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Abstract
This paper investigates the potential of Forward Error Correction (FEC)
mechanisms and dynamic/run-time adaptive FEC variants in Wireless
Sensor Networks. We implemented eight different Error Correction Codes
(ECCs), ranging from simple bit-repetition schemes over Hamming codes
to complex Bose-Chaudhuri-Hocquenghem codes, and three run-time
adaptive FEC schemes which adapt the correctional power of ECCs to
the current link quality. The paper evaluates the computational costs and
the resulting benefits of the FEC schemes under real-world conditions in a
distributed testbed environment.



Link-Quality Aware Run-Time Adaptive
Forward Error Correction Strategies

in Wireless Sensor Networks

Abstract. This paper investigates the potential of Forward Error Cor-
rection (FEC) mechanisms and dynamic/run-time adaptive FEC vari-
ants in Wireless Sensor Networks. We implemented eight different Error
Correction Codes (ECCs), ranging from simple bit-repetition schemes
over Hamming codes to complex Bose-Chaudhuri-Hocquenghem codes,
and three run-time adaptive FEC schemes which adapt the correctional
power of ECCs to the current link quality. The paper evaluates the com-
putational costs and the resulting benefits of the FEC schemes under
real-world conditions in a distributed testbed environment.

1 Introduction

Wireless Sensor Networks (WSNs) are growing in popularity for various appli-
cations: they are increasingly used in healthcare, in business automation and
logistics, the automotive industries or as central technology in various research
projects of the natural sciences. A key factor for the proliferation of WSN tech-
nologies is the reliability of the communication: it is crucial for many applications
that the sensed data is delivered quickly and reliably across the network. The
low-power wireless channel is, however, often prone to many hard-to-predict
wireless phenomena. Transmission errors are likely to occur due to a variety
of reasons, ranging from multipath propagation effects, fading, scattering and
reflection to interferences with other ongoing transmissions. Often, the channel
exhibits a timely and spatially variable bit error rate (BERs) in the range of 10−4

or even higher, which results in packet loss rates ranging from less than 1% to
sometimes far more than 10%-20%. In wired networks, BERs are usually several
magnitudes lower (e.g., DSL networks [1] exhibit BERs of maximum 10−7, but
usually in the range of 10−9).

Automatic Repeat reQuest vs. Forward Error Correction: High error
rates on the link level inevitably lead to a higher rate of corrupted packets, ren-
dering the retrieved data unusable. The simplest and most naive way to deal with
transmission errors on the link layer is to retransmit the same packet again until
it has been correctly received or a maximum retry count is reached. RFC 3366 [2]
describes different Automatic Repeat reQuest (ARQ) schemes that are used to-
day in different kinds of networks, ranging from various wireless networks to
wireline and optical networks. In ARQ, the sender appends a cyclic redundancy
checksum (CRC) [3] to the transmitted packet and waits for the acknowledge-
ment (ACK) from the receiver. In order to reliably determine the integrity of the



packet, the receiver calculates the CRC across the received payload again and
compares it to the received checksum. If both CRCs match, the receiver con-
firms the successful reception to the sender with an ACK. If the sender does not
receive an ACK within a certain time window, it assumes that the transmission
attempt has failed and invokes a retransmission.

A sophisticated mechanism to cope with packet corruption is the concept of
Forward Error Correction (FEC) [4]. FEC is used in a wide range of commer-
cial and industrial products where data is transmitted over erroneous channels
and where, henceforth, bit errors are likely to occur. FEC is based upon Error
Correcting Codes (ECCs), which can detect and correct a certain amount of bit
errors in a sequence of bits. In FEC, the sender computes parity information
according to the applied ECC over the data bits and adds this redundant infor-
mation to the payload. At the receiver, the decoder of the applied ECC checks
the received data bits for errors by taking this parity information into account.
FEC schemes hence generally introduce an overhead with respect to computa-
tion (encoding/decoding) and the number of bits that need to be transmitted.
This overhead can however pay off with an increased packet delivery rate (PDR)
and a reduction of the (re)transmission overhead and latency, since in case an
error occurs, the correction can immediately take place after packet reception.

