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Part I

FTP 2011—International Workshop on
First-Order Theorem Proving



Preface

This booklet contains the research papers presented at the International Work-
shop on First-Order Theorem Proving held in Bern, Switzerland, July 4–5, 2011.
The workshop was the eighth in a series of international workshops held since
1997, intended to focus effort on First-Order Theorem Proving as a core theme
of Automated Deduction, and to provide a forum for presentation of recent work
and discussion of research in progress. Previous editions of FTP took place in
Schloss Hagenberg, Austria (1997); Vienna, Austria (1998); St Andrews, Scot-
land (2000); Valencia, Spain (2003); Koblenz, Germany (2005); Liverpool, UK
(2007); and Oslo, Norway (2009).

FTP 2011 was held together with the 20th International Conference on Au-
tomated Reasoning with Analytic Tableaux and Related Methods (Tableaux
2011). On July 5, 2011, there was a joint session with Tableaux 2011, with
Maria Paola Bonacina as joint invited speaker.

The technical program of FTP 2011 consisted of two invited talks, one by
Felix Klaedtke on “Monitoring First-order Temporal Properties,” and one by
Maria Paola Bonacina “On interpolation in decision procedures” (joint with
Tableaux 2011), three regular papers, one system description, and two presen-
tation-only contributions. In addition to the regular papers and the system
description, this booklet includes short abstracts of the presentation-only con-
tributions and the invited talk by Felix Klaedtke. The paper belonging to the
invited talk of Maria Paola Bonacina is included in the Tableaux 2011 proceed-
ings (LNCS vol. 6793, Springer Verlag)

We wish to sincerely thank all the authors who submitted their work for
consideration. And we would like to thank the Program Committee members
and other referees for their great effort and professional work in the review and
selection process. Their names are listed on the following pages.

We are also particularly grateful to the organisers of Tableaux 2011 for both
the practical organisation and their help in attracting funding from the Swiss
National Science Foundation. Last, but not least, we thank the FTP steering
committee, and in particular Ullrich Hustadt for supporting the FTP workshop
series.

July 2011 Martin Giese
Program Chair
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Monitoring First-order Temporal Properties

Felix Klaedtke

Computer Science Department, ETH Zurich, Switzerland

Abstract

In security and compliance, it is often necessary to ensure that agents
and systems comply to complex policies. An example of such a policy
from financial reporting is the requirement that every transaction t
of a customer c, who has within the last 30 days been involved in
a suspicious transaction t′, must be reported as suspicious within
2 days. In this talk, I will give an overview of our approach to
automated compliance checking. In particular, I will present our
monitoring algorithm for checking properties specified in a fragment
of metric first-order temporal logic. I will also report on case studies
in security and compliance monitoring and use these to evaluate
both the suitability of this fragment for expressing complex, realistic
policies and the efficiency of the monitoring algorithm.

Joint work with David Basin, Matúš Harvan, Samuel Müller, and
Eugen Zălinescu.

References

[1] D. Basin, M. Harvan, F. Klaedtke, and E. Zălinescu. Monitoring usage-
control policies in distributed systems. In Proceedings of the 18th Inter-
national Symposium on Temporal Representation and Reasoning (TIME).
IEEE Computer Society, 2011. To appear.

[2] D. Basin, M. Harvan, F. Klaedtke, and E. Zălinescu. MONPOLY: Monitor-
ing usage-control policies. Submitted for publication, June 2011.

[3] D. Basin, F. Klaedtke, and S. Müller. Monitoring security policies with
metric first-order temporal logic. In Proceedings of the 15th ACM Symposium
on Access Control Models and Technologies (SACMAT), pages 23–33. ACM
Press, 2010.

[4] D. Basin, F. Klaedtke, S. Müller, and B. Pfitzmann. Runtime monitoring
of metric first-order temporal properties. In Proceedings of the 28th IARCS
Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), volume 2 of Leibiz International Proceedings
in Informatics (LIPIcs), pages 49–60. Schloss Dagstuhl - Leibniz Center for
Informatics, 2008.
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QMaxSAT version 0.3 & 0.4

Xuanye An Miyuki Koshimura Hiroshi Fujita
Ryuzo Hasegawa

Kyushu University
744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan

xuanye@ar.inf.kyushu-u.ac.jp {koshi,fujita,hasegawa}@inf.kyushu-u.ac.jp

Abstract

QMaxSAT is a partial Max-SAT solver obtained by adapting a SAT
solver MiniSat for dealing with Boolean cardinality constraints. The ver-
sion 0.1 was placed first in the industrial subcategory and second in the
crafted subcategory of partial Max-SAT category of the 2010 MaxSAT
evaluation. This paper presents new versions 0.3 and 0.4. The version 0.3
searches a solution by a binary method while version 0.1 does by a linear
method. The version 0.4 alternates linear search and binary search. We
give some experimental results by solving instances taken from the 2010
MaxSAT evaluation.

1 Introduction

Maximum Satisfiability (Max-SAT) is one of optimization counterparts of Boolean
satisfiability (SAT). The objective is to find an assignment that maximizes the
number of satisfied clauses [11, 10]. This is equivalent to finding an assignment
that minimizes the number of unsatisfied clauses. There are two approaches
to solve Max-SAT: approximation and exact algorithms. This paper considers
exact solutions.

The exact solvers can be classified into two approaches. The one implements
a branch and bound scheme and applies several techniques tailored to Max-
SAT [16, 9, 12]. Another makes use of a state-of-the-art SAT solver as an
inference engine [1, 13, 5]. We call this approach SAT-based approach.

QMaxSAT follows SAT-based approach. QMaxSAT is a partial Max-SAT
(PMS) solver which uses CNF encoding of Boolean cardinality constraints. The
old version 0.1 is obtained by adapting a CDCL (Conflict Driven Clause Learn-
ing) [14] based SAT solver MiniSat [8]. It was placed first in the industrial
subcategory and second in the crafted subcategory of the PMS category of the
2010 MaxSAT Evaluation.

PMS is placed between SAT and Max-SAT. Unlike SAT requiring all clauses
to be satisfied, PMS requires that clauses, called soft, are satisfied as many as
possible, while other clauses, called hard, have to be satisfied. The objective of
PMS is to find an assignment that satisfies all hard clauses and maximizes the
number of satisfied soft clauses.

For unsatisfiable SAT instances, usual SAT solvers tell nothing but “unsat-
isfiable.” In order to get more information from unsatisfiable instances with



8

SAT solvers, new variables called blocking are introduced. Roughly speaking,
the number of satisfied blocking variables corresponds to that of unsatisfied soft
clauses. Thus, the objective of QMaxSAT is to find an assignment that mini-
mizes the number of satisfied blocking variables. Such an assignment can readily
be found by iterative calls to a SAT solver with the cardinality constraints on
blocking variables. QMaxSAT uses Bailleux’s CNF encoding [3] for the Boolean
cardinality constraint.

This paper presents new versions 0.3 and 0.4. The difference between the new
versions and the previous versions 0.1 and 0.2 is how the cardinality constraints
is managed. The new versions deal with both lower and upper bounds of the
Boolean cardinality while the previous versions deal with only the upper bound.
In this way, the new versions realize a binary search for a minimal assignment
while the previous versions perform a linear search. Thus, the new versions
might solve PMS instances faster than the previous versions do. The version
0.3 performs only binary search while version 0.4 alternates binary search and
linear search.

2 Version 0.1 and 0.2

Let C = H∪S be a PMS instance consisting of a set H of hard clauses and a set
S of n soft clauses S1, . . . , Sn, i.e. S = {S1, . . . , Sn}. We construct a new clause
set Cb = H ∪Sb by adding a new blocking variable bi to Si (1 ≤ i ≤ n), namely,
Sb = {S1 ∨ b1, . . . , Sn ∨ bn}. Thus, finding a PMS solution of C is reduced to
find the minimal integer k satisfying Cb and

∑n
i=1 bi ≤ k, that is, minimize the

number of satisfied blocking variables while satisfying Cb.
Let φ be a PMS instance augumented with blocking variables. First run

the solver on φ to get an initial model and count the number k of satisfied
blocking variables in the model, then add the constraint saying that the number
of satisfied blocking variables have to be less than k, and run the solver again.
If the problem is unsatisfied, k is the optimum solution. If not, the process is
repeated with the new smaller solution. This process is essentially the same as
the one in solvers for pseudo-Boolean optimization [17] and an algorithm for
MAXONES [4].

The versions 0.1 and 0.2 realize the above process by introducing a CNF
encoding of Boolean cardinality constraints on blocking variables. There are
several works on encoding Boolean cadinality constraints into CNF formulas [3,
18, 15]. QMaxSAT uses Bailleux’s encoding.

In this encoding, we introduce n new variables vi for n blocking variables
bi(1 ≤ i ≤ n). Then, we make a CNF formula C(b1, · · · , bn, v1, · · · , vn) saying:

1. If m blocking variables are assigned 1, the first m variables vi(1 ≤ i ≤ m)
are going to become assigned 1.

2. If m blocking variables are assigned 0, the last m variables vn−i+1(1 ≤
i ≤ m) are going to become assigned 0.

The encoding needs O(n · log n) auxiliary variables and O(n2) clauses. With
the encoding, we encode the constraint l ≤ ∑n

i=1 bi ≤ k by setting the first l
variables vi(1 ≤ i ≤ l) to 1, and the last n− k variables vi(k < i ≤ n) to 0.

Algorithm 1 shows the procedure of version 0.1. The function solve(A) de-
notes the core part of the SAT solver which returns false when a SAT instance
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Algorithm 1 QMaxSAT version 0.1

1: A = Cb; {Cb : PMS instance augmented with blocking variables}
2: sat = false; first = true;
3: while (solve(A)) do
4: Let M be a model of A;
5: “count the number k of blocking variables assigned 1 in M”;
6: sat = true;
7: if (first) then
8: first = false;
9: A = A ∧ C(b1, · · · , bn, v1, · · · , vn); {augment the constraint to A}

10: end if
11: for i = k to n do
12: vi = 0;
13: end for{add the constraint

∑n
i=1 bi < k}

14: end while
15: if (sat) then
16: return the latest model M ;
17: else
18: return unsatisfiable;
19: end if

A is unsatisfiable and true when A is satisfiable. In the latter case, a model M
of A is obtained through an array from which we count the number k of blocking
variables assigned 1 in M .

After we obtain the first model ofCb, we build a CNF formulaC(b1, · · · , bn, v1, · · · , vn)
which encodes the cardinality constraints (line 9). For every model obtained
through solve(A), we introduce extra constraints (line 11,12,13). The k de-
creases as the procedure progresses. Thus, we reach a fix point at which we
obtain a PMS solution (line 16). If Cb is unsatisfiable with no cardinality con-
straint, we conclude C has no PMS solution, that is, C is unsatisfiable (line
18).

A drawback of version 0.1 arises from the number of clauses for encoding
Boolean cardinality constraints. Assuming that there are tens of thousands of
soft clauses, the encoding needs hundreds of millions clauses. In our experience,
the clauses cannot be held in 4GB memory when the number of soft clauses is
greater than nine thousands.

Let k1 be the number of blocking variables assigned 1 in the first model M in
the procedure (see Algorithm 1). We can eliminate clauses in C(b1, · · · , bn, v1, · · · , vn)
dealing with integers greater than k1. This elimination reduces the number of
clauses for the encoding from O(n2) to O(n · k1). The version 0.2 adopts the
elimination.

3 Version 0.3

Both versions 0.1 and 0.2 count the number of satisfied blocking variables in
each model obtained by the SAT solver. These numbers decrease linearly as
the process proceeds. In this sense, both versions perform a linear search. The
version 0.3, on the other hand, performs a binary search by dealing with both
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lower and upper bounds of the number of satisfied blocking variables. Note that
the previous versions manage only the upper bound.

Let φ be a PMS instance augumented with blocking variables. First initialize
the lower bound to 0 and the upper bound to n, the number of soft clauses.
Second run the solver on φ to get an initial model and count the number k of
blocking variables satisfied in the model. Next, add the constraint saying that
the number of blocking variables satisfied has to be less than �k/2�, and run the
solver again. If the problem is unsatisfiable, we conclude that the number of
satisfied blocking variables is at least �k/2�, that is, the lower bound is updated
to �k/2� while the upper bound is unchanged. On the other hand, if the problem
is satisfiable, the upper bound is updated to the new k, the number of blocking
variables satisfied in the new model. The process is continued until the lower
bound and the upper bound become equal. In this way, the difference between
the upper bound and the lower bound becomes less than a half of the previous
one after every call of the solver. Thus, version 0.3 realizes a binary search.

Algorithm 2 QMaxSAT version 0.3

1: A = Cb; {Cb : PMS instance augmented with blocking variables}
2: sat = false; first = true;
3: LB = 0; UB = n; MP = �UB/2�; {n: the number of soft clauses}
4: Ass = �; {assume nothing}
5: while LB < UB do
6: if solve(A,Ass) then
7: Let M be a model of A;
8: “count the number k of blocking variables assigned 1 in M”;
9: sat = true;

10: UB = k; MP = LB+ �(UB− LB)/2�;
11: if (first) then
12: first = false;
13: A = A ∧ C(b1, · · · , bn, v1, · · · , vn); {augment the constraint to A}
14: end if
15: else
16: if (!sat) then
17: return unsatisfiable;
18: end if
19: LB = MP; MP = LB+ �(UB− LB)/2�;
20: end if
21: for i = 1 to LB do
22: vi = 1;
23: end for{LB ≤ ∑n

i=1 bi}
24: for i = UB to n do
25: vi = 0;
26: end for{∑n

i=1 bi < UB}
27: Ass = ∧UB

i=MP(vi = 0); {assume
∑n

i=1 bi < MP}
28: end while
29: return the latest model M ;

Algorithm 2 shows the procedure of version 0.3. We introduce new program-
ming variables LB, UB, and MP: LB and UB keep the lower bound and the upper
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bound, respectively. MP is updated whenever LB or UB is updated for keeping
the middle of LB and UB (lines 3, 10, 19). The function solve(A,Ass) denotes
the core part of the SAT solver which returns false when a SAT instance A

is unsatisfiable and true when A is satisfiable under an assumption Ass. We
require that the solver deals with a problem under an assumption which is a
conjunction of unit clauses. The MiniSat meets the requirement.

For every model obtained through solve(A,Ass), the upper bound is up-
dated (line 10). If solve(A,Ass) returns false, the lower bound is updated to MP
(line 19) because there is no model under the assumption LB ≤ ∑n

i=1 bi < MP .
After the lower bound or the upper bound is updated, we introduce extra con-
straints reflecting the update (lines 21 ∼ 26). Moreover, a new assumption is
created (line 27).

4 Version 0.4

Generally speaking, binary search is better than linear search. Practically, how-
ever, there are instances for which linear search is better than binary search.

Let k1 be the same number mentioned in the last paragraph of Section 2.
Assuming k1 is the PMS solution. We would conclude that k1 is the solution
after the next SAT solver call with version 0.1 and 0.2. However, we would
reach the solution after log k1 solver calls with version 0.3. Thus, version 0.3 is
not so good when k1 is near to the solution.

The version 0.4 alternates binary search and linear search in order to benefit
from both searches. It is realized by modifying Algorithm 2 as follows:

• Inserting the statement “BIN = 0;” before the line 4.

• Inserting the following statement before the line 19:
“if BIN == 0 then return the latest model M end if ;”

• Inserting the statement “BIN = 1-BIN;” before line 27.

• Replacing the statement at line 27 with
“if BIN == 0 then Ass = � else Ass = ∧UB

i=MP(vi = 0) end if”.

Here, a new programming variable BIN is introduced for indicating the searching
mode: 0 for linear mode and 1 for binary mode. The value of BIN alternates
between 0 and 1.

5 Experimental Results

We implemented QMaxSAT based on MiniSat 2.0. Tables 1 and 2 summarize
the results obtained by running the four versions of QMaxSAT on the PMS
instances of the fifth Max-SAT evaluation (Max-SAT 2010). The instances are
divided into three different categories: random, crafted, and industrial.

The second column shows the number of instances of the corresponding cat-
egory. The third, fourth, fifth and sixth columns show the average cpu time in
seconds for instances solved by version 0.1, 0.2, 0.3 and 0.4, respectively. The
number in parentheses indicates the number of instances solved. The experi-
ments are done on Core i5-750 (4-core 2.66GHz) machine with 4GB memory.
We used 1800 seconds as timeout.
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Table 1: Comparison of four versions for PMS problems from Max-SAT 2010
(Random Category)

Solver #Ins. V.0.1 V.0.2 V.0.3 V.0.4

min2sat/v160c800l2/ 30 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)
min2sat/v260c1040l2/ 30 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)
min3sat/c70v350l3/ 30 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)
min3sat/c80v400l3/ 30 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)
pmax2sat/hi/ 30 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1)

pmax2sat/me/ 30 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)
pmax3sat/hi/ 30 0.00 (0) 0.00 (0) 644.80 (1) 1106.63 (1)
pmax3sat/lo/ 30 46.54 (30) 31.49 (30) 12.14 (30) 16.37 (30)

All 240 45.04 (31) 30.48 (31) 31.54 (32) 49.93 (32)

For the random category, we succeed in descreasing the average cpu time
for solving instances in the pmax3sat/lo subcategory with versions 0.3 and 0.4.
The numbers of blocking variables satisfied in PMS solutions of the pmax3sat/lo
subcategory are small, or less than 10. Binary search works well for solving such
problems.

