curve segment as potential edge points. All other pixels

are on a smooth surface and are thus excluded from further investigation. For each edge

candidate x

1

(see Figure 4) a discontinuity strength is de�ned in the following way. Let x

2

be the end point of the curve segment adjacent to x

1

and z = f

1;2

(x) be the function of the

two curve segments c

1

and c

2

. According to our discussion in Section 2, the di�erence of

depth values of adjacent pixels, i.e., jf

1

(x

1

)� f

2

(x

2

)j, is not an adequate characterization of

jump edge strengths. Instead, we consider the midpoint x = (x

1

+x

2

)=2. Its expected depth

value on c

1

and c

2

are f

1;2

(x), or alternatively z

1

+ f

0

1

(x

1

)(x � x

1

) and z

2

� f

0

2

(x

2

)(x

2

� x),

respectively, where z

1;2

is the z-value of x

1;2

. Then, a suitable discontinuity strength for

jump edges is given by

jf

1

(x)� f

2

(x)j;

or

j(z

1

+ f

0

1

(x

1

)(x� x

1

))� (z

2

� f

0

2

(x

2

)(x

2

� x))j:
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edge candidate 1 2 3 4 5 6

jump 0.006 0.005 0.018 0.008 0.001 0.005

crease 4:0

o

1:6

o

36:3

o

4:0

o

4:0

o

2:8

o

Table 2: Edge strength values for the scan line in Figure 3(d).

The expected normal vectors at x on c

1

and c

2

are (�f

0

1;2

(x); 1), respectively. In this case

the angle between the two normal vectors

cos

�1

(�f

0

1

(x); 1) � (�f

0

2

(x); 1)

jj(�f

0

1

(x); 1)jj � jj(�f

0

2

(x); 1)jj

provides a good de�nition of discontinuity strength for crease edges. Alternatively, we may

also express the crease edge strength by

cos

�1

(�f

0

1

(x

1

); 1) � (�f

0

2

(x

2

); 1)

jj(�f

0

1

(x

1

); 1)jj � jj(�f

0

2

(x

2

); 1)jj

using the normal vectors at x

1;2

.

The determination of the edge type becomes now very simple. An edge candidate is of

the type convex if

�f

0

1

(x) < �f

0

2

(x); or f

0

1

(x) > f

0

2

(x);

otherwise, it is a concave edge. Alternatively, the test

convex: f

0

1

(x

1

) > f

0

2

(x

2

); concave: f

0

1

(x

1

) < f

0

2

(x

2

)

may be used, too.

The scan line partition is controlled by the threshold �. It should be set small enough so

that we will not miss any edge point. This way we potentially generate an oversegmentation.

Actually, an oversegmentation is also caused by our use of quadratic bivariate polynomials as

surface representations. However, this kind of oversegmentation doesn't result in any serious

problem since it can be expected that both jump and crease discontinuity strength values

de�ned above will have very small values compared to true edge points.

As an example to illustrate the edge strength measures, we consider the scan line and

the partitioning shown in Figure 3(d). The edge strength values for the six edge candidates

are listed in Table 2, where the edge candidates are numbered from left to right on the scan

line, and for each edge type the second of the two possible edge strength measures de�ned

above has been used. Except for the expected edge point on the boundary between the two

cylindrical surfaces, all candidates have negligibly small crease edge strengths. As a reference

for the signi�cance of jump edge strengths we take the di�erence of z-values between two

adjacent pixels in a range image. For the range image containing the scan line in Figure 3(d)

this di�erence value has an average of 0.009 and standard deviation of 0.033. Obviously,

all the six edge candidates have very small jump edge strength, excluding them from being

considered as jump edge candidates.

Dependent on the con�guration of surfaces in the scene, the maximal value of the discon-

tinuity measures may not be observed in one particular direction. To capture the information
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available in the scene to a larger extent we carry out the scan line approximation and the

subsequent computation of edge strengths in four directions: image rows, image columns

and the two diagonal (45

o

and 135

o

) directions. A pixel thus has four di�erent discontinu-

ity measures of each type. We combine the four measures by simply taking the maximum.

The further edge type classi�cation into convex or concave is determined by the direction

corresponding to the maximal crease edge strengths.

In our experiments it turned out that for noisy range images the position of edge points

as determined by the simple splitting algorithm is not very precise. The reason is that no

further adjustment of the partitioning points is performed. So, partitions like that in Figure

5 may occur. Here part of a scan line, the curve p

1

p

3

, has been divided into two segments

p

1

p

2

and p

2

p

3

. But the real edge position p

0

has not been optimally recovered. To achieve

better edge localization we have developed an edge position adaptation method with subpixel

accuracy. We use the functions z = f

1;2

(x) of two adjacent curve segments and compute

the intersection point. Then, the intersection point is backprojected into the image plane

to get its pixel coordinate. This pixel is considered as the improved edge position if it is

within a distance of a preset number of pixels from the original boundary position of the two

curve segments. Furthermore, recall that the functions z = f

1;2

(x) provided by the splitting

algorithm are computed by the midpoint and the two endpoints of the curve segments.