Towards Dynamic Run-time Adaptive FEC Strategies: WSNs are typi-
cally configured for their intended deployment scenario at compile-time, which
can lead to suboptimal parameter settings if the discovered network conditions
deviate significantly from the expectations prior to network deployment. In prac-
tice, it is rather impossible to predict the frequency and severity of signal distor-
tions, and hence, the probability of bit errors and the patterns with which they
occur. Therefore, it is also impossible to choose an adequate ECC code which
exhibits “just enough” correctional power in advance of network deployment.
The application of powerful ECCs makes sense when the channel exhibits a high
BER, it however constitutes a waste of resources in case the network’s link qual-
ities are good. By facing the challenge of selecting the best ECC for a given
link and channel in our own indoor WSN testbed, we found that the application
of run-time adaptive FEC mechanisms for WSNs operating under timely and
spatially variable channel conditions has generally not been studied at all. Dy-
namic FEC schemes allocating the correctional power of ECCs in an on-demand
manner could be a viable alternative to static FEC with network-wide ECC
configuration, where the link conditions are not taken into account.

The contributions of this paper are threefold: first, we study the performance
of a wide range of ECCs preconfigured in a statical manner in several real-
world WSN experiments. Second, we evaluate whether run-time adaptive ECC
selection strategies can cope with the particularities of a distributed WSN, where
link qualities are expected to exhibit temporary short-lived variations of the link
quality, as well as variability across the different links of the network. We propose
three run-time adaptive FEC strategies, which allocate the correctional power
of ECCs in an on-demand manner. Third, we make the library of ECC codes



libECC [5] tailored for the most frequent microcontroller on WSN platforms, the
MSP430 [6], publicly available, since such a library has to date been missing.

Section 2 introduces into recent work in this research area and relates it to this
paper’s contribution. Section 3 discusses the selected implemented ECCs and
their properties. Section 4 illustrates the proposed adaptive FEC schemes, which
are - together with the static ECC schemes - evaluated in different real-world
scenarios in Section 5. Section 6 concludes the paper.

2 Related Work

A recent analysis of related work and literature on FEC mechanisms and adap-
tive schemes in particular conveyed that the related work in this field is rather
limited. The performance of a small set of rather simple ECC codes has been
investigated with real-world hardware platforms and different radio transceivers,
e.g., the Chipcon CC1000 [7] in [8], or the RFM TR1001 [9] in [10], both using a
frequency around 868 MHz and on-off-keyed (OOK) modulation. In many stud-
ies, the examined topologies were far from real-world environmental conditions,
e.g., the topology used in [10] consisted of 16 sensor nodes in a line of sight
with one sender. Similarly, in [11] the distance between any two nodes was fixed
to only 30 cm. Often enough, crucial wireless phenomena were not taken into
account, e.g., signal attenuation through concrete walls and floors. The study [8]
conveyed that the most frequently occurring error patterns in indoor experiments
were 1-bit and 2-bit errors across one packet. The entire analysis however was
conducted in the absence of any other ongoing concurrent traffic. The authors
conclude that in their case, complex ECCs with a high correctional power are
hence not necessarily required, but that this trade-off needs to be investigated
in environments with higher error rates. The authors of [10] come to a similar
conclusion. As in [8] however, the effect of concurrent transmissions or signal
attenuation due to concrete walls and floors, which have a crucial impact in
real-world WSNs, are not studied at all, since in the scenario of [10], only one
node is broadcasting packets which are then logged by the remaining 15 nodes.
The remaining nodes are all arranged in a line of sight with the sender.

To the best of our knowledge, extensive real-world experiences with run-time
adaptive FEC schemes applied in WSNs do not exist to date. A simulation-
based study on adaptive FEC schemes was conducted in [12]. The study pro-
poses so-called FEC-level adaptation (FECA), in which the parameters of one
ECC driving the amount of parity bits are adapted at run-time. In FECA, the
parameters n and k of BCH are adapted in three steps, in order to increase
and decrease the amount of parity bits depending on the channel conditions.
FEC adaptations are activated by either a packet loss or the timeout of a back-
off timer. FECA [12], however, is not particularly designed for sensor networks,
but rather for IEEE 802.11-based wireless mobile ad hoc networks. The authors
use the network simulator ns-2 and apply a generic wireless channel error model.
They conclude that FECA performs better than the application of statically con-
figured FEC mechanisms, given that the error rates do not oscillate too rapidly.



In the recent past, the application of simulation tools have been identified as
a general drawback of many ad hoc and sensor network studies. Inappropriate
parameter settings, unrealistic channel, traffic and error models of many simu-
lation studies have led to an erosion in trust in simulation results [13] [14]. The
trend in research on WSNs has clearly shifted towards experimental feasibility
studies of protocols on real-world devices. This paper clearly distinguishes from
the mentioned related work by its real-world analysis of eight different ECCs
and several adaptive FEC strategies in realistic deployment topologies.