For the crafted category, version 0.4 is the best solver. It succeeds in solving
298 instances. There are 3 instances solved by version 0.2 but unsolved by
version 0.3 while there are 2 instances solved by version 0.3 but unsolved by
version 0.2. The version 0.4 succeeds in solving these 5 instances. From this
viewpoint one may say that version 0.4 benefits from binary and linear searches.

For the industrial category, there seems to be no progress from version 0.2
to 0.3 or 0.4 while there is a little progress from version 0.1 to 0.2. There are
7 instances solved by version 0.2 but unsolved by version 0.3 while there are
8 instances solved by version 0.3 but unsolved by version 0.2. The version 0.4
succeeds in solving 9 instances of these 15 instances. On the other hand, it fails
to solve 5 instances which both versions 0.2 and 0.3 solve. All these experiments
make it clear that alternation of binary and linear searches does not always work
well.

Table 3 shows the average number of SAT solver calls for instances solved
in each category. We except unsatisfiable∗ PMS instances for calculation. The
number in parentheses indicates the average number of SAT solver calls return-
ing “unsatisfiable”.

The last SAT solver call for each instance usually returns “unsatisfiable”.
Thus, there is at least one SAT solver call returning “unsatisfiable”. However,
some numbers in parentheses are less than one. When we find out a model which
satisfies all soft clauses, we conclude that the model is a PMS solution without
further SAT solver calls. There is no SAT solver call returning “unsatisfiable”
for such instances. There are 20 and 7 such instances in the random category
and the crafted category, respectively.

We succeed in decreasing the number of SAT solver calls with binary search.
For example, it decreases from about eleven to about four for the random cat-
egory. The decrease does not enhance QMaxSAT ’s performance. The main

∗There is only one unsatisfiable instance in our experiments. It is in the random category.
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Table 2: Comparison of four versions for PMS problems from Max-SAT 2010
(Crafted and Industrial Categories)
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Table 3: The number of SAT solver calls

V.0.1 V.0.2 V.0.3 V.0.4

Random 11.20 11.17 3.48 4.26
(0.33) (0.33) (0.83) (0.55)

Crafted 10.30 11.14 8.11 8.56
(0.98) (0.98) (5.56) (3.93)

Industrial 11.47 11.79 7.46 6.98
(1.00) (1.00) (4.50) (2.65)

reason is that the number of SAT solver calls returning “unsatisfiable” increases
while that of SAT solver calls returning “satisfiable” decreases. Generally speak-
ing, proving the existence of models is easier than proving the nonexistence of
them.

6 Conclusion

We have presented new versions 0.3 and 0.4 of QMaxSAT, a PMS solver based on
a SAT solver MiniSat. The version 0.3 performs only binary search while version
0.4 alternates binary search and linear search. Experimental results show that
version 0.4 is the best solver among four versions. It succeeds in solving the
most instances taken from the PMS category of 2010 MaxSAT Evaluation.

In our experience, QMaxSAT obviously slows down when the number n of soft
clauses and k1

† are greater than a few thousands. This is a major drawback of
QMaxSAT and comes from the size O(n·k1) of CNF-encoded Boolean cardinality
constraints. In order to eliminate the drawback, we will replacing the current
encoding with even more compact encodings [2, 7]. These encodings guarantee
a space complexity of O(n · log2k1).

We also plan to extend QMaxSAT to solve weighted Max-SAT problems.
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Generating Schemata of Resolution Proofs∗

Vincent Aravantinos and Nicolas Peltier
CNRS, LIG/TU Wien

Abstract

Two distinct algorithms are presented to extract (schemata of) res-
olution proofs from closed tableaux for propositional schemata [4]. The
first one handles the most efficient version of the tableau calculus but
generates very complex derivations (denoted by rather elaborate rewrite
systems). The second one has the advantage that much simpler systems
can be obtained, however the considered proof procedure is less efficient.

In [2, 4] a tableau calculus (called Stab) is presented for reasoning on
schemata of propositional problems. This proof procedure is able to test the
validity of logical formulæ built on a set of indexed propositional symbols, using
generalized connectives such as

∨n
i=1 or

∧n
i=1, where i, n are part of the language

(n denotes a parameter, i.e. an existentially quantified variable). A schema is
unsatisfiable iff it is unsatisfiable for every value of n. Stab combines the usual
expansion rules of propositional logic with some delayed instantiation schemes
that perform a case-analysis on the value of the parameter n. Termination is
ensured for a specific class of schemata, called regular, thanks to a loop detection
rule which is able to prune infinite tableaux into finite ones, by encoding a form
of mathematical induction (by “descente infinie”). A related algorithm, called
Dpll∗ and based on an extension of the Davis-Putnam-Logemann-Loveland
procedure, is presented in [3].

In the present work, we show that resolution proofs can be automatically ex-
tracted from the closed tableaux constructed by Stab or Dpll∗ on unsatisfiable
schemata. More precisely, we present an algorithm that, given a closed tableau
T for a schema φn, returns a schema of a refutation of φn in the resolution
calculus [9]. In the usual propositional case, it is well-known that algorithms
exist to extract resolution proofs from closed tableaux constructed either by the
usual structural rules [11, 13] or by the DPLL algorithm [7, 6]. The resolu-
tion proofs are used in various applications, for instance for certification [14],
for abstraction-refinement [10] or for explanations generation [8]. The present
paper extends these techniques to propositional schemata. Beside the previ-
ously mentioned applications, this turned out to be particularly important in
the context of the ASAP project [1] in which schemata calculi are applied to

∗This work has been partly funded by the project ASAP of the French Agence Nationale
de la Recherche (ANR-09-BLAN-0407-01).
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the formalisation and analysis of mathematical proofs via cut-elimination. In-
deed, the algorithm used for cut-elimination, called CERES [5], explicitly relies
on the existence of a resolution proof of the so-called characteristic clause set
extracted from the initial proof. The cut-free proof is reconstructed from this
refutation, by replacing the clauses occurring in this set by some “projections”
of the original proof. While Stab and Dpll∗ are able to detect the unsat-
isfiability of characteristic clause sets, as such this is completely useless since
actually it is known that those sets are always unsatisfiable (see Proposition 3.2
in [5]). It is thus essential to be able to generate explicitly a representation of
the resolution proof. This is precisely the aim of the present paper. Since the
initial formula depends on a parameter n, its proof will also depend on n (except
in very particular and trivial cases), i.e. it must be a schema of resolution proof
(which will be encoded by recursive definitions).

The rest of the paper is structured as follows. In Section 1 we introduce
the basic notions and notations used throughout our work, in particular the
logic of propositional schemata (syntax and semantics). In Section 2 we define a
tableau-based proof procedure for this logic. This calculus simulates both Stab
and Dpll∗ (for the specific class of schemata considered in the present paper).
In Section 3 we provide an algorithm to extract resolution proofs from closed
tableaux. Similarly to the formulæ themselves, the constructed derivations are
represented by rewrite systems. In Section 4 we introduce a second algorithm
which generates simpler derivations but that requires that one of the closure
rules defined in Section 2 (the so-called Loop Detection rule) be replaced by
a less powerful rule, called the Global Loop Detection rule. Section 5 briefly
concludes our work. Due to space restrictions, the proofs are omitted. They
can be found at http://arxiv.org/abs/1106.2692.

1 Propositional schemata

The definitions used in the present paper differ from the previous ones, but the
considered logic is equivalent to the class of regular schemata considered in [2] (it
is thus strictly less expressive than general schemata, for which the satisfiability
problem is undecidable). We consider three disjoint sets of symbols: a set of
arithmetic variables V, a set of propositional variables Ω and a set of defined
symbols Υ. Let ≺ be a total well-founded ordering on the symbols in Υ. An
index expression is either a natural number or of the form n + k, where n

is an arithmetic variable and k is a natural number. Let I be a set of index
expressions. The set F(I) of formulæ built on I is inductively defined as follows:
if p ∈ Ω ∪ Υ and α ∈ I then pα ∈ F(I); >,⊥ ∈ F(I); and if φ, ψ ∈ F(I) then
¬φ, φ ∨ ψ, φ ∧ ψ, φ⇒ ψ and φ⇔ ψ are in F(I).

Definition 1 We assume that each element υ ∈ Υ is mapped to two rewrite
rules ρ1

υ and ρ0
υ that are respectively of the form υi+1 → φ (inductive case) and

υ0 → ψ (base case), where φ ∈ F({i + 1, i, 0}), ψ ∈ F({0}) and:

1. For every atom τα occurring in φ such that τ ∈ Υ we have either τ ≺ υ
and α ∈ {i + 1, i, 0} or τ = υ and α ∈ {0, i}.
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2. For every atom τα occurring in ψ such that τ ∈ Υ we have τ ≺ υ and
α = 0. 3

We denote by R the rewrite system: {ρ1
υ, ρ

0
υ | υ ∈ Υ}.

The rules ρ1
υ and ρ0

υ are provided by the user, they encode the semantics
of the defined symbols. Conditions 1 and 2 in Definition 1 ensure that R is
convergent. For every formula φ, we denote by φ↓R the unique normal form of
φ.

A schema (of parameter n) is an element of F({0, n, n + 1}). We denote by
φ{n ← k} the formula obtained from φ by replacing every occurrence of n by
k. Obviously for any schema φ, φ{n ← k} ∈ F({0, k, k + 1}). A propositional
formula is a formula φ ∈ F(N) containing no defined symbols. Notice that if
φ ∈ F(N) then φ↓R is a propositional formula.

An interpretation is a function mapping every arithmetic variable n to a
natural number and every atom of the form pk (where k ∈ N) to a truth value
true or false. An interpretation I validates a propositional formula φ iff one of
the following conditions holds: φ is of the form pk and I(pk) = true; φ is of the
form ¬ψ and I does not validate ψ; or φ is of the form ψ1 ∨ ψ2 (resp. ψ1 ∧ ψ2)
and I validates ψ1 or ψ2 (resp. ψ1 and ψ2). I validates a schema φ (written
I |= φ) iff I validates φ{n ← I(n)}↓R. We write φ |= ψ if every interpretation
I validating φ also validates ψ and φ ≡ ψ if φ |= ψ and ψ |= φ.

Example 2 The schema p0∧
∧n

i=1(pi−1 ⇒ pi)∧¬pn is encoded by p0∧υn∧¬pn,
where υ is defined by the rules: υi+1 → (¬pi ∨ pi+1) ∧ υi and υ0 → >.

The schema
∨n

i=1 pi ∧
∧n

i=1 ¬pi is encoded by τn ∧ τ ′n, where τ and τ ′ are
defined by the rules: τi+1 → pi+1 ∨ τi, τ0 → ⊥, τ ′i+1 → ¬pi+1 ∧ τ ′i and τ ′0 → >.

Both schemata are obviously unsatisfiable.
The schema (pn ⇔ (pn−1 ⇔ (. . . (p1 ⇔ p0) . . .))) is defined by υ′n, where:

υ′i+1 → (pi+1 ⇔ υ′i) and υ′0 → p0. ♣

2 Proof procedure

In this section we define the proof procedure used to decide the validity of
propositional schemata. We assume for simplicity that the considered schemata
are in negative normal form and that the defined symbols occur only positively1.

The procedure is similar to the one presented in [2] and based on proposi-
tional block tableaux [12]. It constructs a tree labeled by finite sets of schemata,

using expansion rules of the form:
Φ

Ψ1 . . . Ψk
, meaning that a leaf whose label

is of the form Φ∪Φ′ (and does not already contain ⊥) is expanded by adding k
children labeled by Φ′ ∪Ψ1, . . . , Φ′ ∪Ψk respectively. If α is a node in T , then
T (α) denotes the label of α. The expansion rules are defined as follows:

1If a defined symbol υ occurs negatively then it is easy to replace every literal of the form
¬υα by an atom υα where υ denotes the complementary of υ. The rewrite rules for υ are
obtained by negating the right-hand side of the rules of υ, e.g. the atom υ corresponding
to the symbol υ in Example 2 is defined by the rewrite rules υi+1 → (pi ∧ ¬pi+1) ∨ υi and
υ0 → ⊥.
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Normalisation:
υα
υα↓R if υα is reducible w.r.t. R

∨-Decomposition ∧-Decomposition Closure
φ ∨ ψ
φ ψ

φ ∧ ψ
φ, ψ

φ,¬φ
⊥

Purity rule:
pn+k
>

¬pn+k
> if k > 0 and the previous rules do not apply

Note that the notion of pure literal is much simpler here than in [2]. This is
due to the fact that no constant index distinct from 0 and no index of the form
i + k where k > 1 are allowed.

A node that is irreducible w.r.t. all the previous rules is called a layer. The
Loop Detection rule applies to nodes containing previously generated layers:

Loop Detection:
Φ
⊥ if a non leaf layer labeled by Φ exists in the tree

Note that the layer does not necessarily occur in the same branch as the one
on which the rule is applied. The essential point is that the set of schemata Φ
has already been considered somewhere – consequently if it has a model then
an open branch necessarily exists elsewhere in the tree.

Finally, the last rule performs a case analysis on n (in this particular rule,
Φ denotes the whole label of the considered node):

Explosion:
Φ

Φ{n← 0} Φ{n← n + 1}
if no other rule applies
and n occurs in Φ

A tableau is closed if the labels of all leaves contain ⊥.

Theorem 3 The tableau expansion rules are terminating, i.e. there is no in-
finite sequence (Ti)i∈N such that for every i ∈ N, Ti+1 is obtained from Ti by
applying one of the previous rules.

The next theorem states that the calculus is correct:

Theorem 4 If T contains an irreducible leaf not containing ⊥, then the label
of the root of T is satisfiable.

We will not prove the converse (namely that the root of every closed tableau
is unsatisfiable), because this is subsumed by Theorem 12 in Section 3 (ensuring
the existence of a resolution proof for every instance of the root schema).

Example 5 The schema φ : p0 ∧ ¬pn ∧ υn, where υ is defined as in Example 2
is unsatisfiable. For instance, φ{n ← 2} is p0 ∧ ¬p2 ∧ (¬p0 ∨ p1) ∧ (¬p1 ∨ p2).
The reader can check that the expansion rules construct the following tableau.
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The root is actually a layer, hence the Explosion rule is applied on it. The node
(3) is deduced by the Purity rule and closed by applying the Loop Detection
rule (with the root). The other rule applications are straightforward.

φ (7)

p0,¬p0, υ0 (1)

⊥

p0,¬pn+1υn+1 (6)

p0,¬pn+1, υn, (¬pn ∨ pn+1) (5)

p0,¬pn+1, υn, pn+1 (2)

⊥

p0,¬pn+1, υn,¬pn (4)

p0, υn,¬pn (3)

⊥ ♣

The Dpll∗ procedure in [3] can be simulated by the previous expansion
rules, simply by adding for each propositional symbol p ∈ Ω, a defined symbol
υp with two rules: υpi+1 → ((pi∨¬pi)∧υpi ) and υp0 → >. Then the case splitting
rule of the DPLL procedure on a variable p corresponds to an application of the
∧-rule on υpn+1↓R (yielding pn∨¬pn) followed by an application of the ∨-rule on
pn ∨ ¬pn. The propagation rule is then simulated by combining the ∨-rule and
the closure rule2.

3 Constructing resolution proofs

3.1 Propositional resolution calculus

We first briefly recall the notion of resolution inference (in propositional logic).
A literal is either an atom pk or the negation of an atom ¬pk (where p ∈ Ω
and k ∈ N). A clause is a (possibly empty) disjunction (or set) of literals. A
derivation from a set of clauses S is a finite sequence C1, . . . , Cm such that for
every i ∈ [1,m], Ci is either an element of S or obtained from C1, . . . , Cm−1 by

applying the resolution rule, defined as follows:
pk ∨X ¬pk ∨ Y

X ∨ Y
A refutation is a derivation containing⊥ (the empty clause). For any formula

φ, ∆ is a derivation from φ if it is a derivation from a clausal form of φ.
It is well-known [9] that every unsatisfiable set of (propositional) clauses has

a refutation. In the context of propositional schemata, this means that every
instance φ{n ← k}↓R of an unsatisfiable propositional schema φ of parameter
n has a refutation ∆k (which in general depends on k). The problem is then
to construct a representation of the sequence of refutations ∆0,∆1, . . . ,∆k, . . .

2This “trick” does not actually simulate the full procedure in [3], because the latter handles
schemata that are more complex than the ones considered in the present paper, possibly
containing nested iterations.
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This sequence may be seen as a schema of refutation which (similarly to the
semantics of the defined symbols) will be denoted by a system of rewrite rules.
From now, we assume that the considered schema is in conjunctive normal form
(i.e. it contains no conjunctions inside disjunctions, even if these conjunctions
are “hidden” in the inductive definitions of the defined symbols, e.g. the schema
pn ∨ υn, where υ is defined as in Example 2 is forbidden).

3.2 A language for representing refutations

Additional definitions are needed to provide suitable formal languages for denot-
ing such schemata of derivations. Let D and X be two disjoint sets of symbols
(disjoint from V, Ω and Υ). The symbols in D are the ∆-symbols and the ones
in X are the ∆-variables. The symbols in X are intended to be instantiated
by schemata, whereas the symbols d ∈ D will denote schemata of refutations,
defined by induction (and possibly depending on an additional argument ∆ de-
noting a formula). We assume that ≺ is extended into a well-founded ordering
on D.