To capture the information of the curve segments to a larger extent, we can alternatively

compute another function z = f

1;2

(x) by means of the least square method using all pixels

of each curve segment and forward these functions to the subpixel edge localization process.

As a matter of fact, this latter approach gives us the best results. The results reported in

Section 6 are based on this edge position adaptation method.

5 Optimality analysis

In Section 2 we have de�ned an optimal edge detector to be one that provides the angle be-

tween the two intersecting surfaces at an edge point as discontinuity measure. Our algorithm

considers only directional sections of a scene. Even though totally four directional sections

are taken into account, the computed crease edge strength is still di�erent from the optimal,

i.e., real value. We are interested in the amount of this deviation and thus the question to

which extent our edge detector is optimal. In the following it is shown by a quantitative

performance analysis that our edge detection algorithm is near-optimal.

For the purpose of optimality analysis simulation tests were carried out. We investigated

all possible con�gurations of two intersecting planes at an edge point. Both intersecting

planes can take an arbitrary orientation. For practical reasons the plane orientation is
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limited such that its slant angle (with the z-axis) is smaller than 70

o

. Other orientations

are rarely observed in range images. We consider all combinations of two plane orientations

and compute for each such combination the di�erence between the crease edge strength

determined by our edge detection algorithm and the optimal value. We call this di�erence

the edge strength estimation error (shortly estimation error).

We represent the orientation of the two intersecting planes by their unit surface normals

(a

1

; b

1

; c

1

) and (a

2

; b

2

; c

2

), where each surface normal is given by a point on the unit sphere.

For this representation we need a uniform tessellation of the unit sphere so that only a �nite

number of surface normals have to be dealt with. In our simulations we apply a tessellation

method based on the well-known geodesic dome constructions [17]. Starting with a regular

icosahedron, each of its edges is divided into f equal sections, where f is called the frequency

of the geodesic division. This results in f

2

triangles for each face and totally 20f

2

triangles.

Then, this divided icosahedron is projected onto the unit sphere and the centers of all cells

de�ne an approximate uniform tessellation of the unit sphere. In our simulations a geodesic

division of frequency 32 has been used.

Since we use unit surface normals, the optimal edge strength de�ned in (1) becomes now

cos

�1

[(a

1

; b

1

; c

1

) � (a

2

; b

2

; c

2

)]:

In our simulation the estimation error E of the crease edge strength determined by the

algorithm is computed for all combinations of two orientations ((a

1

; b

1

; c

1

); (a

2

; b

2

; c

2

)), each

corresponding to a cell of the unit sphere tessellation whose slant angle is smaller than

70

o

. The estimation error has an average of 6:4

o

and a standard deviation of 7:7

o

. Figure

5(a) shows the histogram for E. Apparently, the edge strength computed by the proposed

algorithm is very close to the optimal value. Now we give a more detailed characterization of

the estimation error E. First, we investigate the dependence of E on the slant angle of the

two intersecting planes. Figure 5(b) and (c) plot the average and standard deviation (both in

degrees) of E, respectively, as a function of a pair of slant angles (�

1

; �

2

); 0

o

� �

1

; �

2

� 70

o

.

Obviously, E increases with the slant angles. The larger estimation errors occur in the case

of large values for both slant angles that is rather rarely observed in range images. This

means that in most cases our edge detection algorithm is able to provide a precise edge

strength estimation. There is a second way to characterize the estimation error E, which is

not entirely dependent on the slant angels of the two intersecting planes. For instance, two

planes z = �sx have very large slant angles for large values of slope s. But the optimal edge

strength 2 tan

�1

s will be captured by our algorithm through the analysis of image rows.

Actually, the optimal edge strength is reached at the directional section that contains the

surface normals of both intersecting planes. In the example above this directional section

coincides perfectly with image rows. As the angle A of the optimal directional section with

the z-axis becomes larger, the four directional sections used in our algorithm will move away

from the optimal one and the estimation error E will increase. Therefore, we can also look at

the dependence of the estimation error on the angle A. Figure 5(d) and (e) plot the average

and standard deviation (both in degrees) of E, respectively, as a function of A, con�rming

the good edge strength estimation performance of the algorithm. Based on the simulation

results described above we conclude that our edge detection algorithm is near-optimal.
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Figure 6: Optimality analysis: (a) histogram of the estimation error; average (b) and stan-

dard deviation (c) of the estimation error as a function of (�

1

; �

2

); average (d) and standard

deviation (e) of the estimation error as a function of the angle A.
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6 Experimental results

The proposed edge detection algorithm has been implemented in C on a Sun Sparcstation

5. For tests we have used a large number (about 280) of real range images acquired by three

range scanners with quite di�erent characteristics:

� a Technical Arts scanner [32] operating on the triangulation principal using laser plane

projection,

� an ABW structured light scanner [31], and

� a Perceptron time-of-ight laser scanner [28].