3 Forward Error Correction Library libECC

Our library of ECCs libECC [5] implemented during this study consists of eight
different ECCs from four basic classes, each with different degrees of redundancy
and different block sizes. Figure 1 illustrates the block size, the correctional
power per block and the amount of redundancy of these ECCs. The parameters
in brackets define the particular ECC configurations, but their semantics may
differ among the classes (e.g., payload/parity bits, repetition factor, etc.):

• The Repetition Code [15] is the most simple and naive method to intro-
duce an error correction capability, since it simply stretches the number of
input bits and then decodes using majority logic decoding. We refer to our
implementation of the repetition code as REP(3,8) throughout this chap-
ter, because it stretches the input bits by a factor of 3 and operates on a
block unit of one byte. The advantage of REP(3,8) is the low computational
overhead, which comes at the cost of the resulting large portion of parity
information, in particular when comparing with more complex codes.

• The Hamming code is a linear error-correcting code invented by Richard
Hamming in 1950 [16]. This simple code can be seen as a cornerstone for the
development of modern ECCs. libECC contains the popular Hamming(7,4)
code, which encodes 4 data bits into 7 encoded bits.

• The Double Error Correction Triple Error Detection (DECTED) proposed in
[17] is similar to Hamming. DECTED is able to correct up to two bit errors
and can detect up to three adjacent bit errors per block. The DECTED(16,8)
code implemented in libECC takes 8 bits as input and creates an encoded
word of 16 bits, hence exhibiting comfortable block size units of 1 byte for
the raw data and 2 bytes for the encoded data.

Fig. 1: libECC Codes: Block Size, Correctional Power, Redundancy



• The Bose-Chaudhuri-Hocquenghem (BCH) codes, invented in 1959 by Hoc-
quenghem [18] and independently in 1960 by Bose and Chaudhuri [19], are
the most complex ECCs within libECC. BCH codes belong to the class of
cyclic block codes. BCH(n, k) encodes k data bits into n encoded bits. libECC
implements BCH codes with 63 bits block size, allocating 64 bits for prac-
tical reasons, since 64 bit blocks nicely fit into the long long datatype.
BCH(63,57), BCH(63,51), BCH(63,45), BCH(63,39), and BCH(63,36) im-
plemented in libECC can correct 1,2,3,4 or 5 errors per block.

Memory Footprint: WSN nodes are heavily restrained with respect to the
available computational power and memory resources. Having this restriction
in mind, we cautiously kept the memory footprint of libECC as low as possi-
ble. Although many of the implemented ECCs require large matrices, syndrome
value lookup tables and polynomials, the current version of libECC consumes
only roughly 10 KBytes for the text segment and 326 bytes for the data segment.
libECC allocates one statically allocated data structure, where detailed informa-
tion about the decoding and correction procedures is stored after each encoding
and decoding operation, e.g., the number of corrected errors, the size of the de-
coded payload, the duration of the decoding. libECC uses the basic data types
of the mspgcc compiler [20], but could easily be ported to other platforms. We
have successfully tested the library on different MSP430-based WSN platforms
and operating systems, such as the MSB430 [21] using ScatterWeb2 OS [22] and
TelosB [23] using Contiki OS [24].

4 Adaptive Forward Error Correction

WSN nodes are typically preconfigured with the most crucial parameter settings
at compile-time, hence much before the actual network deployment. As pointed
out in Section 1, this can result in suboptimal performance in case the actu-
ally encountered environment differs much from the conditions expected during
planning. When deciding to apply FEC, a crucial design question consists in se-
lecting the appropriate ECC. While a too weak code might not be able to correct
many errors, a too strong code would waste precious time and energy for en-
coding/decoding and transmitting the additional parity data. With energy and
processing power being limited resources in WSNs, this decision is of particularly
high importance. The channel quality is almost certain to exhibit variations over
time and can differ heavily across the different links, which renders the choice
of a network-wide “optimal” ECC prior to network deployment impossible.