Formally, the set of ∆-expressions is inductively defined as follows:
- All schemata and all ∆-variables are ∆-expressions.

- If d ∈ D, α is an index expression and ∆ is a ∆-expression, then dα and
dα(∆) are ∆-expressions.

- If ∆ and Γ are ∆-expressions then ∆∨Γ, ∆∧Γ and ∆·Γ are ∆-expressions.
The expression ∆·Γ is to be interpreted as the concatenation of two sequences

∆ and Γ. Note that ∆-expressions can represent uniformly schemata of clauses,
schemata of clause sets, or schemata of derivations (i.e. schemata of sequences
of clauses). For the sake of conciseness and simplicity, the previous definition
does not ensure that the constructions are well-typed, e.g. we can consider ∆-
expressions of the form ∆∨Γ where ∆ and Γ are two sequences of clauses (which
obviously does not make sense: ∆ and Γ should rather be clauses). But in the
forthcoming definitions we will ensure that all the considered ∆-expressions are
well-typed.

Example 6 Let d ∈ D. Then (p2 ∨ q0) · d2(q0) · ¬q0 · ⊥ is a ∆-expression. ♣

A ∆-expression is ground if it contains no index variable and no ∆-variable.
In order to interpret (ground) ∆-expressions, the value of the ∆-symbols is
specified using a rewrite system, exactly as schemata can be transformed into
propositional formulæ by interpreting the defined symbols (using the rewrite
system R). The rewrite systems used in this section are more complicated than
in the previous one, since the symbols in D may have an additional argument.

A ∆-substitution is a function mapping every arithmetic variable to an index
expression and every ∆-variable to a ∆-expression. If ∆ is a ∆-expression and
σ is a ∆-substitution, then ∆σ denotes the ∆-expression obtained from ∆ by
replacing every variable x ∈ V ∪ X by σ(x).

Definition 7 A D-system is a set of rewrite rules of the form ∆ → Γ, where
∆,Γ are two ∆-expressions such that every arithmetic variable and every ∆-
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variable occurring in Γ also occurs in ∆. A D-system is propositional if it
contains no ∆-variables (it may contain arithmetic variables).

Given two ∆-expressions ∆ and Γ and a D-system R, we write ∆ →R Γ if
there exists a rule ∆′ → Γ′ in R and a ∆-substitution σ such that Γ is obtained
from ∆ by replacing an occurrence of an expression ∆′σ by Γ′σ. 3

For matching, the associativity and commutativity of logical symbols are not
taken into account in general, except for conjunctions occurring at the root level
(this rather unusual convention is needed to ensure confluence without having
to bother on the order of the schemata at the root level). For instance the
rule d(p ∧ ((r ∧ q) ∨ ¬r)) → p does not apply on d(p ∧ (¬r ∨ (r ∧ q))) nor on
d(p∧((q∧r)∨¬r)), but it applies on d(((r∧q)∨¬r)∧p). Similarly, d(p∧q)→ p
applies on d(p) by assuming q = >.

Example 8 Consider the following rewrite system (Z is a ∆-variable).

{di+1(Z)→ (¬pi+1 ∨ pi) · (pi ∨ Z) · di(Z), d0(Z)→ ¬p0 · Z}

The reader can check that it reduces the ∆-expression of Example 6 to:

(p2 ∨ q0) · (¬p2 ∨ p1) · (p1 ∨ q0) · (¬p1 ∨ p0) · (p0 ∨ q0) · ¬p0 · q0 · ¬q0 · ⊥

This last expression is a refutation. ♣

3.3 From closed tableaux to resolution proofs

Let T be a closed tableau of a schema φ. The general idea is to construct,
from T , a D-system R(T ) representing a schema of refutation for φ. Obviously,
R(T ) represents an inductive proof of the assertion: “for every n ∈ N, the
corresponding instance of φ is unsatisfiable”. Ideally, we would just refute the
base case, and then build a refutation of φ at n + 1 from a refutation of φ at n.
However, as often in inductive reasoning, we need to generalize the conjecture
in order to refute it properly. This is done as follows: recall that our aim is
to construct a refutation of φ, i.e. a derivation of ⊥ from φ; instead, however,
R(T ) will describe how to build a derivation of X from φ ∨ X, for any X
(formally, X will be a ∆-variable). Then, our original goal will be reached by
just substituting ⊥ to X. In practice, we need to generalize even more this
reasoning since the construction of R(T ) is done by mapping every node α of
T to some rewrite rules. So, instead of considering only the root schema φ, we
need to consider all the formulæ {φ1, . . . , φk} that occur in T (α). And, instead
of building a derivation of X from φ∨X, we build a derivation of X1 ∨ · · · ∨Xk

from (φ1∨X1)∧· · ·∧(φk∨Xk), for some ∆-variables X1, . . . , Xk. More precisely
we build a derivation of a clause C ⊆ X1 ∨ . . .∨Xk, since some formulæ φi ∨Xi

may be useless. We retrieve our original goal when we just substitute the root
of T to α.

The following definition constructs a D-system R(T ) and two ∆-symbols να

and µα such that, if T (α) = {φ1, . . . , φk} and U denotes the formula (φ1∨X1)∧
· · · ∧ (φk ∨ Xk) then µαn (U) denotes the above clause C and ναn (U) denotes a
derivation of C from U . This system is constructed by induction on the tableau.
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Definition 9 Let T be a tableau. We map every node α in T to two ∆-symbols
να and µα. We assume that the symbols να and µα are pairwise distinct. The
system of rules R(T ) is defined by the rules in R and the following rules, for
every node α in T (we distinguish several cases, according to the rule applied
on α):

- If no rule is applied on α: ναn ((⊥∨X)∧Y )→ X µαn ((⊥∨X)∧Y )→ X

- If the Normalisation rule is applied on α, using a formula φ, yielding a
node β:

ναn ((φ ∨X) ∧ Y )→ νβn ((φ↓R ∨X) ∧ Y )

µαn ((φ ∨X) ∧ Y )→ µβn ((φ↓R ∨X) ∧ Y )

- If the Closure rule is applied on α, using φ and ¬φ:

ναn ((φ ∨X) ∧ (¬φ ∨ Y ) ∧ Z)→ (¬φ ∨ Y ) · (φ ∨X) · (X ∨ Y )

µαn ((φ ∨X) ∧ (¬φ ∨ Y ) ∧ Z)→ (X ∨ Y )

- If ∧-Decomposition is applied on α, yielding a child β:

ναn (((φ1 ∧ φ2) ∨X) ∧ Y )→ νβn ((φ1 ∨X) ∧ (φ2 ∨X) ∧ Y )

µαn (((φ1 ∧ φ2) ∨X) ∧ Y )→ µβn ((φ1 ∨X) ∧ (φ2 ∨X) ∧ Y )

- If ∨-Decomposition is applied on α using a formula φ ∨ ψ and yielding
two children β1 and β2:

ναn (((φ1∨φ2)∨X)∧Y )→ νβ1
n ((φ1∨(φ2∨X))∧Y )·νβ2

n (µβ1
n ((φ1∨(φ2∨X))∧Y )∧Y )

µαn (((φ1 ∨ φ2) ∨X) ∧ Y )→ µβ2
n (µβ1

n ((φ1 ∨ (φ2 ∨X)) ∧ Y ) ∧ Y )

- If the Purity rule is applied on α, on a formula φ, yielding a node β:

ναn ((φ ∨X) ∧ Y )→ νβn (Y ) µαn ((φ ∨X) ∧ Y )→ µβn (Y )

- If the Loop Detection rule is applied on α, using a layer β:

ναn (X)→ νβn (X) µαn (X)→ µαn (X)

- If the Explosion rule is applied on α, yielding two children β1 and β2,
corresponding to the cases n← 0 and n← n + 1 respectively:

να0 (X)→ νβ10 (X) ναn+1(X)→ νβ1n (X) µα0 (X)→ µβ20 (X) µαn+1(X)→ µβ2n (X)

3
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Note that all the symbols φ, φ1,φ2 denote meta-variables, and not ∆-
variables (hence they cannot be instantiated during rewriting, in contrast to
X, Y ,. . . ).

Before establishing the properties of R(T ), we show an example of applica-
tion:

Example 10 Consider the proof tree of Example 5. The reader can check that
R(T ) contains the following rules:

ν1n ((p0 ∨X) ∧ (¬p0 ∨ Y ) ∧ Z) → (p0 ∨X) · (¬p0 ∨ Y ) · (X ∨ Y )
µ1
n((p0 ∨X) ∧ (¬p0 ∨ Y ) ∧ Z) → X ∨ Y
ν2n ((pn+1 ∨X) ∧ (¬pn+1 ∨ Y ) ∧ Z) → (pn+1 ∨X) · (¬pn+1 ∨ Y ) · (X ∨ Y )
µ2
n((pn+1 ∨X) ∧ (¬pn+1 ∨ Y ) ∧ Z) → X ∨ Y
ν3n (X) → ν7n (X)
µ3
n(X) → µ7

n(X)
ν4n ((¬pn+1 ∨X) ∧ Y ) → ν3n (Y )
µ4
n((¬pn+1 ∨X) ∧ Y ) → µ3

n(Y )
ν5n (((¬pn ∨ pn+1) ∨X) ∧ Y ) → ν2n (((pn+1) ∨ (¬pn ∨X)) ∧ Y )

·ν4n (µ2
n((pn+1 ∨ (¬pn ∨X)) ∧ Y ) ∧ Y )

µ5
n(((¬pn ∨ pn+1) ∨X) ∧ Y ) → µ4

n(µ2
n((pn+1 ∨ (¬pn ∨X)) ∧ Y ) ∧ Y )

ν6n ((υn+1 ∨X) ∧ Y ) → ν5n (((¬pn ∨ pn+1) ∨X) ∧ υn ∧ Y )
µ6
n((υn+1 ∨X) ∧ Y ) → µ5

n(((¬pn ∨ pn+1) ∨X) ∧ υn ∧ Y )
ν70(X) → ν10 (X)
µ7
0(X) → µ1

0(X)
ν7n+1(X) → ν6n (X)
µ7
n+1(X) → µ6

n(X)

The ∆-expression ν7
n ((p0 ∨⊥)∧ (¬pn ∨⊥)∧ (υn ∨⊥)) denotes a refutation of

p0∧¬pn∧υn. This rewrite system is complex and hardly readable, fortunately it
can be simplified by instantiating the arguments when possible and by statically
evaluating the derivations that do no depend on the value of the parameter n.
For instance the ∆-symbol ν7

n is only called on the formula Tn = (p0 ∨ ⊥) ∧
(¬pn ∨ ⊥) ∧ (υn ∨ ⊥). Thus the rule ν7

n (X) → ν1
0(X) may be simplified by

instantiating X by T0 and evaluating the right-hand side: ν7
0(T0)→ p0 · ¬p0 · ⊥

Similarly, the rule ν7
n+1(X)→ ν6

n (X) can be replaced by the following rule (in
this case only a partial evaluation is possible since some parts of the derivation
depend on the value of n): ν7

n+1(Tn+1)→ (¬pn ∨ pn+1) · ¬pn+1 · ¬pn · ν7
n (Tn)

The obtained system (only containing the two previous rules) is obviously
much simpler than the original one, in particular it is propositional (no schema
variables occur in it). To improve readability, the expression ν7

n (Tn) could be
simply replaced by a fresh symbol ν7′

n (with no argument). ♣

Lemma 11 Let T be a tableau. R(T ) is convergent.

For any ∆-expression T , we denote by T ↓R(T ) the normal form of T . We
now state the soundness of our algorithm.

Theorem 12 Let T be a closed tableau containing a node α. Let n be the
parameter of T (α). Let T (α) = {φ1, . . . , φn} and let Φ = (φ1∨⊥)∧. . .∧(φn∨⊥).
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For any k ∈ N, ναk (Φ{n ← k})↓R(T ) is a refutation of Φ{n ← k}↓R. Thus
T (α) is unsatisfiable.

Note that the size of the rewrite system R(T ) is clearly linear w.r.t. the one
of the tableau T .

The simplification phase used in Example 10 can be applied in a systematic
way. However, it is not always sufficient to reduce the rewrite system into a
propositional one. Actually, it is not difficult to see that as soon as a node α
exists in the tableau on which the ∨-Decomposition rule is applied, yielding two
branches β1 and β2 that are both looping on an ascendant of α, then the use of
schema variables cannot be avoided.

Example 13 Consider for instance the schema: φ : ¬p0 ∧ ¬q0 ∧ (pn ∨ qn) ∧ υn,
where υ is defined by the rules: υi+1 → (qi ∨ ¬pi+1) ∧ (pi ∨ ¬qi+1) ∧ υi and
υ0 → >. The following tableau is constructed:

φ

pn

p0

⊥

pn+1

qn

⊥ (loop)

¬pn+1

⊥

qn

q0

⊥

qn+1

pn

⊥ (loop)

¬qn+1

⊥

The corresponding rewrite system (after partial evaluation and simplifica-
tion) is the following (ν1

n corresponds to the refutation of φ):

ν1n (¬p0 ∧ ¬q0 ∧ (pn ∨ qn) ∧ υn)→
ν2n (¬p0 ∧ ¬q0 ∧ (pn ∨ qn) ∧ υn) · ν3n (¬p0 ∧ ¬q0 ∧ qn ∧ υn)

ν20 (¬p0 ∧ (p0 ∨X) ∧ Y )→ ¬p0 · (p0 ∨X) ·X
ν2n+1(¬p0 ∧ ¬q0 ∧ (pn+1 ∨X) ∧ υn+1)→

(pn+1 ∨X) · (qn ∨ ¬pn+1) · (qn ∨X) · ν3n (¬p0 ∧ ¬q0 ∧ (qn ∨X) ∧ υn)
ν30 (¬p0 ∧ (q0 ∨X) ∧ Y )→ ¬q0 · (q0 ∨X) ·X
ν3n+1(¬p0 ∧ ¬q0 ∧ (qn+1 ∨X) ∧ υn+1)→

(qn+1 ∨X) · (pn ∨ ¬qn+1) · (pn ∨X) · ν2n (¬p0 ∧ ¬q0 ∧ (pn ∨X) ∧ υn)

The system still contains ∆-variables, although some of them have been
removed by static evaluation. Note that it could be further simplified (for
instance by moving the axioms such as ¬p0 outside the inductive definitions),
but the use of ∆-variables cannot be avoided. ♣

We now focus on an alternative approach that has the advantage that only
propositional rewrite systems are generated.
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4 Globally looping tableaux

Compared to the previous approach, the second algorithm generates much sim-
pler rewrite systems, but it has the drawback that a more restrictive version of
the Loop Detection rule must be used to prune the tableaux into finite ones. At
a very high and informal level: in the first approach, we were building mutu-
ally inductive proofs of several lemmata, whereas, in the second approach, we
manage to have one single invariant proved by a single induction.

We first need to introduce some additional terminology. A node α is of rank
k in a tableau T of root β if there are exactly k applications of the Explosion
rule between β and α (including β, but not α). Leaves(T , α) denotes the set of
non-closed leaves below α in T , Layers(T , k) denotes the set of layers of rank k
in T and Layers(T , k, α) denotes the set of layers of rank k in T that occur below
α. For any set of formulæ Φ, we denote by

∧
Φ the conjunction

∧
φ∈Φ φ. If T

is a tableau and N is a set of nodes in T , then T [N ] denotes the disjunction∨
α∈N

∧ T (α). We write cnf(φ) for a (subsumption-minimal) clausal form of
φ↓R.

Definition 14 A tableau T is globally looping (w.r.t. two natural numbers k
and n) iff the following conditions hold:

1. n < k.

2. T [Layers(T , k)] = T [Layers(T , n)] (modulo AC and idempotence).

3. All non-closed leaves in T are of a rank greater or equal to k.

Then the Global Loop Detection rule closes every node in Layers(T , k). 3

By definition, after the Global Loop Detection rule is applied, all branches
containing the parameter n are closed and the construction of the tableau is
over (since no leaf can be expanded anymore). Note that the Global Loop
Detection rule can be simulated by several applications of the Loop Detection
rule introduced in Section 2. Indeed, assume that a pair of natural numbers
(k, n) satisfying the conditions of Definition 14 exists. Then, by Condition 2, for
every layer α of rank k, there exists a layer β of rank n such that T (α) = T (β).
Thus the Loop Detection rule applies on α (w.l.o.g. we assume that the layers
of rank n are constructed before those of rank k in all parallel branches, which
is possible since n < k). However, it is easy to see that the converse does not
hold: the Global Loop Detection rule is strictly less general than the looping
rule. It is, however, powerful enough to ensure termination, provided that a fair
strategy is used to expand the tableau, as stated by the following theorem:

Theorem 15 Let (Ti)i∈N be an infinite sequence of tableaux such that, for every
i ∈ N, Ti+1 is obtained from Ti by applying one of the Expansion rules of Section
2, other than the Loop Detection rule. Assume, moreover, that for every k ∈ N,
there exists n ∈ N such that every non-closed leaf in Tn is of a rank greater
than k (i.e. no branch is indefinitely “frozen”, the rank of the leaves increases
indefinitely). There exists n ∈ N such that Tn is globally looping.
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We now show that from every tableau T , one can extract a resolution deriva-
tion from the root of T of the disjunction of the leaves of T . We first restrict
ourselves to tableaux built without the Explosion and Loop Detection rules. We
focus on such tableaux because they correspond to the subtrees that are found
“between” two layers in an tableau built without restriction on the rules. More
precisely, take a layer α of some rank m in a tableau T (built without restriction
on the rules). Then the subtree of T of root α and whose leaves are the layers of
rank m+1 below α is indeed a tree built without Explosion nor Loop Detection
(by definition of a layer).