These three types of range scanners are among the most important active ranging methods

[5, 18] and thus represent quite well the spectrum of the range scanners available today. The

�rst image source ist the popular image set from the PRIP Lab of Michigan State University

and another 38 registered range/intensity image pairs

3

from the same Lab [23]. The second

image set acquired by the ABW scanner consists of about 50 images of both polyhedral

and curved objects

4

. By contrast, all 40 images taken by the Perceptron scanner

5

contain

only polyhedral objects

6

. The three image sets have quite di�erent characteristics. The

images from Michigan are approximately regularly sampled in both coordinate directions,

while this property is given neither for ABW nor for Perceptron images. Generally, the

Technical Arts scanner provides the best range images in terms of noise, followed by the

ABW and Perceptron scanner. The three image sets have also di�erent imaging volumes.

The Perceptron's is room size, whereas both the Technical Arts and the ABW scanner have

an image volume of table-top size.

Our edge detection algorithm has a single threshold, namely �, for the control of the scan

line approximation process. For all test images of each scanner, we have applied the same

value for �. The choice of this value is not critical. For a range of values, we have observed

similar edge detection results.

To visualize the output of our algorithm we map the edge strength map e(i; j) to the

range [0::255] of greylevels by

8

>

>

>

<

>

>

>

:

d

e(i; j)

e

m

� 255e; e(i; j) � e

m

255; e > e

m

where e

m

is a cut value speci�ed for each edge type. In the case of crease edges, for instance,

it has been chosen to be 64

o

for all three image sets. To reduce the space needed for the

visualization, the edge strength maps of both edge types are merged to get an overall edge

strength map by simply taking the maximum. We use a threshold to construct a binary edge

map. In the experimental results described below, this threshold is set to 80 for the Michigan

3

Both are available from http://www.eecs.wsu.edu/IRL/RID/RID.html.

4

Available from http://iamwww.unibe.ch/�fkiwww/ResearchAreas/RangeImages.html. The images

of polyhedral objects only can also be downloaded from http://marathon.csee.usf.edu/range/seg-

comp/SegComp.html.

5

Available from http://marathon.csee.usf.edu/range/seg-comp/SegComp.html.

6

Forty images of the ABW image set and the entire Perceptron image set constitute the test data in a

recent experimental comparison of region-based range image segmentation algorithms [16].
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(a) (b)

(c) (d)

(e) (f)

Figure 7: A range image from the Michigan image set and its edge detection results (see

text).
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(g) (h)

(i) (j)

(k) (l)

Figure 7: (Cont.) A range image from the Michigan image set and its edge detection results

(see text).
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(m) (n)

Figure 7: (Cont.) A range image from the Michigan image set and its edge detection results

(see text).

Figure 8: Results on six other Michigan images.
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Figure 8: (Cont.) Results on six other Michigan images.
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Figure 9: Results on two images described in [23].

images and 120 for the other two image sets, corresponding to 20

o

and 30

o

, respectively, in

the case of crease edges. Note that more elaborate thresholding methods are known in the

literature. The approach in [33], for instance, takes both edge strength and edge curve length

into account and is very e�ective to delete isolated spurious edge points.

We use the range image in Figure 7(a) acquired by the Technical Arts scanner to illustrate

the behavior of our edge detection algorithm. The edge strength maps for jump and crease

edges are shown in Figure 7(c) and (d), respectively, and the resulting overall edge strength

map in Figure 7(b). Notice that the two parallel surfaces of the top object caused high jump

edge strengths but no crease edges. Figure 7(e)-(h) represent the crease edge strength maps

created by the analysis of image rows, column and the two diagonals, respectively. Obviously,

each process responds strongly to edges of a particular direction, and a combination of all

four processes is necessary to capture edge information of arbitrary surface con�gurations.