With our proposed adaptive FEC approaches, we address this crucial design
problem of choosing an appropriate ECC code by adaptively selecting the ECC
codes for each individual link at run-time instead of applying network-wide set-
tings prior to network deployment. In each of the adaptive FEC schemes we
introduce in the following, the sender decides which ECC to use based on past
transmissions to the target node, since the channel quality and transmission
success probability is usually tied to a particular link. Optimally, the selected



Fig. 2: Adaptive Forward Error Correction: ECC Selection Sequence

ECC adds as little overhead as possible, but provides just enough correctional
power to overcome the encountered error patterns. Figure 2 illustrates the finite-
state-machine based concept of selecting different ECCs at run-time. The states
are kept in a table for each neighbor and denote the current ECC that is used
on the link to that neighbor. The ECCs contained in this chain of states are
increasing in their correctional power from the leftmost to the rightmost state,
and similarly with respect to computational and parity overhead. In the default
OFF state, the node does not encode the payload at all. Hamming(7,4), can
correct one error per block, DECTED(16,8) up to two errors per block, and
BCH(63,45), BCH(63,39), and BCH(63,36) can correct up to 3,4, and 5 errors
per block, respectively. The ability to correct multiple adjacent errors per block
is a crucial advantage of the BCH variants, because random bit errors tend to
occur temporally correlated, e.g., during the transmission of the same byte.

Stateful Adaptive FEC (SA-FEC): SA-FEC is the most simple adaptive
FEC mechanism thinkable. It selects the ECC for the next transmission to the
specified destination according to the success of the last one. This means that if
the last transmission of an ECC packet has been successful, SA-FEC selects the
next less powerful ECC. If not, SA-FEC selects the next more powerful ECC,
c.f. Figure 2. The decision depends only on the success of the last transmission,
i.e., whether a subsequent ACK has been received or not. Since SA-FEC only
takes the recent past into account, it reacts quickly to link quality changes.

Stateful History Adaptive FEC (SHA-FEC): SHA-FEC is similar to SA-
FEC, but maintains a variable denoting the currently used ECC and a history
of entries representing the recent past transmissions, which is manipulated in a
FIFO-manner. In case a transmission succeeds and a MAC-level acknowledge-
ment (ACK) is received, SHA-FEC stores an integer value representing the next
lower ECC into the history, since it assumes that a lower ECC would have suf-
ficed as well. In case the transmission fails and no ACK is received, SHA-FEC
stores a value representing the next higher ECC, assuming that more correc-
tional power is necessary. We sticked to a history size of five entries throughout
all our evaluations. The selection of the ECC used for the next transmission is
based on calculating the rounded average of the values stored in the history. As
soon as the majority of entries represents the lower ECC, the node switches back
one step in the state chain depicted in Figure 2. SHA-FEC reacts less quickly to
link quality changes than SA-FEC, but avoids fast oscillation effects of selecting
different ECCs for each transmission. The history-based selection mechanism
provides a means to cope with longer-term interferences, since the mechanism
does not immediately fall back to a less powerful ECC after one successful trans-
mission, but waits until a couple of transmission have succeeded and then only
stepwise shifts back in the state chain illustrated in Figure 2.



Stateful Sender Receiver Adaptive FEC (SSRA-FEC): SSRA-FEC ex-
tends SHA-FEC by taking into account an additional history containing receiver
information into the ECC selection process. The entries in this new history de-
note the maximum number of corrected errors per block, counted by the receiver
node across the last packet, which exactly equals the number of errors per block
that can be corrected by the ECCs in the state chain in Figure 2. This number
is transmitted in the ACK in case the frame could be correctly decoded. To
determine the ECC for the next transmission, the sender computes the rounded
average of the unrounded averages of both histories. SSRA-FEC hence attempts
to implement a closed-loop parameter adaptation, where not only the sender
knowledge is taken into account, but also feedback from the receiver. The mech-
anism involving two histories was designed to find a “suitable” ECC quickly by
integrating receiver feedback and therefore having more indications to rely upon.

5 Experimental Evaluation

We evaluated the different ECCs of libECC and the three adaptive mechanisms
SA-FEC, SHA-FEC and SSRA-FEC on the MSB430 [21] platform with the
ScatterWeb2 OS [22]. The MSB430 has a CC1020 [25] byte-level radio operating
in the 804-940 MHz ISM band with a transmission rate of 19.2 kbit/s and on-
off keyed modulation. We used the default IEEE 802.11-like ScatterWeb2 OS
CSMA layer, which does not duty-cycle the radio in any form. We explicitly
chose a non duty-cycled MAC in order to safely exclude the potential influence
of radio duty-cycling on the resulting PDRs of the different ECCs.