We first build derivations for such subtrees, those derivations will then be
used as the base elements for building the final schema of refutation. For such
a tree T and a node α of T , the next definition introduces ∆(T , α), which is
intended to be a derivation of cnf(T [Leaves(T , α)]) from cnf(T (α)).

Definition 16 Let T be a tableau constructed using the Expansion rules, ex-
cept the Explosion and Loop Detection rules. Let α be a node in T . We define
a derivation ∆(T , α) inductively, according to the rule that is applied on α:

- If α is a leaf, then ∆(T , α) is defined as the sequence of clauses in
cnf(T (α)).

- If the Closure rule is applied on α, using two formulæ φ and ¬φ, then

∆(T , α)
def
= φ · ¬φ · ⊥ (notice that since the formulæ are in NNF, φ must

be an atom).

- If the Normalisation, Purity or ∧-Decomposition rule is applied on α,

yielding a node β then ∆(T , α)
def
= ∆(T , β).

- Finally, assume that the ∨-Decomposition rule is applied on α yielding
two nodes β1 and β2. Let Φ1 and Φ2 be the clausal forms of φ1 and φ2

respectively. For any C ∈ Φ2, let Λ′(C) be the derivation obtained from
∆(T , β1) by replacing every occurrence of a clause D ∈ Φ1 by D∨C (and
by adding the disjunction ∨C to every descendant of D).

For any clause C ′ in cnf(T [Leaves(T , β1)]), we construct a derivation
Λ′′(C ′) from ∆(T , β2) by replacing every occurrence of a clause D ∈ Φ2

by D ∨ C ′ (and by adding the disjunction ∨C ′ to every descendant of
D). Then ∆(T , α) is the concatenation of all the derivations Λ′(C) and
Λ′′(C ′) (with C ∈ Φ2 and C ′ ∈ cnf(T [Leaves(T , β1)])).

Only the case of disjunction is non-trivial. Informally, it does nothing more
than building, for two sets of clauses S1 and S2, a derivation of cnf(S1 ∨ S2)
from two derivations of S1 and S2.

Thus the function T (α) → ∆(T , α) allows us to build derivations from
subtrees of a whole tableau. Intuitively, the next step is to put together those
derivations according to the positions of the corresponding subtrees in the main
tableau. Consider a rank m in a tableau T . One can apply the function ∆
to all the (parallel) subtrees whose root is a layer of rank m. Then we can do
the same at rank m + 1, append every resulting derivation to the derivation
obtained from the parent tree, and go on at rank m + 2, etc. This intuitively
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gives the structure of a rewrite system where n decreases each time we go to
the next rank. However this gives us a tree-like structure (to every derivation
corresponding to a subtree U we append the derivations corresponding to all
the leaves of U , and go on with the trees below those leaves) similar to the
rewrite systems presented in Section 3. Instead we would like a more linear
structure. So we will consider at once all the layers of a given rank and get only
one derivation corresponding to those nodes. For this, we need a way to apply
∆ to all the subtrees at once. This is actually done by building a new tableau
from the subtrees.

Let T be a tableau of root α. Assume that T is globally looping w.r.t. n
and k, with n < k. Let m < k. We denote by U(T ,m) a tableau whose root is
labeled by a formula T [Layers(T ,m)] (note that we take all the layers of rank m
at a time), and obtained by applying the ∨ and ∧-Decomposition and Closure
rules (and only these rules) until irreducibility. By definition, since the root
formula of U(T ,m) is the disjunction of the labels of the layers in Layers(T ,m),
every non-closed leaf β of U(T ,m) is labeled by a set of formulæ of the form
T (γβ), where γβ ∈ Layers(T ,m). Furthermore, for every γ ∈ Layers(T ,m),
there exists a leaf β of U(T ,m) such that γβ = γ. Since m < k and since by
Definition 14 the leaves of T must be of a rank greater or equal to k, the node
γβ cannot be a leaf of T . This implies that some rule is applied on γβ . But
the only rule that is applicable on a layer (beside the Global Loop Detection
rule that cannot be applied on layers of a rank distinct from k) is the Explosion
rule. Hence T necessarily contains two subtableaux, written T 0

β and T 1
β , of

roots T (γβ){n ← 0} and T (γβ){n ← n + 1} respectively. Then V0(T ,m) and
V1(T ,m) denote respectively the tableaux obtained from U(T ,m){n← 0} and
U(T ,m){n← n + 1} by:

- Replacing every leaf β by T 0
β and T 1

β respectively.

- Removing, in the obtained tableau, all applications of the Explosion rule3

(and all the nodes that occur below such an application).
By applying the above function ∆(T , α) on the two tableaux V1(T ,m) and

V0(T ,m), we define the following derivations (where α denotes the root of
V1(T ,m) and V0(T ,m)):

Λ1(T ,m)
def
= ∆(V1(T ,m), α) Λ0(T ,m)

def
= ∆(V0(T ,m), α)

Let T be a tableau that is globally looping w.r.t. two numbers n < k. We
associate to each natural number m < k a symbol γm. Let R?(T ) the system
containing the following rules. Note that V0(T ,m) and V1(T ,m) are defined
only w.r.t. the rank m, but not w.r.t. a particular node. Thus, contrarily to
the transformation of Section 3, there is not one derivation per node, but rather
one derivation per rank.

γm0 → Λ0(T ,m) γmn+1 → Λ1(T ,m) · γm+1
n (if m+ 1 < k) γk−1

n+1 → Λ1(T , k) · γnn
3Note that, although no application of the Explosion rule occurs in U(T ,m), some appli-

cations of this rule may occur in T 1
β .



29

Intuitively, we are appending the derivations, rank after rank, until we reach
the rank k where the Global Loop Detection applies. In this case we get back at
the rank of looping n. Thus we can see the use of grouping the derivations by
rank (instead of node) as it allows to benefit from the simplified form of looping
induced by the Global Loop Detection rule. In the end, the resulting rewrite
system is indeed much simpler.

Proposition 17 R?(T ) is convergent.

Note that, by definition, R?(T ) is always propositional (unlike R(T )).

Theorem 18 Let T be a tableau of root α that is globally looping w.r.t. two
numbers n, k, with n < k. Let m < k. For all i ∈ N, γmi ↓R?(T ) is a refutation of
cnf(T [Layers(T ,m)]){n ← i}↓R. Thus in particular, if α is a layer, γ0

i ↓R?(T )

is a refutation of T (α){n← i}↓R.

When α is not a layer, the rewrite system is easily adapted by prepending
the derivation obtained by applying ∆ to the subtree of T whose leaves are the
layers of rank 0.

Example 19 Consider the tableau of Example 13. This tableau is actually
globally looping. The following rewrite system is constructed (after partial
evaluation and simplification):

γ0 → p0 ∨ q0 · ¬p0 · q0 · ¬q0 · ⊥
γn+1 → (pn+1 ∨ qn+1) · (qn ∨ ¬pn+1) · (qn ∨ qn+1) · (pn ∨ ¬qn+1) · (qn ∨ pn) · γn

Compared with the system produced by the previous method (see Example
13), these rules are obviously simpler (no schema variable are needed, and only
linear recursion is used). Furthermore, it is easy to check that they generate
much shorter derivations. ♣

5 Conclusion

Two distinct algorithms have been designed for extracting schemata of reso-
lution proofs from closed tableaux. This work is motivated by the fact that
such refutations are needed for some natural applications of schemata calculus
(unsatisfiability detection is not always sufficient). In particular, the explicit
generation of the proofs (even in the form of proof schemata) makes possible
the certification of the results produced by the provers. The first algorithm
tackles the tableau calculus in its full generality, but it yields very complex rep-
resentations of the derivations (which will make them less usable in practice,
in particular they are not very informative for a human user). The second one
uses a less powerful calculus, but it generates schemata of refutations in a much
simpler format (propositional rewrite systems are obtained).

There is thus a natural trade-off between the two presented methods: none of
them is uniformly superior to the other. The choice between the two algorithms
should be made according to the considered applications, and/or to the form of
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the constructed tableaux. In some cases, as shown by the examples in Section
3, the first approach generates a propositional rewrite system. In this case
it should of course be preferred. Future work includes the implementation of
the two methods and the precise evaluation of the complexity of the second
algorithm. One could also wonder whether a polynomial algorithm generating
propositional derivations exists for the general case. We conjecture that the use
of ∆-variables cannot be avoided in general.
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Abstract

Blind signatures are signature schemes that keep the content confiden-
tial and have applications in modern cryptography for electronic voting
and digital cash schemes. We study three unification problems based on
an equational theory for blind signatures. This theory consists of two
axioms, namely

U(S(B(m,x)), x) = S(m) (E1)

m ∗B(n, r) = B(m ∗ n, r) (E2)

derived from its implementation with RSA. First, the unification prob-
lem modulo E1 is shown to be NP -complete and of type finitary. An
algorithm based on deduction rules is given. Second, unification in E2

is shown to be decidable and of type unitary. Likewise, we give an al-
gorithm which returns a unique unifier if there exists one and provide
necessary failure rule mechanisms to detect function clash, occur-check
and infinite splitting. Finally, the combination of unification problems E1

and E2 turns out to be decidable. The result follows from techniques of
equational term rewriting systems and unification in the subtheories E1

and E2. Consequently, these results are useful for symbolic analysis of
protocols deploying blind signatures.

1 Introduction

In formal cryptographic protocol analysis, messages are represented as terms,
where the functions in the terms represent actions that can be performed on
messages, such as encrypting a message with some key, hashing a message, or
calculating the exclusive OR of two messages.

A protocol is described formally by the actions of a principal, who will receive
a message, and then send out another message based on the message received.
An attack can be represented by the intruder learning some secret. A tool for
cryptographic protocol analysis can then work its way back from the goal to
initial facts, to see if a sequence of actions which leads to the intruder learning
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†Partially supported by the NSF grants CNS-0831305 and CNS-0905378
‡Partially supported by the NSF grants CNS-0831209 and CNS-0905286
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the secret message is possible. At each stage of this search, unification must
be performed between terms representing messages sent and terms representing
messages that are expected to be received. These terms may contain variables
representing unknowns.

Traditionally, cryptographic protocol analysis tools work in the free algebra,
which gives no meaning to the function symbols, and terms can only be equal
if they are syntactically the same. However, tools such as the Maude NPA [7]
can give a deeper analysis. Equational properties of terms can be given, which
take into account the meaning of a function symbol. Then unification can be
performed modulo the equational theory.

For example, consider the case of blind signatures. There is a blinding
function B, which blinds a message m with a given key x. We can represent
this by the term B(m, x). There is an unblinding function U which performs
the inverse of unblinding for some key. There is also a signing function. Blind
signatures have the property that if a message m is blinded with some key x,
then signed, and then unblinded with x, the signed message will emerge. These
are called blind signatures, because the signer could not tell what was being
signed. Blind signatures are used in electronic voting and digital cash [5]. The
properties we have just described can be represented by the following equation:

U(S(B(m, x)), x) = S(m)

Blind RSA signatures [4] are created by multiplying the message m by a
random number r raised to a public key e. Therefore, multiplying an RSA-
blinded message by another number (message) is equivalent to multiplying the
two messages and then blinding them.

The two properties mentioned above are represented by the following axioms:

U(S(B(m, x)), x) = S(m) (1)

m ∗ B(n, r) = B(m ∗ n, r) (2)

We denote axiom (1) as equational theory E1 and axiom (2) as E2.
Performing unification modulo E1 and E2 will allow a cryptographic analysis

tool to give a deeper analysis of a cryptographic protocol which uses blinding.
Therefore, in this paper we give unification algorithms for E1, E2 and the theory
consisting of both of them.

The algorithms given are based on inference rules originally given in [14],
which gave a unification algorithm for one-sided distributivity. We give an
algorithm to generate a complete set of unifiers for each of these theories. The
algorithm for E1 runs in nondeterministic polynomial time and gives a finite
complete set of unifiers. The algorithm for E2 gives a single most general unifier,
and the algorithm for the combination of the two also gives a finite complete
set of unifiers.

We describe the algorithm for E1 in Section 3, for E2 in Section 4, and for
the combination in Section 5.

2 Preliminaries

We introduce some basic definitions here. The reader is referred to the survey [2]
for more details.
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Let S = {s1 =?
E t1, . . . , sm =?

E tm} be an E-unification problem. An E-
unifier for S is a substitution σ such that σ(si) =E σ(ti) for all 1 ≤ i ≤ m.
That is, equality modulo E , =E, in S is satisfied if we apply σ to every equation.
The set of all E-unifiers of S is denoted by UE(S). It is said that σ is more
general modulo E than θ on a set of variables V , denoted as σ ≤E θ, if and only
if there is a substitution τ such that στ(x) =E θ(x) for all x ∈ V . A complete
set of E-unifiers of S is a set Σ of substitutions such that every θ ∈ Σ is an
E-unifier and for every E-unifier θ, there is a substitution σ ∈ Σ where σ ≤E θ
holds. A complete set of E-unifiers Σ of a unification problem S is said to be
minimal if and only if for any two E-unifiers σ and θ in Σ, σ ≤E θ implies that
σ =E θ.

An E-unification problem S is of type unitary, if the minimal complete set
of E-unifiers of S has size one. S is finitary (infinitary) if the minimal complete
set of E-unifiers of it is finite (infinite). We note that the minimal set of unifiers
might be empty even when the problem is unifiable. We say S is of type zero
in that case. An equational theory E is unitary if the maximal type of an E-
unification problem is unitary. Similarly, E is finitary if E-unification problems
have at most type finitary. If there exists a problem of type infinitary on E
and no problem of type nullary, then E is infinitary. E has type zero (or E is
nullary) if it has a problem of type zero.

A set of equations (i.e., a unification problem) is said to be in dag-solved
form (or d-solved form) if and only if they can be arranged as a list

x1 =? t1, . . . , xn =? tn

where (a) each left-hand side xi is a distinct variable, and (b) ∀ 1 ≤ i ≤ j ≤ n:
xi does not occur in tj ([8]). It is not hard to see that a unification problem in
dag-solved form has a unique most general unifier which can be obtained in a
straightforward way [8]. If a set of equations EQ is in dag-solved form, we say
that EQ is solved.

A rewrite rule is an ordered pair (l, r) of terms such that the variables in
r also appear in l. It is often written as l → r. A rewrite system R is set of
rewrite rules (l, r). Let R be a rewrite system and E a set of equations. We
define extended rewriting with R modulo E, expressed as

s →E\R t,

if and only if there exist a rule l → r in R and a position p in s such that s|p ↔∗
E

σ(l), t = s [σ(r)]p for some substitution σ. See [9] and [3] for detailed expositions
of equational rewriting.

A rewrite rule l → r is optimally reducing1 if and only if for any substitution
θ for which θ(r) is R-reducible, there is a proper subterm s of l such that θ(s)
is R-reducible. A rewrite system R is optimally reducing iff every rule in it is
optimally reducing modulo R.

3 Unification in E1

We show that E1-unification is NP-Complete and give a nondeterministic algo-
rithm for it.

1For term rewriting systems this notion was first introduced in [12], and has been general-
ized in [6].
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To show NP-Hardness, the NP-complete problem monotone 1-in-3 3SAT
will be polynomially reduced to E1-unifiability.

The definition of monotone 1-in-3 3SAT is as follows:
Given: A set of clauses C = {c1, . . . , cn} where each clause has exactly three

propositional variables.
Question: Is there a satisfying assignment such that exactly one variable is

set to true in each clause?

Let C = c1 ∧ · · · ∧ cm be an instance of the 1-in-3 3SAT problem and
V = {u1, . . . , un} be variables occurring in C, i.e., V = V ar(C). We show how
to construct an instance S of the E1-unification problem from C such that S is
unifiable if and only if C is satisfiable.

First of all, we define ground terms a1, a2, a3 as follows:

a1 = B(B(1, 0), 0)
a2 = B(B(0, 1), 0)
a3 = B(B(0, 0), 1)

For any clause ci = (ui1 , ui2 , ui3), uij ∈ V , i = 1, . . . , m and j = 1, 2, 3, we
introduce a term Ti = B(B(ui1 , ui2), ui3).

In addition, auxiliary variables xi, yi, zi and a constant m are created. The
equation constructed for ci is

U(S(B(m, U(S(B(m, yi)), a3))), U(S(B(m, a1)), Ti)) =?
E1

U(S(B(m, xi)), U(S(B(m, zi)), a2)).

We note that separate variables xi, yi, zi, which are also pairwise distinct,
are created for each clause ci. To follow the results more easily, we define ti,1,
ti,2 and ti,3.

ti,1 = U(S(B(m, a1)), Ti)
ti,2 = U(S(B(m, yi)), a3)
ti,3 = U(S(B(m, zi)), a2)

Therefore, we can now rewrite the equation into the following form:

U(S(B(m, ti,2)), ti,1) =?
E1

U(S(B(m, xi)), ti,3)

Obviously, we in general obtain a set of equations rather than one equation
from a given 1-in-3 3SAT instance C. Let us denote this set by S.

Lemma 3.1. S is unifiable if and only if C is satisfiable.

Proof. If C is satisfiable, S is unified trivially. Each clause is assigned to one
of (1,0,0) or (0,1,0) or (0,0,1). We simply unify corresponding ak (k = 1, 2, 3)
with Ti’s in each equation. For instance, if Ti =?