The binary edge map and its thinned version are in Figure 7(i) and (j), respectively. For

this scene our algorithm has successfully extracted edge points in both planar and curved

regions. There are only a few short gaps that can be easily closed to form a complete

segmentation. For the entire Michigan image set the threshold � has been set to 0.02. Other

choices around this value lead to similar edge detection results. For the scene in Figure 7(a),

the use of � = 0:015 and 0.025 produces the binary edge maps in Figure 7(k) and (l). There

is no essential di�erence to the edge map in Figure 7(j). The edge points in Figure 7(j) are

classi�ed as convex or concave as shown in Figure 7(m) and (n). This example demonstrates

the ability of our algorithm to reliably characterize edge types. The performance of the

algorithm is further illustrated by six other scenes shown in Figure 8, where for each scene
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(a) (b)

(c)

(d) (e)

Figure 10: Results of two ABW images (see text).
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Figure 11: Results of two Perceptron images.

we show the overall edge strength map and the thinned binary edge map. The �rst scene

in Figure 8 is another example where both planar and curved surfaces occur. The next

two scenes contain surfaces such as cylinders, spheres and cones that are common in range

images. Objects of more complicated shape can be seen in the remaining three scenes. The

last scene contains two overlapping objects. For the image set described in [23], the results

of two scenes are shown in 9, containing an adaptor and a funnel, respectively.

The other two image sets are more noisy than the Michigan images. In particular, we

have observed that for ABW images the basic version of our algorithm cannot provide a

precise edge localization. This problem is illustrated in Figure 10(a). After applying the

edge position adaptation method we get the edge strength map and the �nal thinned edge

map in Figure 10(b) and (c), respectively. This example con�rms the usefulness of the edge

position adaptation method. Also shown in Figure 10 are the results of another scene with

curved objects. The performance of our edge detection algorithm on the Perceptron images

is exempli�ed by the two scenes in Figure 11. In contrast to the Michigan images, many

spurious edge points were reported due to the high noisy level in these images. In this case

more elaborate thresholding methods like that described in [33] may be e�ective to delete

the spurious edge points while retaining true edge points.
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Figure 12: (a) Distance transform of the edge map in Figure 7(i). (b) Salience distance

transform of the edge strength map in Figure 7(b).

The computation time for the Michigan images of a typical resolution of 200� 200 pixels

is about 1.5 seconds. All ABW and Perceptron images have a resolution of 512� 512 pixels

and require about 10 seconds.

7 Discussions and conclusion

In this paper we have presented a new method for edge detection in range images based on a

scan line approximation technique. As mentioned in the introduction, the motivation of our

work was to overcome some common drawbacks of the methods known from the literature.

Our algorithm provides edge strength that has a straightforward geometric interpretation.

This can potentially simplify the threshold determination for generating a binary edge map.

Edge points found by our algorithm can be classi�ed into several subtypes. In particular, the

two subtypes convex and concave represent intrinsic properties of objects and are thus useful

for the interpretation step following the image segmentation. The behavior of an optimal

edge detector was de�ned. By means of simulation the near-optimal character of the edge

detection algorithm was shown. Our method has been extensively tested on a large number

of real range images acquired by three range scanners with quite di�erent characteristics

and demonstrated good results. We believe that all these aspects are important in designing

a robust edge detection algorithm. So far no su�cient attention has been paid to them.

In particular, optimality analysis and extensive experimental evaluation have been widely

missing in the literature.

The edge detection results are useful in two ways. Edge detection is potentially able to

achieve a complete segmentation. Our tests, especially those on the images acquired by the

Technical Arts scanner, have demonstrated this potential. Alternatively, we can make use

of edge detection to support region-based segmentation. In region-growing techniques, for

instance, the quality of seed regions is of importance. Ideally, they should be far away from

region boundaries and in the middle of regions. The distance transform of an edge map

gives this information directly and thus provides an excellent support to �nding reliable seed

regions. After the distance transform has been applied, pixels are marked by their distances

to the nearest edge points. Figure 12(a) shows the distance transform of the edge map in

Figure 7(j) where the distance values are encoded by greylevels. If this kind of distance

transform is taken into account during the seed region extraction, it is more likely to �nd
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reliable seed regions. Instead of using a binary edge map, we can also apply the so-called

salience distance transform [29] to an edge strength map. In the salience distance transform

all edge candidates are involved in the computation of a distance map. But their contribution

is weighted by a salience value (the edge strength in our case). This way we can eliminate

the need for the binarization threshold. The salience distance map of the edge strength map

in Figure 7(b) is shown in Figure 12(b). Considering the usefulness of edge detection, robust

edge detection methods like the one proposed in this paper will be certainly valuable to the

�eld of range image analysis and interpretation.

In the present paper the results of our edge detection algorithm have been judged by hu-

man observation. Recently, a methodology [19] for experimentally evaluating edge detection

methods for range images based on image sets with manually speci�ed ground truth and

a set of objective performance metrics was proposed. For the future we plan to apply this

methodology to achieve an objective performance characterization of our algorithm and a

comparison with other known methods.
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