5.1 Computational Complexity

We first evaluated the ECC implementations of libECC with respect to computa-
tional complexity. We therefore measured the time needed for encoding different
payload sizes, ranging from 3 to 52 bytes of data and for decoding the corre-
sponding code words. Figure 3 depicts the encoding and decoding times for the
given payload sizes. The figures display the mean values and standard devia-
tions of 1000 encoding/decoding operations for each code in libECC. Obviously,

0

200

400

600

800

1000

1200

1400

5040302010
0

OFF
HAMMING74
DECTED168
BCH6345
BCH6339
BCH6336
BCH6357
BCH6351
REP38

100

80

60

40

20

Encoding Time

50302010 40

Decoding Time

Encoded Data [Bytes] Decoded Data [Bytes]

D
u
ra

ti
o
n
 [

m
s]

D
u
ra

ti
o
n
 [

m
s]

Fig. 3: Encoding and Decoding Time vs. Payload Bytes



the encoding and decoding durations grow linearly with the amount of payload
bytes for each ECC examined. The figures, however, clearly display a trade-off
between the correctional power of the ECCs and the required computational
complexity. The repetition code REP(3,8) for example is by far the fasted ECC,
since it requires few computation and mainly consists of memory copying op-
erations. The hidden costs of the repetition code, however, lies in the resulting
large size of the parity data, which can significantly impact on the energy con-
sumption when transmitting the frame. The BCH code exhibits a characteristic
step-shaped pattern in the encoding and decoding times, which can be explained
by the blockwise encoding and decoding process of the BCH code and the large
block size units. The complex BCH variants with higher correctional power which
add more parity information clearly exhibit longer encoding/decoding times.

5.2 Energy Cost Estimation of Forward Error Correction

In order to be able to quantify the energy cost of FEC, we measured the current
draw of the MSB430 node with the CPU in the two operation modes of the
MSP430 [6] chip used by ScatterWeb2 OS, namely the fully active mode and the
Low Power Mode 1 (LPM1). In LPM1, the CPU and master clock are disabled,
but timers and peripheral interrupts are still enabled. We measured the node’s
current draw to account to 3.75 mA for the fully active operation mode and
1.92 mA for LPM1. This difference might vary by a few percent dependent on
the node chosen for the measurement, since different nodes can exhibit small
variations in the power consumption [26]. With the measured current draws, we
derive a cost function to quantify the energy costs of the implemented ECCs,
taking into account the time it takes to encode or decode a payload. We define
PDefault(t) as the power consumption function of the node without using FEC,
and PFEC(t) as the respective function of the node applying FEC. We define the
cost of the application of FEC as the additional power consumed while encoding
and decoding. The power cost function Pcost(t) can then be denoted as

Pcost(t) = PFEC(t)− PDefault(t)

Integrating the measured values of the MSB430 into the equation yields:

Pcost(t) = (IFEC − IDefault) · Usupply = 1.83 mA · 4 V = 7.3 mW

IFEC corresponds to the average current used with the CPU in the active mode,
while IDefault is the average current used in LPM1. The encoding and decoding
durations depicted in Figure 3 can hence be linearly mapped using the cost
function Pcost(t) to corresponding energy cost functions. For example, the energy
cost Eenc/dec of an encoding and decoding operation at sender and receiver of,
e.g., a BCH(63,45) encoded payload of 32 bytes, which takes roughly Tenc =
30 ms for encoding and Tdec = 100 ms for decoding, calculates as

Eenc/dec = Eenc + Edec = Tenc · Pcost + Tdec · Pcost = 0.95 mJ

The subsequent evaluations of this study exclusively focus on reliability measures
(link-level PDRs and end-to-end PDRs) and leave aside the energy-efficiency



aspect. Nevertheless, we briefly illustrate the potential benefit of applying ECCs
with respect to the energy consumption, continuing the exemplary calculation of
Eenc/dec noted above: we assume that a retransmission consists in a 50 ms frame
Tf and a 20 ms ACK transmission Tack. Based upon values measured in [26]
of the mean currents of a MSB430 with the radio receiving (Ircv =23.53 mA)
and transmitting (Itx =37.48 mA), the energy costs Ere of a retransmission
consisting of the costs Esnd at the sender and Ercv at the receiver account to:

Ere = Esnd + Ercv = (Tf · (Itx + Irx) + Tack · (Itx + Irx)) · Usupply = 17.08 mJ

This cost Ere of an entire retransmission is almost twenty times higher than
the encoding and decoding operations in case a mediocre ECC is applied. In
the presence of unreliable links with bit errors corrupting a significant share of
the packets, the application of FEC may hence even make sense from an energy
point of view alone. A general judgment on this question can, however, not
be answered without an assumption about the channel quality and hence the
frequency of bit errors, and would require substantial further investigations.