E1
a1, then ti,1 =?

E1
S(m) and

the solution follows from assigning a3 to yi and ti,3 to xi. Similar for Ti =?
E1

a2

and Ti =?
E1

a3.
Conversely, let S be unified by following the settings above. For each clause

ci in C, it is straightforward to verify that the equation is satisfied if and only
if ti,1 =?

E1
ti,2 or ti,1 =?

E1
ti,3. One of these equations is satisfied when and

only when exactly one of Ti =?
E1

a1 or Ti =?
E1

a2 or Ti =?
E1

a3 is unified. By
definition, there is only one variable uij in Ti assigned to 1 in the solution. We
can set the corresponding variable to true in each clause of C to build a 1-in-3
satisfying assignment.
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Thus, we finally obtain

Theorem 3.2. E1-unification is NP-complete.

Proof. NP-hardness follows from the previous lemma. Membership in NP fol-
lows from the fact that the term rewriting system

U(S(B(m, x)), x) → S(m)

is optimally reducing and convergent.

Since unification modulo convergent, optimally reducing term rewriting sys-
tems is finitary2 we get

Theorem 3.3. E1-unification is finitary, and there is an algorithm for comput-
ing a complete set of E1-unifiers.

Proof. An alternative proof would be to observe that E1 is saturated under
ordered paramodulation and then use the result in [10] or [13].

However, we also show this in the next section by devising a new algorithm.

3.1 Algorithm

In this section we outline a nondeterministic algorithm for the general E1-
unification problem which we plan to implement. In addition, this algorithm
returns a complete set of unifiers for a given problem. We assume, without loss
of generality, that each equation is in one of the following standard forms:

1. X =? V

2. X =? U(V, Y )

3. X =? B(V, Y )

4. X =? S(V )

5. X =? f(V1, . . . , Vn)

In this setting X , V , V1, . . . , Vn and Y are variables and f is an uninterpreted
function symbol with arity n.

Transformation rules are created based on the equation forms we specified.
Note that rules (h1) and (h2) are nondeterministic and applied “most lazily.”
The goal is to transform the given set of equations to dag-solved form.

2Strictly speaking, this is not shown in [12]. But it is not hard to show, see [6].
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(a)
{X =? V } ] EQ

{X =? V } ∪ [V/X ](EQ)
if X occurs in EQ

(b)
EQ ] {X =? B(V, Y ), X =? B(W, T )}

EQ ∪ {X =? B(V, Y ), V =? W, Y =? T}

(c)
EQ ] {X =? S(V ), X =? S(W )}

EQ ∪ {X =? S(V ), V =? W}

(d)
EQ ] {X =? U(V, Y ), V =? S(W ′), W ′ =? B(W, Y ))}

EQ ∪ {X =? S(W ), V =? S(W ′), W ′ =? B(W, Y ))}

(e)
EQ ] {X =? U(V, Y ), X =? S(W )}

EQ ∪ {X =? S(W ), V =? S(W ′), W ′ =? B(W, Y ))}

(f)
EQ ] {X =? U(V, Y ), X =? U(W, Y )}

EQ ∪ {V =? W, X =? U(W, Y )}

(g)
EQ ] {X =? U(V, Y ), X =? U(V, T )}

EQ ∪ {X =? U(V, Y ), Y =? T}

(h1)

EQ ] {X =? U(Y, Z)}
.... if EQ ] {X =? U(Y, Z)} is not solved

EQ ∪ {Y =? S(Y ′), Y ′ =? B(M, Z), X =? S(M)}

(h2)
EQ ] {X =? U(V, W ), X =? U(Y, Z)}

EQ ∪ {X =? U(Y, Z), V =? Y, W =? Z}

Variables Y ′, M in rule (h1) and W ′ in rule (e) are fresh variables.

For uninterpreted function symbols, we have

(i)
EQ ] {X =? f(V1, . . . , Vn), X =? f(W1, . . . , Wn)}

EQ ∪ {X =? f(V1, . . . , Vn), V1 =? W1, . . . , Vn =? Wn}

We use rule (a) to eliminate a variable V from the rest of the system. By
rules (b), (c), (f), (g) and (i), we remove function symbols from the problem, i.e.,
narrow the equations. Right after applying those rules, we apply rule (a) to the
resulting equations for variable elimination. The soundness of rules (b) – (h2)
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follows from axiom (1).
Rule (a) is applied most eagerly, followed by the cancellation rules (b), (c),

(f), (g) and (i), then (d) and (e) in that order of priority. As mentioned earlier,
the nondeterministic rules (h1) and (h2) have the lowest priority.

We have the following failure rules:

(F1)
EQ ] {X =? U(V, Y ), X =? B(W, T )}

FAIL

(F2)
EQ ] {X =? B(V, Y ), X =? S(W )}

FAIL

We also add a failure rule, which is applied when at least one of f and g is
an uninterpreted function symbol.

(F3)
EQ ] {X =? f(V1, . . . , Vm), X =? g(W1, . . . , Wn)}

FAIL
if (f 6= g)

These rules could be combined into

(F4)
EQ ] {X =? f(V1, . . . , Vm), X =? g(W1, . . . , Wn)}

.... if (f 6= g) and {f, g} 6= {U, S}

FAIL

Another kind of failure is occur-check which can be implemented as an ex-
tended cycle check as done in algorithms for standard unification. (This can
be defined similar to the failure rule (F2) in the next section.) In the presence
of the nondeterministic rules (h1) and (h2) this is enough to catch all failures.
For instance, consider X =? U(Y, X). If (h1) is not applied at all, this would
cause occur-check failure. But once (h1) is applied we get the set of equations
{Y =? S(Y ′), Y ′ =? B(M, X), X =? S(M)} which is unifiable.

Termination can be shown by using the following measure

m(S) = (number of occurrences of the symbol U , number of unsolved
variables)

The first component decreases in all applications of rules (d) through (h2).
Furthermore, it does not increase in rules (a)-(c) and (i). The second component
clearly decreases in the case of rule (a); it also decreases for rules (b), (c) and (i),
provided that rule (a) is applied immediately afterwards. Since (a) is applied
most eagerly, this follows.

Theorem 3.4. Rules (a)-(i) terminate.

4 Unification in E2

We describe an algorithm by using transformation rules, as we did for E1 in
Section 3.1. Furthermore, the algorithm returns a most general unifier if the
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input equations are unifiable. Without loss of generality, equations will be in
one of these forms:

X =? V, X =? B(V, Y ), X =? V ∗ Y, X =? f(V1, . . . , Vn)

(U , V , V1, . . . , Vn and Y are variables and f is an uninterpreted function symbol
with arity n.)

Both of the function symbols, B and ∗, are cancellative. Note that we do
not assume that B or ∗ is commutative or associative.

(a)
{X =? V } ] EQ

{X =? V } ∪ [V/X ](EQ)
if X occurs in EQ

(b)
EQ ] {X =? B(V, Y ), X =? B(W, T )}

EQ ∪ {X =? B(V, Y ), V =? W, Y =? T}

(c)
EQ ] {X =? V ∗ Y, X =? W ∗ T}

EQ ∪ {X =? V ∗ Y, V =? W, Y =? T}

(d)
EQ ] {U =? B(X, Y ), U =? U1 ∗ U2}

EQ ∪ {X =? U1 ∗ Z, U2 =? B(Z, Y ), U =? U1 ∗ U2}

Rule (d) (the “splitting rule”) introduces a fresh variable Z.
To handle uninterpreted functions, we add the same rules as in the case of E1.

(e)
EQ ] {X =? f(V1, . . . , Vn), X =? f(W1, . . . , Wn)}

EQ ∪ {X =? f(V1, . . . , Wn), V1 =? W1, . . . , Vn =? Wn}

A standard failure rule for function clash is:

(F1)
EQ ] {X =? f(V1, . . . , Vm), X =? g(W1, . . . , Wn)}

.... if (f 6= g) and {f, g} 6= {B, ∗}

FAIL

The outline of the algorithm is as follows: As long as rules are applicable,
rules (a) and (F1) are applied most eagerly, and the cancellative rules (b), (c)
and (e) come next. The splitting rule (d) is applied, if necessary, at the end,
i.e., rule (d) has the lowest priority.

The proof of correctness for this algorithm is similar to the one in Tiden-
Arnborg [14].

We define the following relations between terms.

• U �r∗ V iff there is an equation U = T ∗ V

• U �l∗ V iff there is an equation U = V ∗ T



39

• U �rB V iff there is an equation U = B(T, V )

• U �lB V iff there is an equation U = B(V, T )

• U �∗ V iff U �r∗ V or U �l∗ V

• U �B V iff U �rB V or U �lB V

• U �f V iff there is an equation U = f(. . . , V, . . .), where f is uninter-
preted.

Let � = �r∗ ∪ �l∗ ∪ �rB ∪ �lB ∪ �f , i.e., the union of the four relations
above. Thus, each of these relations is a subrelation of �. Alternatively, � = �∗
∪ �B ∪ �f .

We define an extended occur-check failure rule using �.

(F2)
EQ

FAIL
if X �+ X for some X

Let ∼rp(∗), and ∼lp(B) be the reflexive, symmetric and transitive closures for
�r∗ and �lB , respectively.

We also define a set of relations β = {β1, β2} where

• β1 = ∼rp(∗) ◦ �B ◦ ∼rp(∗)

• β2 = ∼lp(B) ◦ �∗ ◦ ∼lp(B).

One can define two interpretations for E2, namely interpreting B as left and
∗ as right projections. We denote these interpretations as projection functions
symbols rp(∗), and lp(B). For instance, if we interpret ∗ as right projection by
rp(∗), then the axiom m∗B(n, r) = B((m∗n), r) is trivially satisfied. The same
holds if we take B as left projection.

Both interpretations give valid models for the theory. That is, if a problem
is solvable modulo E2, it is also solvable modulo any of these interpretations.
This fact is used to prove the following lemma.

Lemma 4.1. If one of β1 or β2 is cyclic, then the problem is not solvable.

Proof. Without loss of generality assume β1 is not well-founded. If we interpret
∗ with rp(∗) (which gives a model for E2), it is not hard to see that all variables
in the same ∼rp(∗)-equivalence class become equal to each other. Hence the
relation �B becomes not well founded on the set of variables. This implies
that there is a cycle w.r.t. �B in the interpreted problem (which is a standard
unification problem) and hence there is no solution. Thus the result follows,
since the interpreted problem is solvable if the original problem is solvable. A
similar argument holds for β2.

Therefore, we introduce the following failure rule:

(F3)
EQ

FAIL
if any of the βi, i ∈ {1, 2}, is cyclic

We will illustrate these with an example. Let U =? B(X, Y ) and U =? U1∗U2

be two equations. After rule (d) is applied to this pair of equations, we get

U =? U1 ∗ U2, X =? U1 ∗ Z, U2 =? B(Z, Y )
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U1 U2

U1 U2
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r* lB
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Figure 1: Splitting

where Z is a new variable. Now observe that Z ∼lp(B) U2 and Z ∼rp(∗) X .
Thus every new variable introduced by an application of rule (d) is below an
already existing variables by �∗ and �B (see Figure 1) and also equivalent to
existing variables by one of {∼rp(∗), ∼lp(B)}.

Lemma 4.2. For each equivalence relation in {∼rp(∗),∼lp(B)}, the number of
equivalence classes does not increase with the splitting rule.

Proof. Trivial, since if we apply rule (d), we see that new variable Z ‘joins’ the
existing ∼rp(∗)- and ∼lp(B)-equivalence classes (see Figure 1).

The number of equivalence classes modulo any equivalence relation will be
less than or equal to the number of initial variables in a given problem.

Lemma 4.3. If rules (a)-(d) are applied infinitely, then one of the relations βi

(i = 1, 2) is cyclic.
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Proof. The only case we need to look at carefully is when the splitting rule is
applied. By Lemma 4.2 new variables will not create new equivalence classes;
instead they join already existing equivalence classes. Note that for every new
variable X created by the splitting rule there is another variable Y �∗ X which
was created earlier. Thus if splitting goes on indefinitely, then we get arbitrarily
long chains of the form

Xi1 �∗ Xi2 �∗ . . .

But since the number of ∼lp(B)- equivalence classes for the problem do not
increase, there are indices j and k such that j < k and Xij ∼lp(B) Xik . (In
fact, if n is the number of variables in the original problem, then j < k ≤ n+1).
This will cause β2 to be cyclic after finitely many steps.

Theorem 4.4. The unification problem modulo E2 is decidable.

Proof. Let S be a problem modulo E2. If S is unifiable, rules (a)-(e) will return
a solution. On the other hand, if S is not unifiable, then the possible errors
are function clash, occur check error and infinite splitting among variables.
Rules (F1) and (F2) detect function clash and occur check in finite time. In
the case of infinite splitting, the algorithm will encounter the failure rule (F3)
which checks if any of βi relations is cyclic. Thus, our algorithm decides if S is
unifiable (and computes a comlete set of unifiers)

Theorem 4.5. Unifiability modulo E2 is in P.

Proof. By Lemma 4.2, we know that the number of equivalence classes remains
same throughout the algorithm. Let n be the number of variables. It is easy to
see that the number of equivalence classes in both ∼lp(B) and ∼rp(∗) is at most
n. Note that the algorithm terminates if rule (d) terminates. Rule (d) removes
an existing lB-edge between equivalence classes and adds a new one, which is
one level below the old one with respect to r∗ (see Figure 1). By Lemma 4.3,
this cannot go on for more than n times without failure. Therefore the result
follows.

In the next section, we show that the cardinality of minimal complete set of
unifiers is “one”.

4.1 Unification Type of E2

We know that standard forms can be used to represent any problem modulo E2.
Therefore, the transformation rules which we define form a complete method
for the problem. We use this fact indirectly to show that the unification type
of E2 is unitary. We first prove that the transformation steps (a)–(e) “preserve
unifiers.”

Lemma 4.6. Let S be a unification problem in standard form and let S ′ be
obtained after applying one of (a)–(e). Then

1. Every unifier of S ′ is a unifier of S.

2. For every unifier σ of S there is a unifier σ̂ of S ′ such that σ ≡V ar(S) σ̂.
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Theorem 4.7. The unification type of E2 is unitary, and our algorithm com-
putes a complete set of E2-unifiers.

Proof. Let T be the solved form for S. It is easy to see that T itself is a
sequential unifier, and the corresponding parallel unifier, say σ, is a unifier of
S. On the other hand, let θ be a unifier of S. By induction on the number of
steps we can show, using Lemma 4.6, that there is a unifier θ̂ of T such that
θ ≡V ar(S) θ̂. We can now show that θ̂ is an instance of σ.

5 Unification in E1 ∪ E2

We show the decidability of unification modulo the union of E1 and E2. This
theory has the following convergent system:

U(S(B(m, x)), x) → S(m)

m ∗ B(n, r) → B(m ∗ n, r)

Orienting the second axiom the other way causes the Knuth-Bendix completion
procedure to diverge.

Let us consider the term rewriting system U(S(B(m, x)), x) → S(m) as-
sociated with E1 and denote it by R. Consequently, we use the equational (or
class) rewriting relation R/E2 and the extended rewriting relation E2\R which
is between R and R/E2, i.e.,

R ⊆ E2\R ⊆ R/E2

From Section 3, we know that R is convergent and optimally reducing. We
extend these results to E2\R. In other words, we show that E2\R is convergent
and optimally reducing modulo E2.

Termination of R/E2 follows easily. We observe that for each term t, its
equivalence class [t]=E2

is finite. Applying the rewrite rule in R modulo E2
causes a U symbol to disappear. Hence there is no infinite descending chain
t →R/E2

t
′
→R/E2

. . .. Furthermore, termination of E2\R follows.
Recall that R is E2-confluent if and only if for every s, t such that s =R∪E2

t,
there exist s′, t′ such that s →∗

E2\R s′ and t →∗
E2\R t′, and s′ =E2 t′ [11].

Lemma 5.1. E2\R is convergent modulo E2.

Proof. This follows from the critical pair criteria given by Jouannaud and Kirch-
ner [9]. That is, if R/E2 is terminating and all E2-classes are finite, then E2\R
is confluent if and only if all critical pairs in CPE2(R,R) and CPE2(R, E) are
joinable. Note that all equivalence classes of E2 are finite and R/E2 is termi-
nating. Furthermore, the subterm ordering modulo E2, denoted as %E2

, is also
well-founded [3] since the equation m∗B(n, r) = B(m∗n, r) is regular and size-
preserving, i.e., left and right hand sides of the equation are of the same size.
Thus the necessary conditions to apply the result in [9] are satisfied. Consider
the complete sets of E2-critical pairs CPE2(R,R). The only non-variable posi-
tion p in term l = U(S(B(m, x)), x) such that l|p can be unified with (a variant
of) l modulo E2 is p = ε (i.e., at the root). But this leads to a trivial critical
pair. It is not hard to see that the set of critical pairs CPE2(R, E2), obtained
from overlapping R “below” E2, is empty. Since E2-unification is decidable and
unitary, the result follows.



43

We next extend the optimal reducibility of R to the optimal E2-reducibility
of R. A rewrite rule l → r is optimally E-reducing if and only if for any
substitution θ for which θ(r) is E\R-reducible, there is a proper subterm s of l
such that θ(s) is E\R-reducible. A rewrite system R is optimally E-reducing iff
every rule in it is optimally E-reducing modulo R.

Lemma 5.2. R is optimally E2-reducing.

Proof. Straightforward, since for all substitutions θ, θ(S(m)) is reducible if and
only if θ(m) is.

Furthermore, we use the following fact about E2\R. Since the root symbol
of the left-hand side of E1, namely U , is not in Sig(E2), if s is in normal form
and θ is an irreducible substitution modulo E2\R, then θ(s) can be reduced to
its E2\R-normal form in |s| steps by the innermost reduction strategy.

As mentioned earlier, it was shown by Narendran et al [12] that every opti-
mally reducing and confluent term rewriting system has a decidable unification
problem. We give a similar proof to the one in [12] for showing that E2\R is
decidable.

Theorem 5.3. Unification modulo E1 ∪ E2 is decidable and finitary, and there
is an algorithm to compute a complete set of E1 ∪ E2-unifiers.

Proof. Let s and t be two terms and θ an irreducible substitution that unifies
them. θ(s) and θ(t) are reduced to E2\R-normal forms by the rule

U(S(B(m, x)), x) → S(m)

in at most |s| and |t| steps respectively by the innermost reduction strat-
egy. Consider the sequence of positions where the reductions occur. With-
out performing unification, we instead mimic each reduction step as s|p =?

E2

η(U(S(B(m, x)), x)), where p is a position that a reduction occurs and η an
appropriate renaming. Repeat the same for new term s [η(S(m))]p and so on.
Thus, the idea is to transform the problem by mimicking an innermost reduc-
tion sequence where the reductions take place at each original term position.
We obtain at most |s|+ |t|+ 1 equations to be unified. We apply E2-unification
to the resulting equations and see if there is a solution. Since E2-unification is
decidable and unitary, the result follows.

6 Conclusion

We have given an equational theory based on the RSA implementation of blind
signaures and studied three relevant unification problems. We first considered
the two axioms E1 and E2 as separate theories and finally unification modulo
E1 ∪ E2, which turned out to be decidable and finitary. The equational theories
we consider are only some of the many possible axiomatizations about blind
signatures. Future work would include incorporating other equational axioms.
Furthermore, we plan to implement the algorithms and integrate them with the
Maude-NPA protocol analyzer [7].
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Incremental Variable Splitting
(Presentation-only paper)

C. M. Hansen, R. Antonsen, M. Giese, and A. Waaler
Dept. of Informatics, University of Oslo, Norway

In free-variable tableau calculi, free variables are introduced as place-holders
when expanding universal formulas in order to postpone the choice of an instan-
tiation, see e.g. [4]. Free variables are instantiated when branches are closed,
by unifying potentially complementary formulas on a branch. The expansion of
disjunctive formulas splits a proof into several branches, and the same free vari-
able can occur on more than one branch. Usually, occurrences of a free variable
on different branches have to be instantiated consistently to ensure soundness.

Antonsen and Waaler [1, 2] have analyzed the dependency between branch-
ing and the instantiation of free variables and have arrived at a criterion that,
in some cases, permits to instantiate a free variable differently on different
branches. Such divergent instantiation is referred to as variable splitting.

Unfortunately, the variable splitting technique gives only a global criterion
that states when a substitution that closes all branches, possibly instantiating
free variables on different branches differently, is admissible. No hint is given as
to how the existence of such an admissible closing substitution can be ensured
during proof search, short of performing an admissibility check for all possible
closing substitutions after each proof step. As it stands, the existing work on
variable splitting is therefore not suited for direct implementation.

We found that a similar problem of applying a global closure check after
each proof step lies at the heart of the incremental closure approach proposed
by Giese [5, 6]. Incremental closure is mainly designed as a method to avoid the
backtracking usually employed when searching for free variable tableau proofs.
Instead of globally instantiating free variables when a branch can be closed,
incremental closure determines after each proof step whether there is a way to
close all branches of a proof simultaneously. To do this efficiently, the set of
closing substitutions for every subderivation is kept track of during proof search,
and this information is updated whenever a new complementary pair of literals
(i.e. a connection) is introduced. Syntactic unification constraints are used to
represent sets of substitutions.

The main contribution in this article is to show how the incremental closure
approach can be extended to provide an incremental, and therefore tractable
evaluation of the global closure criterion of the variable splitting calculus. This
is done by recasting the admissibility condition for closing substitutions into
a constraint satisfaction problem. The constraint language contains syntactic
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unification constraints like in [5], and additionally ordering and consistency con-
straints to express the admissibility criterion of variable splitting. The resulting
mechanism allows to check the existence of an admissible closing substitution
incrementally during the construction of a proof.

We present a rule-based algorithm for testing satisfiability of constraints that
is an extension of the well-known rule system for syntactic unification of Comon
and Kirchner [3].

We have implementeted our approach in a prototypical variable splitting
theorem prover. This implementation allows to apply the same strategy for rule
applications both with and without variable splitting, which gives us a means of
direct comparison between the two approaches. We present experimental results
from running the prover on a wide range of problems.
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Abstract

First-order modal logics have many applications, e.g., in planning, natural lan-
guage processing, program verification, querying knowledge bases, and modeling
communication. This paper gives an overview of several new implementations
of theorem provers for first-order modal logics based on different proof calculi.
Among these calculi are the standard sequent calculus, a prefixed tableau calcu-
lus, an embedding into simple type theory, and an instance-based method. All
these theorem provers are tested and evaluated on the QMLTP problem library for
first-order modal logic. The results of these test runs are compared and analyzed.

1 Introduction
Modal logics extend classical logic with the modalities ”it is necessarily true that” and
”it is possibly true that” represented by the unary operators 2 and 3, respectively.
First-order modal logics extend propositional modal logics by domains specifying sets
of objects that are associated with each world, and the standard universal and existential
quantifiers [9, 15, 17].

First-order modal logics allow a natural and compact knowledge representation.
The subtle combination of the modal operators and first-order logic enables specifica-
tions of epistemic, dynamic and temporal aspects, and of infinite sets of objects. For
this reason, first-order modal logics have many applications, e.g., in planning, natu-
ral language processing, program verification, querying knowledge bases, and mod-
eling communication. In these applications modalities are used to represent incom-
plete knowledge, programs, or to contrast different sources of information. First-order
components, such as variables, functions, predicates and quantifiers enable to describe
objects, their properties, types, and abstract information that can be instantiated later.

For example, the planning system PKS [27] constructs conditional plans. It uses
modal operators to represent incomplete knowledge, constants and predicates to de-
scribe objects and their properties, and variables and functions to generate abstract
plans, which are instantiated later, when sufficient knowledge is available. An inference
procedure for a restricted quantified modal logic determines whether the plan achieves

∗This work is partly funded by the German Science Foundation DFG under reference number KR858/9-1.
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the goal and the preconditions of the actions hold, and generates the effects of the
actions. PKS can be applied to, e.g., dialogue planning [37]. The dialogue system Ar-
timis [33] and the sentence-planner SPUD [40] plan, generate and interpret sentences in
a natural language. They use modalities to distinguish beliefs, intentions and actions of
the system and the user. First-order logic components represent objects, properties and
quantified statements. Variables enable to process abstract instructions that can be in-
stantiated later when more information is available [39]. An inference engine is adapted
to plan and interpret the sentences. The systems KIV [31], VSE-II [1] and KeY [8] are
advanced tools for program verification and synthesis. Their proof components use
dynamic and temporal first-order logic which are closely related to first-order modal
logic. The modalities represent programs, whereas functions, variables and quantifiers
characterize attributes, types and the creation of objects. Likewise the verification of
database update programs [36] and the integration of UML specification [10] can be
described in first-order modal logic. A first-order modal logic is also used as query
language for description logic knowledge bases [11]. Automated reasoning is required
to answer queries and to verify and optimize integrity conditions. Finally, first-order
modal logics are used to describe communication and cooperation [12, 23].

All these applications require the use of automated theorem proving (ATP) systems
for first-order modal logics. Whereas there are some ATP systems available for propo-
sitional modal logics, e.g., MSPASS [20] and modleanTAP [4], there are currently only
few ATP systems that can deal with the full first-order fragment of modal logics.

The purpose of this paper is to introduce some new ATP systems for first-order
modal logics and to evaluate, compare and analyze their performance on a standardized
problem set. The reader is assumed to be familiar with the syntax and semantics of first-
order modal logics, see, e.g., [15, 17]. If not stated otherwise the standard semantics
and the following options regarding first-order terms for all evaluated ATP systems are
considered: term designation is rigid, i.e., the terms denote the same object in each
world, and terms are assumed to be local, i.e., any ground term denotes an existing
object for each world.

This paper is structured as follows. In Section 2 all new and existing ATP systems
for first-order modal logics are shortly described. Section 3 provides details about the
used problem set and presents comprehensive performance results and comparisons
of all described ATP systems. Section 4 concludes with a short summary and a few
remarks on future work.

2 Implementing First-Order Modal Theorem Provers
The following (new and existing) ATP systems for first-order modal logics are de-
scribed in this section: MleanSeP based on the standard sequent calculus, GQML-
Prover and MleanTAP based on tableau calculi, M-Leo-II and M-Satallax based on an
embedding into simple type theory and the f2p-MSPASS based on an instance-based
method. Table 1 gives an overview of these systems.

2.1 Sequent Calculus
MleanSeP implements the standard sequent calculus for several modal logics.1 It is
implemented in Prolog. Proof search is carried out in an analytic way and free-variables
are used in combination with a dynamic Skolemization that is calculated during the

1MleanSeP can be downloaded at www.leancop.de/mleansep/programs/mleansep11.pl.
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actual proof search. Together with the occurs-check of the term unification algorithm
this ensures that the Eigenvariable condition is respected.

MleanSeP 1.1 can deal with the first-order cumulative and constant domains of the
modal logics K, K4, D, D4, S4, and T. To deal with constant domains, the Barcan
formula2 is automatically added to the given formula in a preprocessing step.

2.2 Tableau Calculi
GQML-Prover [44] is based on a free-variable tableau calculus using annotated tableau
nodes and function symbols. It uses a liberalized δ+-rule and is implemented in
OCaml. GQML-Prover 1.2 can deal with cumulative, constant and varying domains
of the modal logics K, K4, D, S4, and T, using rigid or non-rigid terms, and local or
non-local terms.

MleanTAP implements a prefixed tableau calculus.3 The compact system is imple-
mented in Prolog. It uses not only free term variables but also free string variables for
the prefixes and a prefix unification procedure. It is based on the ileanTAP system for
first-order intuitionistic logic [24]. At first MleanTAP performs a purely classical proof
search. After a classical proof is found, the prefixes of those literals that close branches
in the (classical) tableau are unified. The existence of a prefix substitution ensures that
the given formula is valid in modal logic as well [45]. If no prefix substitution exists
backtracking is done in order to find alternative classical proofs (and prefixes). To deal
with different modal logics only the prefix unification procedure has to be adapted [22].

MleanTAP 1.1 can deal with the first-order cumulative and constant domains of the
modal logics D and S4. By further modifying the prefix unification algorithm MleanTAP
can be extended to the modal logics D4, S5, and T.

2.3 Embedding into Simple Type Theory
M-Leo-II 1.2 and M-Satallax 1.4 extend the ATP systems Leo-II 1.2 and Satallax 1.4
to first-order modal logics, respectively. Both provers use an embedding of quantified
modal logic into simple type theory [6]. Leo-II [7] and Satallax [2] are ATP systems
for typed higher-order logic.4 Leo-II is based on an extensional higher-order reso-
lution calculus. It cooperates with a first-order ATP system, by default E [34], and
applies term sharing and term indexing techniques. It is implemented in OCaml. Sa-
tallax uses a complete ground tableau calculus for higher-order logic to generate suc-
cessively propositional clauses and calls MiniSat repeatedly to test unsatisfiability of
these clauses. It can be regarded as an instance-based method for higher-order logic.
Satallax is implemented in Steel Bank Common (SBC) Lisp.

Currently the embedding of quantified modal logic into simple type theory works
for constant domains only. Thus, M-Leo-II 1.2 and M-Satallax 1.4 can deal with the
first-order constant domains of the modal logics K, D, S4, S5, and T.

2The Barcan formula scheme has the form ∀~x(2p(~x) ⇒ 2∀~xp(~x) with ~x = x1, . . . , xn for all predi-
cates p with n ≥ 1.

3MleanTAP can be downloaded at www.leancop.de/mleantap/programs/mleantap11.pl.
4These two higher-order ATP systems were selected as they have the best performance of all currently

available systems for higher-order logic [43].
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2.4 Instance-Based Method
f2p-MSPASS 3.0 uses an instance-based method to generate ground formulas and the
ATP system MSPASS 3.0 for proving formulas in propositional modal logic. Like
most instance-based methods, the f2p-MSPASS system consists of two components.
The first component, called first2p, takes a first-order modal formula, removes all
quantifiers and replaces every variable with a unique constant. The second compo-
nent, MSPASS [20], takes the resulting (ground) formula and tries to find a proof or
a counter model. If a counter model is found first2p adds quantified subformulas to
the original formula and instantiates variables with new terms. Afterwards MSPASS is
again used to find a proof for the resulting formula. If first2p is unable to add any new
instances of subformulas, the original formula is invalid.

first2p is written in Prolog. It does not translate the given formula into any clausal
form but preserves its structure throughout the whole proof process. Due to the restric-
tions of modal logics this instance-based approach does only work for formulas that
contain either only existential or only universal quantifiers. MSPASS is an extension
of and incorporated into the resolution-based ATP system SPASS. It uses several trans-
lation methods into classical logic. By default the standard relational translation from
modal logic into classical logic is applied.

f2p-MSPASS 3.0 and can deal with the first-order cumulative and constant domains
of the modal logics K, K4, K5, B, D, S4, S5, and T. To deal with constant domains,
first2p automatically adds the Barcan formula (see Section 2.1) to the original formula
in a preprocessing step.

Table 1: First-order modal ATP systems

ATP system modal logics domains equality language
MleanSeP 1.1 K,K4,D,S4,T cumulative, constant no Prolog
MleanTAP 1.1 D, S4 cumulative, constant no Prolog
GQML-Prover 1.2 K,K4,D,S4,T cumul., const., vary. no OCaml
M-Leo-II 1.2 K,D,S4,S5,T constant yes SBC Lisp
M-Satallax 1.4 K,D,S4,S5,T constant yes OCaml
f2p-MSPASS 3.0 K,K4,K5,B, cumulative, constant no C/Prolog

D,S4,S5,T

3 Evaluating First-Order Modal Theorem Provers
In this section the ATP systems presented in Section 2 are evaluated on the QMLTP
library for first-order modal logics. Some details about the QMLTP library are given
first before comprehensive performance results and comparisons are presented.

3.1 Problem Set: The QMLTP Library
Testing ATP systems using standardized problem sets is a well-established method
for measuring their performance. For example, the TPTP library [41] and the ILTP
library [30] were developed for classical and intuitionistic logic, respectively. These
problem libraries have fostered the development of more efficient systems for these
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logics. The basic idea of using problem libraries is to run the ATP systems on the
problems included in the library, determine the number of problems solved within a
given time limit, and to collect further data, e.g., the average run time used to solve
the problems. In order to have these performance results reflect the capabilities of
the systems accurately, the problem library shall be large enough, span a variety of
difficulty and subject matters, and have a standardized syntax [41].

Until recently there existed only very small collections of formulas that could be
used for testing and evaluating ATP systems for first-order modal logics. A small
set of first-order formulas was used for testing GQML-Prover [44]. For propositional
modal logics there exist some scalable problem classes [3] and approaches that generate
formulas randomly in a normal form [26]. But generating formulas randomly is not an
appropriate approach for the first-order case.

The Quantified Modal Logic Theorem Proving (QMLTP) library [29] provides a
comprehensive set of standardized problems in first-order modal logics and, thus, con-
stitutes a convenient basis for testing and evaluating the performance of ATP sys-
tems for first-order modal logics. The main purpose of the QMLTP library is to
stimulate the development of new ATP systems and calculi for first-order modal log-
ics. The current release v1.0 of the QMLTP library contains 500 problems repre-
sented in an extended TPTP syntax. The problem set is available for download at
http://www.iltp.de/qmltp.

Release v1.0 of the QMLTP library includes 245 problems that are generated by
using Gödel’s embedding of intuitionistic logic into the modal logic S4 [19]. The
original problems were taken from the TPTP library [41]. 10 problems were taken
from applications, e.g., planning, querying databases, natural language processing and
communication, and software verification [10, 11, 13, 32, 38, 39]. 175 problems come
from various textbooks [14, 15, 16, 18, 28, 35, 44] and 70 problems from the TANCS-
2000 system competition for modal ATP systems [21].

There are only few problems from real applications in the current release of the
QMLTP library. Future versions will include more problems from applications men-
tioned in Section 1 once they are submitted to the QMLTP library. The aim of the
QMLTP library is to start a cycle in which developers are inspired to improve their
ATP systems and users are encouraged to apply these systems and to contribute their
problems to the library stimulating the development of more efficient systems.

Each problem in the QMLTP library is assigned a modal status and a modal rating.
The status is either Theorem, Non-Theorem or Unsolved. Problems with Unsolved
status have not been solved by any ATP system.5 The rating determines the difficulty
of a problem with respect to current state-of-the-art ATP systems. It is the fraction of
state-of-the-art ATP systems that are not able to solve a problem within a given time
limit. For example a rating of 0.3 indicates that 30% of the state-of-the-art systems
do not solve the problem; a problem with rating of 1.0 cannot be solved by any state-
of-the-art system. A state-of-the-art system is an ATP system whose set of solved
problems is not subsumed by that of any another ATP system. In the current release of
the QMLTP library status and rating information is given with respect to the constant
and cumulative domains of the modal logics D and S4.