5.3 Single-Link Scenario - Indoor and Outdoor Links

This section evaluates the different ECCs of libECC in two single-link scenarios,
which are displayed in Figure 4 as links A→B and A→C. Nodes A and B are
placed in the two most distant offices on the same floor of the same building.
Node A is placed on the windowsill in one office, and the signal from its antenna
has to pass five concrete walls in order to reach node B, with a distance of
roughly 25m. The second link between A and C is an outdoor link with a line
of sight, since both nodes are placed on the windowsills of two office buildings
facing each other. The line of sight distance between nodes A and C is 48m.

In the single-link experiments, we study and compare the real-world perfor-
mance of the different ECCs under comparable conditions. All measurements
were captured during the night and on the weekends, in order to minimize in-
terferences caused by people working in the building and using GSM cellphones,
IEEE 802.11 devices, wireless headphones, microwave ovens, or other potential
sources of interference, which might affect the channel quality and hence call
the comparability of the results into question. Since fog or increased humidity
absorb radio signals, the measurements of the outdoor link A→C were gained

Fig. 4: Indoor and Outdoor Link
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under dry weather conditions. We chose 1000 packets of 32 bytes (+2 bytes CRC)
as the base configuration. Each three seconds, the sending node generates and
encodes one packet and unicasts it to the receiver node B or C. We evaluated
15 different transmission power settings of the CC1020 chip, ranging from 1 tick
(≈ -25 dBm) to 15 ticks (≈ -3.5 dBm), since we are interested in particular in
the performance of the ECCs under different signal strengths. Figure 5 depicts
the resulting output power of the CC1020 [25] with the different settings.

An issue that is closely linked to the resulting ECC performance is the question
what error patterns actually occur, and whether there are substantial differences
in the error patterns discovered on the indoor and outdoor link. We therefore
counted the number of errors per packet and examined the probability distribu-
tion of the number of errors occurring across the 32 bytes payload. We achieved
this by sending an unencoded payload consisting of a predefined random bit
sequence of 32 bytes that is known to the sender and the receiver and bitwise
checking for errors after reception. Figure 6 depicts the resulting histogram of
the probability distribution of 0 to 10 errors per payload, calculated across all
measured transmission power settings and displayed in logarithmic scale. As one
can expect, most packets did not exhibit any errors (94.31% and 93.39% on the
indoor and outdoor link). The most frequently encountered error patterns were
1-bit errors (2.04% and 3.11%) - i.e., 1 error across the entire 32 bytes payload.
2-bit errors were less than half as frequent (0.88% and 1.08%), and the probabil-
ity of even more bit errors occurring across the 32-bytes payload was gradually
decreasing on both links, which is well observable in Figure 6.

Figure 7 depicts the PDR for each examined ECC vs. the transmission power
setting for the indoor and the outdoor link. When comparing against unencoded
transmission (OFF), the PDR could be increased with every examined ECC. The
impact of applying FEC, however, depends heavily on the transmission power: it
has significant advantages in case of lossy links with low signal strengths where
errors are more frequent to occur, but does not constitute a benefit in case the
signal strength is strong enough to cope with minor interferences. We further ob-
served that the most powerful ECCs did not necessarily result in a higher PDR.
The most powerful codes within libECC did not significantly increase the PDR
compared to the most simple ECCs. This indicates that the most frequently
corrected errors were again 1-bit or probably 2-bit errors - an observation which
was also made in [8] and [10] using a similar radio and the same modulation



Fig. 7: Packet Delivery Rate vs. TX Power - Indoor and Outdoor Link

scheme in a comparable scenario, in particular also in the absence of other con-
current transmissions. A general observation is that the PDRs in the outdoor
link with a line of sight connection are higher than those of the indoor link.
This observation can be explained by the fact that the signal does not need to
penetrate concrete walls and does not suffer from multipath propagation and
reflection effects as in the indoor scenario.

Figure 8 depicts the PDR of the different ECCs of the outdoor link with the
transmission power set to 3 ticks (≈ -17dBm) in more detail, in order to allow for
a more fine-grained analysis. Again, the more powerful ECCs did not necessarily
result in a higher PDR - the increment in PDR of applying FEC compared to
transmitting unencoded packets, however, is significant. Figures 7 and 8 clearly
convey that the adaptive FEC mechanisms designed in Section 4 performed as-
tonishingly well, since for every transmission power setting, the three proposed
mechanisms achieved comparable PDR values as the static ECCs - although
they only apply FEC in an on demand manner. Figure 9 depicts the share of
packets which are successfully received for each ECC scheme in the three adap-
tive approaches. The bars hence depict the results of only the three adaptive
approaches of Figure 7 with the indoor link in the top graphs and the outdoor
link on the bottom graphs. One can clearly see that the selection pattern of the
three adaptive approaches are similar on both examined links, but that they dif-
fer among each other in the share of the applied different ECCs. SA-FEC reacts
to packet loss quite quickly by changing to more powerful ECCs, which explains
its larger share of Hamming(7,4) across all transmission power settings. SA-FEC
changes to a stronger code as soon as it does not receive an ACK for the last
packet, whereas in SHA-FEC and SSRA-FEC, one or more histories of items
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Fig. 9: ECC Selection of the Adaptive FEC Mechanisms: PDRs vs. TX Power