In order to represent modal problems in a standardized syntax, the Prolog syntax
of the TPTP library [41] is extended by the modal operators 2 and 3. The two Prolog
atoms ”#box” and ”#dia” are used for representing 2 and 3, respectively. The
formulas 2F and 3F are then represented by ”#box:F” and ”#dia:F”, respectively

5No theoretical investigations regarding the status of formulas have been done.
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%--------------------------------------------------------------------------
% File : SYM001+1 : QMLTP v1.0
% Domain : Syntactic (modal)
% Problem : Barcan scheme instance. (Ted Sider’s qml wwf 1)
% Version : Especial.
% English : if for all x necessarily f(x), then it is necessary that for
% all x f(x)
% Refs : [Sid09] T. Sider. Logic for Philosophy. Oxford, 2009.
% : [Brc46] [1] R. C. Barcan. A functional calculus of first
% order based on strict implication. Journal of Symbolic Logic
% 11:1-16, 1946.
% Source : [Sid09]
% Names : instance of the Barcan formula
%
% Status : cumulative constant
% D Unsolved Theorem v1.0
% S4 Unsolved Theorem v1.0
%
% Rating : cumulative constant
% D 1.00 0.00 v1.0
% S4 1.00 0.00 v1.0
%
% term conditions for all terms: designation: rigid, extension: local
%
% Comments :
%--------------------------------------------------------------------------
qmf(con,conjecture,
(( ! [X] : (#box : ( f(X) ) ) ) => (#box : ( ! [X] : ( f(X) ) )))).
%--------------------------------------------------------------------------

Figure 1: Example of problem file SYM001+1 of the QMLTP library.

(see also Figure 1). For future extensions to multi-modal logic these atoms can be
extended to, e.g., Prolog terms of the form ”#box(i)” or ”#dia(i)” in which the
index ”i” is an arbitrary Prolog atom. As there exists no ATP system for first-order
multi-modal logic, the current release of the QMLTP library is restricted to uni-modal
problems only.

A header with useful information is added to the presentation of each problem. It
is adapted from the TPTP library and includes information about the file name, the
problem description, the modal status and the modal difficulty rating. An example file
of a first-order modal problem is given in Figure 1.

Note that the problem files of the QMLTP library are primary intended to present
the syntax of modal formulas. The options of the intended semantics, e.g., the inter-
pretation of the modal operators in the different modal logics is left to the (user of the)
particular ATP system.6 This increases the flexibility of the library as it can be used for
all (uni-modal) logics that share the standard modal syntax.

3.2 Performance Evaluation
Several criteria are used to evaluate and compare the performance of ATP systems. The
main measure is the number of problems that an ATP system solves within a given time
limit. For the evaluation the output of a proof or a counter model is not required, i.e.,
an assurance of the existence of a proof or counter model is sufficient. The time limit
is in terms of CPU time since no extensive memory usage was observed and, thus, wall
clock time is not significantly higher than CPU time. The average CPU runtime of an
ATP system was determined only for problems solved by all systems in order to make
the comparison fair. Otherwise, a system that spends more time solving a difficult
problem that is not solved by other systems would be disadvantaged.

6Even though some problems, e.g., problems stemming from Gödel’s embedding were originally devel-
oped with a specific modal logic in mind.
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Another interesting property when evaluating ATP systems is their time complex-
ity behavior, i.e., the increase of number of solved problems when increasing the time
limit. When an ATP system solves most problems of the ones it can solve at all within
a second, its time complexity behavior is worse than that of a systems that still solves
a significant number of problems after 10 or 100 seconds. A very steep time com-
plexity behavior indicates that the ATP system’s underlying proof calculus needs to
be improved. What kind of problems are solved is interesting as well. Problems with
equality are of interest, because some calculi and techniques might be more appropriate
to deal with equality than others.

There are three further criteria to rate the performance of ATP systems: the state-
of-the-art (SOTA) system rating, the state-of-the-art contribution (SOTAC) and the ef-
ficiency measure [41, 42]. The SOTA system rating states how many difficult problems
an ATP system can solve. It is the fraction of problems that can be solved by the re-
garded system but not by all systems. The value is 1.0 if the system can solve all
difficult problems, and is 0.0 if it can only solve problems that are solved by all (state-
of-the-art) systems as well. The SOTAC of an ATP system measures its unique prob-
lems solving capability. The SOTAC of a specific problem is the inverse of the number
of state-of-the-art systems that solve the problem. For example, the maximal value 1.0
indicates that only one system solves the problem, 0.5 means that two state-of-the-art
system solve the problem. The SOTAC of an ATP system is the average SOTAC over
all problems solved by the system. The less “unique” an ATP system the smaller is its
SOTAC. Finally, the efficiency measure takes the number of solved problems and time
taken to solve them into account. It is the fraction of solved problems divided by the
average time needed to solve these problems. The more problems are solved and the
faster they are solved by an ATP system the higher is its efficiency measure.

3.3 The Test Environment
The ATP systems described in Section 2 are evaluated on the modal logics D and S4
with constant and cumulative domains. These are the modal logics supported by the
majority of available ATP systems. The standard semantics for the modal logics D and
S4, rigid term designation and local terms are used [15].

Table 2: Test Environment

hardware 3.4 GHz Xeon, 4 GB RAM
operating system Linux 2.6.24-24.x86 64
time limit 600 sec.
modal logic D S4

accessibility relation serial reflexive, transitive
axioms 2A→ 3A 2A→ A, 2A→ 22A

domains cumulative, constant
terms designation: rigid, extension: local

A test environment was developed for automatically conducting all performance
tests and for collecting and evaluating the results of all test runs. These test runs were
conducted on an eight-processor cluster system in order to simultaneously test sev-
eral ATP systems at a time. All ATP systems and components written in Prolog use
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ECLiPSe Prolog 5.10. For M-Satallax 1.4 and M-Leo-II 1.2 the binaries of the CASC-
J5 [43] were used. For MSPASS the sources of SPASS 3.0 were compiled using the
GNU gcc compiler version 4.2.4.

The CPU time limit for all proof attempts was set to 600 seconds. For handling
equality the equality axioms were added in a preprocessing step for the ATP systems
MleanSeP, MleanTAP, GQML-Prover and f2p-MSPASS. The time required for adding
the equality axioms is less than a second and not included in the overall timings. Table 2
summarizes the test conditions.

3.4 Performance Statistics
Table 3 and Table 4 give an overview of the test results for all ATP systems described
in Section 2. M-Satallax and M-Leo-II can be applied to the constant domains only.

Table 3: Number of proved problems of the QMLTP library v1.0

D S4
cumulative constant cumulative constant

MleanSeP 1.1 117 120 203 201
MleanTAP 1.1 84 120 189 205

M-Satallax 1.4 - 107 - 188
M-Leo-II 1.2 - 104 - 172

GQML-Prover 1.2 88 95 137 133
f2p-MSPASS 3.0 47 47 88 88

Table 4: Number of found counter models of the QMLTP library v1.0

D S4
cumulative constant cumulative constant

MleanSeP 1.1 1 1 1 1
MleanTAP 1.1 1 1 1 1

M-Satallax 1.4 - 7 - 71
M-Leo-II 1.2 - 0 - 0

GQML-Prover 1.2 0 0 0 0
f2p-MSPASS 3.0 108 107 42 36

Table 5, 7, 9, and 11 present the performance results for the modal logics D and
S4 with cumulative and constant domains, respectively. They contain the number of
solved problems, the number of proved problems, and the number of counter models
(disproved) found within the time limit, the fraction of solved problems, the number of
solved problems within a specific time interval, the number of time outs, the number of
solved problems containing equality, the number of problems solved by only one ATP
system, the SOTA system rating, the SOTAC, and the efficiency measure as described
in section 3.2. The average run time was determined only for problems solved by all
ATP systems. These are 9% and 16% of all problems for the modal logics D and S4,
respectively.

For some problems MleanSeP and MleanTAP produce a stack overflow (stack). f2p-
MSPASS cannot be applied to 299 problems (gave up) as these problems contain both
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existential and universal quantifiers (see remarks in Section 2.4). For some problems
GQML-Prover returns wrong results (inconsistent).7

Table 6, 8, 10, and 12 show the number of problems solved by one ATP system but
not by another system. For example, for the modal logic D with cumulative domains
MleanSeP solves 34 problems that are not solved by MleanTAP (see Table 6). The
performance graph of all considered ATP systems for the modal logics D and S4 with
cumulative and constant domains are depicted in Figure 2, 3, 4, and 5, respectively.

To compare the performance of the modal ATP systems with an ATP system for
classical logic, the classical prover leanTAP [5] was run on all modal problems, in
which the modal operators have been removed. Out of the 500 problems leanTAP 2.3
proves 282 problems and finds a counter model for one problem. It solves all except
one problem within one second.

Table 5: Benchmark results for modal logic D with cumulative domains

MleanSeP MleanTAP GQML-Prover f2p-MSPASS
1.1 1.1 1.2 3.0

solved 118 85 88 155
[%] 24% 17% 18% 31%

proved 117 84 88 47
disproved 1 1 0 108

0s to 1s 117 85 71 155
1s to 10s 0 0 1 0

10s to 100s 0 0 16 0
100s to 600s 1 0 0 0

time out 349 411 143 46
stack / gave up 33 4 264 0
not applicable 0 0 0 299
inconsistent 0 0 5 0

solved with equality 37 18 16 0
only by this system 27 0 22 102

average time [s] <0.01 <0.01 0.01 0.01
SOTA system rating 0.26 0.16 0.17 0.38

SOTAC 0.49 0.32 0.51 0.76
efficiency measure 0.05 289.00 0.02 102.23

Table 6: Number of problems solved by A but not by B for D with cumulative domains

system A system B
MleanSeP MleanTAP GQML-Prover f2p-MSPASS

1.1 1.1 1.2 3.0

MleanSeP 1.1 0 34 53 71
MleanTAP 1.1 1 0 26 37

GQML-Prover 1.2 28 34 0 55
f2p-MSPASS 3.0 108 107 117 0

7An inconsistency occurs, e.g., for problem SYM176+1 for all considered modal logics.
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Table 7: Benchmark results for modal logic D with constant domains

MleanSeP MleanTAP M-Satallax M-Leo-II GQML-Prover f2p-MSPASS
1.1 1.1 1.4 1.2 1.2 3.0

solved 121 121 114 104 95 154
[%] 24% 24% 23% 21% 19% 31%

proved 120 120 107 104 95 47
disproved 1 1 7 0 0 107

0s to 1s 93 118 97 98 79 154
1s to 10s 27 3 10 0 1 0

10s to 100s 0 0 2 1 15 0
100s to 600s 1 0 5 5 0 0

time out 346 377 386 396 142 47
stack / gave up 33 2 0 0 257 0
not applicable 0 0 0 0 0 299
inconsistent 0 0 0 0 6 0

solved with equality 36 28 12 10 16 0
only by this ATP 6 4 3 1 15 99
average time [s] <0.01 <0.01 0.34 0.05 <0.01 0.01

SOTA system rating 0.15 0.15 0.14 0.13 0.11 0.21
SOTAC 0.29 0.28 0.26 0.23 0.38 0.72

efficiency measure 0.04 2.08 0.04 0.03 0.02 38.25

Table 8: Number of problems solved by A but not by B for D with constant domains

system A system B
MleanSeP MleanTAP M-Satallax M-Leo-II GQML-Prover f2p-MSPASS

1.1 1.1 1.4 1.2 1.2 3.0

MleanSeP 1.1 0 14 31 35 53 74
MleanTAP 1.1 14 0 29 31 48 73

M-Satallax 1.4 24 22 0 12 45 64
M-Leo-II 1.2 18 14 2 0 37 58

GQML-Prover 1.2 33 28 32 34 0 63
f2p-MSPASS 3.0 107 106 104 108 116 0

3.5 Comparison of Performance Results
In general, ATP systems prove more problems of the QMLTP library with respect to the
modal logic S4 than with respect to the modal logic D. Furthermore, more problems are
proved for the constant domains condition than for the cumulative domains condition.

These results are in line with the fact that every formula that is valid in the modal
logic D is also valid in S4, and that every formula that is valid for the cumulative
domains condition is also valid for the constant domains condition as shown in the
following figure:
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Table 9: Benchmark results for modal logic S4 with cumulative domains

MleanSeP MleanTAP GQML-Prover f2p-MSPASS
1.1 1.1 1.2 3.0

solved 204 190 137 130
[%] 41% 38% 27% 26%

proved 203 189 137 88
disproved 1 1 0 42

0s to 1s 184 186 126 129
1s to 10s 8 2 0 0

10s to 100s 8 1 10 1
100s to 600s 4 1 1 0

time out 262 306 270 71
stack / gave up 34 4 91 0
not applicable 0 0 0 299
inconsistent 0 0 2 0

solved with equality 51 29 6 1
only by this system 28 16 28 46

average time [s] 0.72 <0.01 0.18 0.01
SOTA system rating 0.31 0.28 0.16 0.15

SOTAC 0.44 0.41 0.44 0.53
efficiency measure 0.06 0.23 0.06 1.28

Table 10: Number of problems solved by A but not by B for S4 with cumulative dom.

system A system B
MleanSeP MleanTAP GQML-Prover f2p-MSPASS

1.1 1.1 1.2 3.0

MleanSeP 1.1 0 32 95 123
MleanTAP 1.1 18 0 85 108

GQML-Prover 1.2 30 34 0 74
f2p-MSPASS 3.0 49 48 65 0

{F |F is valid in D cumulative domains} ⊂ {F |F is valid in D constant domains}
⊂ ⊂

{F |F is valid in S4 cumulative domains}⊂ {F |F is valid in S4 constant domains}.
However, for the modal logic S4 MleanSeP proves more problem for the cumula-

tive domains than for the constant domains. The reason for this behavior is that the
inclusion of the Barcan formula increases the search space for formulas that are valid
under both domain conditions.

MleanSeP proves the highest number of problems, except for S4 constant domain
where MleanTAP proves more problems than any other prover. MleanSeP also proves
the highest number of problems containing equality for all considered modal logics.

In general MleanTAP proves only slightly fewer problems than MleanSeP. It has
the best performance for S4 with constant domains and proves many problems with
equality as well. The time complexity behavior of MleanTAP is worse than that of
MleanSeP. Both MleanSeP and MleanTAP each found only one counter model.
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Table 11: Benchmark results for modal logic S4 with constant domains

MleanSeP MleanTAP M-Satallax M-Leo-II GQML-Prover f2p-MSPASS
1.1 1.1 1.4 1.2 1.2 3.0

solved 202 206 259 172 133 124
[%] 40% 41% 52% 34% 27% 25%

proved 201 205 188 172 133 88
disproved 1 1 71 0 0 36

0s to 1s 170 203 166 155 123 123
1s to 10s 20 2 51 7 0 0

10s to 100s 8 1 28 4 9 1
100s to 600s 4 0 14 6 1 0

time out 265 292 241 328 271 77
stack / gave up 33 2 0 0 83 0
not applicable 0 0 0 0 0 299
inconsistent 0 0 0 0 13 0

solved with equality 45 29 14 9 4 1
only by this system 14 10 24 1 8 0

average time [s] 0.05 <0.01 0.41 0.08 0.18 0.01
SOTA system rating 0.16 0.16 0.22 0.12 0.08 0.07

SOTAC 0.30 0.29 0.35 0.22 0.29 0.29
efficiency measure 0.05 2.61 0.04 0.05 0.06 1.08

M-Satallax and M-Leo-II prove only slightly fewer problems than MleanSeP and
MleanTAP for D and S4 with constant domains. For the modal logic S4 M-Satallax
is very strong in finding counter models and solves a large number of problems that
were taken from the TANCS-2000. M-Leo-II does not find counter models and its time
complexity is slightly worse than that of M-Satallax.

f2p-MSPASS finds a high number of counter models for all considered modal log-
ics. Like M-Satallax it solves a high number of TANCS-2000 problems. However, its
time complexity behavior is very steep. All except one problem are solved within one
second. f2p-MSPASS cannot be applied to 299 problems (see remarks in Section 2.4).
There are only 31 non-propositional modal problems that are suitable for the instance-

Table 12: Number of problems solved by A but not by B for S4 with constant domains

system A system B
MleanSeP MleanTAP M-Satallax M-Leo-II GQML-Prover f2p-MSPASS

1.1 1.1 1.4 1.2 1.2 3.0

MleanSeP 1.1 0 23 43 54 90 122
MleanTAP 1.1 27 0 41 48 88 124

M-Satallax 1.4 100 94 0 91 122 136
M-Leo-II 1.2 24 14 4 0 50 93

GQML-Prover 1.2 34 28 9 24 0 81
f2p-MSPASS 3.0 44 42 1 45 59 0
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based approach of f2p-MSPASS.8 This problem set is too small to provide meaningful
comparisons on the performance of f2p-MSPASS on first-order modal problems.

The classical leanTAP prover solves 283 problems (ignoring the modal operators)
indicating that many problems are hard even for classical tableau-based ATP systems.