representing the transmission failures with the current ECC has to be filled be-
fore the code is changed. Since in SSRA-FEC, the decision to change to a more
powerful ECC also depends on the reception of a subsequent acknowledgement
indicating the amount of errors, the SSRA-FEC does not switch the code as
quickly as SA-FEC and SHA-FEC, which makes its ECC selection more robust
against oscillation. In general, Figure 9 conveys that the targeted behavior of
the adaptive approaches has been accomplished: the proposed run-time adap-
tive ECC selection schemes apply FEC more when the link is lossy (low power
settings ≤ 6 ticks) and less when the link is strong (high power settings ≥ 7
ticks). For values above 7 ticks, the vast majority of packets is sent unencoded,
and few energy and time is wasted for unnecessary encoding and decoding.

5.4 Distributed Multi-Hop Scenario

In order to examine the different ECCs and the adaptive FEC approaches in an
environment that comes close to real-world conditions, we evaluated each static
ECC setting and each adaptive FEC scheme in our distributed testbed of seven
MSB430 nodes in a multi-hop topology. We used our fully automated testbed and
experiment management system [27] for reprogramming the sensor nodes and
collecting the results. The examined network topology is depicted in Figure 10.
The nodes are distributed across four floors in one building, forming a V-shaped
network with the sink node 3 in the top left corner. The evaluated scenario has
been chosen to examine the impact of a somewhat elevated traffic in a network,
which is, however, still far away from being congested: each sensor node except
the sink itself generates and sends packets to its gateway node towards the sink
node. For every link, the same transmission power settings (5 ticks ≈ -12.5 dBm)
are used. Static routes have been set in the beginning of the experiment, the
respective links are depicted in Figure 10. We evaluated 1000 packets generated
on each node for each run of the ECCs set in a static and network-wide manner,
and for each run examined with the adaptive FEC. The delay between two
generated packets follows uniform random distribution between 5 and 7 seconds.



Fig. 10: Multi-Hop Scenario
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Since packets generated at nodes 5, 7, 1 and 4 are transmitted over multiple hops
to the sink node 3, the total amount of transmissions within the network amounts
to 12 transmissions every 6 seconds, or 2 transmissions per second. As the raw
transmission time of one packet and the subsequent ACK takes roughly 50 ms
+ 20 ms (depending on the utilized ECC), we obtain a channel utilization of
roughly 14% across the entire testbed. With this level of channel utilization,
interferences due to other ongoing transmissions are likely to occur, which may
render the application of ECC to be a valuable countermeasure.

We investigated the error patterns in the multi-hop scenario in the same manner
as in the single-hop indoor and outdoor link evaluation. 1-bit and 2-bit errors
were again the most frequently occurring errors in the multi-hop case. Figure 11
depicts the histograms of the probability distribution of 0 to 10 errors of the
packets arriving at nodes 1,2 and 6,7 when applying no ECC. The figure clearly
shows that the number of errors and the error pattern differs from link to link.
Packets arriving at node 6 and 7 generally contain more errors and are more
likely to contain more than 1-bit and 2-bit errors than those arriving at nodes
1 and 2. The most probable explanation for this observation is that the links
5→7 and 1→6 are prone to a higher absorption of the signal through walls and
floors, since node 5 is in the basement of the building and has to penetrate a
thicker floor than the links 4→1 and 7→2. The link 1→6 even has to penetrate
5 concrete walls. The figure clearly shows that the error patterns differ on each
link, and that as a consequence, the decision whether an ECC should be applied
should be taken on a per-link basis on the node itself. Clearly, pinpointing which
links would turn out to be weak and error-prone and which ones would be strong
and reliable would have been impossible in advance of network deployment.

Figure 12 depicts the PDR bars of the examined ECC and the adaptive FEC
approaches, leaving out the ECC codes that are never selected in the adaptive ap-
proaches (c.f. Figure 2). The figure depicts for each examined setting the PDR’s
of the different links and the overall source-to-sink PDR. As one can clearly see
in the top-left corner in the case of unencoded transmissions, the links 1→6 and
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5→7 have a much lower success rate, which confirms the findings of Figure 11.
When comparing with the case of unencoded transmissions (top left corner of
Figure 12), one can clearly see that the application of FEC made transmissions
along the error-prone links more reliable, especially on 5→7. The application of
FEC has clearly paid off with respect to alleviating the deteriorating impact of
the lossy links 1→6 and 5→7: the improvement in PDR reaches up to 15% of
the total generated packets (cf. Figure 12, DECTED, BCH).

Comparing the results of Hamming(7,4), DECTED(16,8) and the BCH-variants
with the adaptive approaches, we can conclude that the adaptive FECs achieved
astonishingly good results. The three strategies SA-FEC, SHA-FEC and SSRA-
FEC outperformed almost every other static and network-wide setting of any
of the implemented ECC codes. Since the adaptive schemes have only employed
FEC on weak links and in periods of elevated BER, the majority of packets could
be sent unencoded, which may also have led to fewer interference due to shorter
transmission times, compared to static FEC settings. The major advantage of the
adaptive approaches is the on-demand nature of using the correctional power of
ECCs: with simple state-based concept, the adaptive approaches have managed
to reach the same or better PDRs. Since the application of ECC comes at the
cost of time and hence energy spent for encoding and decoding, ECCs should
be limited to weak and error-prone links and/or time periods where the link
quality suffers from deteriorating influences. Yet, the obtained performance of
the three approaches SA-FEC, SHA-FEC and SSRA-FEC with respect to the
achieved PDR were in the same range, and hence determining a “winner” is
difficult. Taking into account the energy consumption however, the history-based
approaches should be favored, since they are less prone to oscillation and do not
immediately apply FEC after a single transmission failure.



6 Conclusions

In wireless networks, transmission errors appearing as bit flips in the received
frames are more likely to occur than in traditional wireline networks, due to
reasons ranging from signal absorption through concrete walls and floors, signal
attenuation due to long distances, reflection from obstacles or interference by
other ongoing wireless transmissions. In this paper, we have explored the po-
tential of (adaptive) FEC techniques in the context of WSNs with lossy links.
We have implemented eight different ECC codes in our library libECC and have
proposed three run-time adaptive forward error correction schemes SA-FEC,
SHA-FEC and SSRA-FEC, which react to deteriorating link quality by allocat-
ing the correctional power of ECC codes in an on demand manner.

We have analyzed the different codes in experiments conducted on single indoor
and outdoor links and in a multi-hop network topology in a real-world sensor
network testbed and have gained valuable insight into the occurrence patterns
of bit errors. We chose to rely our entire investigation on real-world experiments,
since simulation tools are inherently unreliable when dealing with wireless phe-
nomena, which are as tightly linked to channel characteristics as FEC schemes.
The results conveyed that 1-bit and 2-bit errors across one transmitted frame
were the most frequently encountered error patterns, but that frames containing
more errors were also likely to occur on weak and lossy links. The occurrence
pattern of transmission errors has hence turned out to be a rather local and
spatially and temporally variable issue, which in turn should be tackled on a
per-link and not a network-wide basis. By analyzing the results of the single and
multi-hop experiments discussed in this paper, we come to the conclusion that
our proposed adaptive FEC schemes have the following three major advantages:

• Adaptive FEC approaches qualify to cope with timely variable error rates,
since they adapt the level of correctional power based on the success of
the recent past transmissions. In case of timely correlated interferences (e.g.
because of a device which is temporarily using the same channel), adaptive
FEC approaches can temporally switch to more powerful ECCs, and switch
back again if the channel quality suffices to transmit packets unencoded.

• The occurrence pattern of transmission errors is a rather local phenomenon
which can differ heavily from link to link. Link qualities in turn are almost
impossible to predict in full depth before network deployment. Our proposed
adaptive FEC approaches adapt their correctional power used for each link
individually by switching between simple and complex codes. Statically se-
lecting the strongest ECC code in a network-wide manner may achieve a high
success rate, but do also introduce the highest latencies, since transmissions
across several hops require multiple encoding and decoding operations.

• The energy aspect favors the adaptive approaches: our evaluations of SA-
FEC, SHA-FEC and SSRA-FEC have conveyed that when using these simple
state-based adaptive FEC schemes, the major share of packets was still sent
unencoded. The mechanisms succeeded well in deciding when and where to
apply FEC in a totally distributed manner. In contrast to network-wide



application of ECCs, precious resources for useless encoding and decoding
operations on strong and reliable links can be saved, which likewise limits
the overall energy overhead.
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