4 Conclusion
Despite the fact that modal logics are considered as one of the most important non-
classical logics, the availability of implementations of automated theorem provers for
first-order modal logics is very limited so far. In this paper several new ATP systems
for various first-order modal logics based on different proof calculi and methods were
introduced.

The performance of all new and existing ATP systems for first-order modal logic
was evaluated on all 500 problems included in the first release v1.0 of the QMLTP
library. Comprehensive statistics including different performance measures as well as
illustrative performance graphs of the time complexity behavior were given for each
considered ATP system.

Even though most of the 500 problems included in the first release of the QMLTP
library have a rather syntactic nature, the QMLTP library serves as a useful basis in
order to obtain a first impression of the performance of ATP systems for first-order
modal logics.9 Future releases of the QMLTP library will provide more problems from
actual applications, thus, putting the testing and evaluation of ATP systems for modal
logic on a more stable basis. All interested users are invited to submit new first-order
problems to the QMLTP library.

An analysis of the performance results shows that the ATP system based on stan-
dard modal sequent calculi (performing an analytic tableau-like search) proves the
highest number of problems. It slightly outperforms the system based on prefixed
tableau calculi.10 As for classical logic the ATP system based on an instance-based
method finds by far the highest number of counter models. The systems using the
embedding of modal logic into type theory show a solid performance as well. All
considered ATP system solve most problems of the ones they solve at all within one
second. This behavior is similar to that of classical ATP systems using standard tableau
calculi. It indicates that the underlying proof calculi need to be improved.

The implementation of ATP systems for first-order modal logic is still in its infancy.
Future work includes the implementation of, e.g., connection-based calculi for first-
order modal logic and the extension of existing ATP systems to some first-order multi-
modal logics.

Acknowledgements.

The authors would like to thank Christoph Benzmüller for providing the LEO-II system
and the embedding into simple type theory, Ulrich Hustadt and Renate Schmidt for
providing the MSPASS system, and Geoff Sutcliffe for help with the installation of
some ATP systems and many useful suggestions.

8Of these problems ft2-MSPASS solves 16 problems (5 proved/11 counter models) for cumulative D, 15
problems (5/10) for constant D, 15 problems (9/6) for cumulative S4, and 9 problems (8/1) for constant S4.

9Observe the fact that problem libraries for classical first-order logic started with 75 (printed) problems
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Figure 2: Performance graph for modal logic D with cumulative domains

Figure 3: Performance graph for modal logic D with constant domains
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Figure 4: Performance graph for modal logic S4 with cumulative domains

Figure 5: Performance graph for modal logic S4 with constant domains
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Modular Termination and Combinability for

Superposition Modulo Counter Arithmetic∗

Christophe Ringeissen, Valerio Senni†
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Software verification tasks require the availability of solvers that are able to
discharge proof obligations involving data-structures together with arithmetic
constraints and other mathematical abstractions, such as size abstractions. Be-
sides, the use of Satisfiability Modulo Theories (SMT) solvers allows us to focus
on the development of satisfiability procedures for such mixed theories. In this
setting, the problem of designing the satisfiability procedures is often addressed
with success by using approaches based on combination.

Problems arise when we consider combinations involving theories whose sig-
natures are non-disjoint. This is especially the case when we consider theories
sharing some algebraic constraints. In order to combine satisfiability procedures
for the single theories to handle constraints in their non-disjoint union one needs
to rely on powerful methods such as the combination framework of [3]. These
methods are based on semantic properties of the considered theories, such as
compatibility and computability of bases of the shared entailed equalities, which
often require complex proofs.

A further issue concerns the development of correct and efficient satisfiability
procedures for the single theories, possibly using a systematic approach. In this
regard, the use of superposition calculus has proved to be effective to deal with
classical data structures (e.g., lists and records)and integer offsets [1, 2].

In this paper we address both aspects by: (1) considering a superposition
calculus with a built-in theory of counter arithmetic [4] and (2) providing mod-
ularity results for termination and combinability, based on conditions on the
saturations of the component theories that can be checked automatically.

Our contributions are twofold. First, we prove a modular termination re-
sult for extending the applicability of the superposition calculus to theories that
share a theory of counter arithmetic. This generalizes, to the non-disjoint case,
the results in [1], where the authors consider the standard superposition calcu-
lus and signature-disjoint theories. This result allows us to drop some of the
complex conditions required by the combination framework when we deal with
theories that can be treated uniformly through superposition.

Second, we prove a general compatibility result that allows us to use our
superposition-based satisfiability procedures into the combination framework

∗An extended version of this abstract can be found in [5].
†The author acknowledges support from ERCIM during his stay at LORIA-INRIA.
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of [3]. We prove that any satisfiability procedure obtained by using our mod-
ular termination result is able to compute a finite basis of the shared entailed
equalities. In addition, we provide a sufficient condition on the form of the
saturations that allows us to conclude compatibility of the theories and, thus,
completeness of their combination.

As an outcome, we have less and simpler restrictions on combinability and we
are able to obtain satisfiability procedures both by a uniform approach for the-
ories treated through superposition (e.g., data structures) and by combination
for theories which are not ‘superposition-friendly’ (e.g., theories of arithmetic).

Application

To show the application of our results in practice, we introduce a class of new
theories modeling data structures and equipped with a counting operator that
allows us to keep track of the number of the modifications (writes, constructors,
etc.) performed on a data structure. In these theories we are able to distin-
guish between versions of the same data structure obtained by some update. In
particular, we consider a theory of lists TLV (including the classic car and cons
operators) and a theory of records TRV (including the the classic rselecti and
rstorei operators), both equipped with a counting operator: countR(r), which
denotes the number of updates performed on the record r, and countL(l), which
denotes the number of elements inserted into the list l and coincides with the
size of the list. Our modular termination result applies to TLV ∪ TRV , which
means that our superposition calculus leads a TLV ∪TRV -satisfiability procedure.
Then, our general compatibility result applies to TLV ∪TRV . Consequently, the
superposition-based TLV ∪ TRV -satisfiability procedure can be combined with
a theory of linear arithmetic without loss of completeness when considering a
shared theory of counter arithmetic. This leads to a combined decision proce-
dure of practical interest for verifying programs with lists and records.
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Preface

This booklet contains the abstracts of presentations from the Second Inter-
national Workshop Gentzen Systems and Beyond, held on July 4, 2011 in
Bern, Switzerland. The aim of the workshop was to explore and compare
the motivations for and relative merits of the various formalisms that have
emerged as a result of attempts to construct proof systems for logics that do
not seem to admit a standard Gentzen-style system, including but not lim-
ited to hypersequents, display calculi, labeled deductive systems, tableaux,
deep inference systems, and proof nets. The workshop was co-located with
the 20th International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods (Tableaux 2011). The first edition of the
workshop was co-located with Tableaux 2009, held in Oslo, Norway.

The program of the workshop included six contributed talks, as well as
invited talks “Nested Sequents and Prefixed Tableaus” by Melvin Fitting
and “A Symmetric Natural Deduction” by Michel Parigot.

We would like to thank all the contributors for their efforts.

July 2011 Roman Kuznets
Bern Richard McKinley



Nested Sequents and Prefixed Tableaus 
 

Melvin Fitting 
 
Abstract:  It is common knowledge that tableaus and sequent calculi are dual 

proof mechanisms.  A proof using one methodology can be seen as a proof in the 

other, "upside-down."  In the 1970's I introduced so-called prefixed tableaus, 

which supply proof procedures for several modal logics that don't have tableau 

systems in a more conventional sense.  These were then given very nice 

modular style rules by Massacci.  Prefixed tableaus involve extra machinery, and 

it has been a nagging question what a sequent counterpart might be.  Very 

recently Kai Brünnler has been investigating something called nested sequent 

calculi.  In these, reasoning is not just at the top level, but can occur deep inside 

a formula.  It turns out these are what was wanted all along.  The fit between 

prefixed tableaus and nested sequents is simple, and similar to that between 

ordinary tableaus and sequent calculi.  Since prefixed tableaus have been 

around for some time, we can use the connection to create a number of 

interesting nested sequent proof systems.  I will present the background, as well 

as recent work on modal systems.  In addition, I will also discuss a simple and 

interesting nested sequent system for constant domain intuitionistic propositional 

logic. 
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Constructive Realization in Justification Logics

via Nested Sequents

Remo Goetschi

Justification logics are refinements of modal logics where modalities are re-
placed by justification terms. Given a modal formula such as �A, which can
be read as A is provable or as A is known, a justification counterpart of this
formula of the form t : A can be read as t is a proof of A or as A is known
for reason t. Many modal logics have one or several corresponding justification
logics. They are connected via so-called realization theorems. The first such
theorem was established by Artemov for the modal logic S4 and the justification
logic LP, called the Logic of Proofs. It has two directions. First, each provable
formula of S4 can be turned into a provable formula of LP by realizing instances
of modalities with justification terms. Second and vice versa, if all terms in a
provable formula of LP are replaced with modalities, then the resulting modal
formula is provable in S4. Similar correspondences have been established for
several other modal logics besides S4, either via a constructive method based
on cut-free Gentzen systems or via a non-constructive method based on Kripke-
style semantics for justification logics. However, until recently there was no
uniform method of proving the realization theorem for all the 15 normal modal
logics formed from the axioms d, t, b, 4, and 5. In particular, there was no real-
ization theorem for modal logics that lack cut-free sequent systems, such as K5,
D5 and KB.

We present a general realization method that works for a wide class of cut-
free nested sequent calculi à la Kai Brünnler. Nested sequents are a generaliza-
tion of (one-sided) Gentzen sequents in the sense that they have an additional
structural connective for � which can be arbitrarily nested. A crucial feature of
these proof systems is deep inference, which is the ability to apply inference rules
to formulas arbitrarily deep inside a nested sequent. In particular, our method
applies to a system by Brünnler that captures all the 15 normal modal logics
from the “modal cube”, which allows us to prove a uniform and constructive
realization theorem for these logics.

Based on our realization method, we discuss the question of modularity of
realizations: each modal axiom has a natural justification counterpart. However,
one modal logic may have several axiomatizations, accordingly it is natural to
suggest there to be several justification counterparts, essentially one for each
axiomatization. We classify these various realizations by introducing a natural
equivalence relation on them that extends that of Fitting. The naturality of the
equivalence relation here means that justification logics are equivalent iff they
realize the same modal logics.

This is a joint work with Kai Brünnler and Roman Kuznets (both from
University of Bern).
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Definite and Indefinite Descriptions
Norbert Gratzl 

In this talk I’d like to present the theories of definite descriptions as formulated by Russell in the Principia 

Mathematica as well as his – not so well known – account of indefinite (or ambiguous) descriptions that 

were briefly explained in his Introduction to Mathematical Philosophy. 

Russell’s theory of definite descriptions is well explored. In this talk I aim for a concise 

presentation of the theory of descriptions as it has been developed by Russell in the Principia Mathematica 

*14. Although, the approach to definite descriptions is (in)famous – or even a paradigm of philosophical 

analysis – we shall put forward a sample of arguments that purport the view that Russell’s theory might be 

in need of several modifications. I will point out that some logical problems might occur if the contextual 

definitions for introducing definite descriptions are viewed as axioms (or rather axiom schemes). The 

proposed solution consists of several formal systems, growing in logical strength, that are formulated in 

suitable Gentzen-style sequent calculi. The cut-elimination theorem holds for each of the systems and its 

proof will be briefly outlined. Furthermore, the claim that definite descriptions are incomplete symbols is 

interpreted formally by stating an elimination theorem that shows in effect that each theory (developed here) 

is a conservative extension of (non-classical) predicate logic with identity.

Russell in his Introduction to Mathematical Philosophy discusses in the section “Descriptions” not solely 

definite descriptions but commences with indefinite descriptions. At heart of his analysis the statements 

containing indefinite descriptions are analysed away: “an object having property A has property B” means: 

“some A′s are B′s” –– the expression “an object having property A” is supposed to be an indefinite 

description.  A formulation of this claim as an axiom (scheme) gives rise to an inconsistency. However, by 

amending the underlying logic it can be proved that the obtained systems are consistent. The consistency 

result follows from the cut-elimination theorem for some Gentzen-style sequent calculi. Finally, I would 

like to indicate some relations to Hilbert's epsilon calculus.

In the last part of the talk I would like to present a formal system (in a Russellian spirit) that contains both, 

definite and indefinite descriptions.
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A Tentative Atomic Calculus for Natural Deduction

Tom Gundersen and Michel Parigot

June 16, 2011

Abstract

We present a term calculus with explicit contraction and weakening, which is typed by
deep-inference derivations. Using a version of the medial rule of deep-inference we give a
set of reduction rules that are atomic, in the sense that they never copy or erase unbounded
subterms. Finally, we give an interpretation of our calculus in terms of the lambda calculus
and show how our reduction can simulate beta reduction.

1
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A symmetric natural deduction

Michel Parigot

June 20, 2011

Having a Natural Deduction system where the rules for disjunction are
simply the dual of the rules for conjunction, is an old dream of structural
proof theorists. We show that the Open Deduction formalism for Deep In-
ference provides a way of constructing such a system and discuss some of its
properties.
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Sequent Calculus for Justifications

Yury Savateev

The Logic of Proofs was introduced by Artemov in order to give a provability
semantics to the modal logic S4. It is based on a notion of proof polynomial,
which allows to talk about proofs and propositions in the same language. In
a sense it is a refinement of modal logic — a formula �A, which is typically
interpreted as A is provable or A is known is replaced by an expression of the
form t : A, that can be read as t is a formal proof of A or A is known because of
the evidence provided by t. Several variants of models and realization technics
were later developed for different versions of this logic.

Since in these logics proof polynomial typically denote proofs in a Hilbert-
style system, the sequent calculi developed for them do not internalize their
own proofs and it is hard to describe and explore the relation between proof
polynomials and cut elimination and other important properties of proofs in
Gentzen-style systems. Therefore there is a need for a sequent calculus that
can talk about its own proofs. Some attempts in that direction were made by
Brezhnev, but system presented there did not have the subformula property
and did not include the function symbol for cut, and thus only could formalize
cut-free proofs.

The system presented in this paper can formalize all its own proofs. The
main difference from the previous approaches is that here the construction t : A
is not used. Instead, proof polynomial are considered to be formulas themselves.
When we write a proof polynomial t in this system we intend it to be read as t
is a valid proof in our system. Proof polynomials here are designed to contain
all available information about the proof. In particular, it is always possible to
determine which sequent is proved by a given proof polynomial, thus there is
no need to specify it. This idea allows us to build a cut-free system that satisfy
a version of the subformula property.

The calculus presented in this paper can realize the modal logic K45. As a
part of realization procedure we translate our formulas into the nested sequent
calculus — a deep inference system for modal logics introduced by Brünnler.

74



Some Remarks on Nested Sequent Systems for
Modal Logics

Lutz Straßburger

INRIA Saclay – Île-de-France

École Polytechnique — LIX — Rue de Saclay — 91128 Palaiseau Cedex — France
http://www.lix.polytechnique.fr/~lutz

Abstract. Standard sequent calculus has difficulties with many modal
logics. Recently, many authors have indepently proposed the notion of
nested sequents to present cut-free deductive systems for various modal
logics. Some progress has been made towards a modularity in the presen-
tation: A given Hilbert-axiom is translated into a set of inference rules,
where a difference can be made between so-called diamond-rules and so-
called structural rules. In this talk, I will present the state of the art,
exhibit some unexpected difficulties, and show some work in progress in
reaching full modularity.
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On the correspondence between display

postulates and deep inference in nested sequent

calculi for tense logics

Alwen Tiu
The Australian National University

(Joint work with Rajeev Goré and Linda Postniece)

Abstract

We consider two styles of proof calculi for a family of tense logics, pre-
sented in a formalism based on nested sequents. A nested sequent can be
seen as a tree of traditional single-sided sequents. Our first style of cal-
culi is what we call shallow calculi, where inference rules are only applied
at the root node in a nested sequent. Our shallow calculi are extensions
of Kashima’s calculus for tense logic and share an essential characteristic
with display calculi, namely, the presence of structural rules called display
postulates. Shallow calculi enjoy a simple cut elimination procedure, but
are unsuitable for proof search due to the presence of display postulates
and other structural rules. The second style of calculi uses deep-inference,
whereby inference rules can be applied at any node in a nested sequent.
We show that, for a range of extensions of tense logic, the two styles of
calculi are equivalent, and there is a natural proof theoretic correspon-
dence between display postulates and deep inference. The deep inference
calculi enjoy the subformula property and have no display postulates or
other structural rules, making them a better framework for proof search.
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Tableaux(-like) Methods for the Satisfiability Problems of

Temporal Logics

Martin Lange

January 12, 2011

1 Content

Temporal logics are modal logics over infinite flows of time. They form important tools for the
specification of program behaviour. Their satisfiability problems therefore form the algorithmic
essence of consistency checks for logical specifications of correct program behaviour.

Temporal operators usually have elegant characterisations in terms of fixpoint solutions to
certain recursive equations. This often makes the evaluation of temporal formulas in Kripke
structures relatively simple using fixpoint iteration techniques. It also introduces very particular
difficulties for deciding satisfiability: one has to ensure that iterations corresponding to least
fixpoint constructs are well-founded.

In this tutorial we will review basic temporal logics and tableau-based methods for their sat-
isfiability problems. We will illustrate the problems arising with a mixture of least and greatest
fixpoint constructs in such tableaux and discuss known solutions as well as related and open
questions in this area.

2 Level

The tutorial will be held at an introductory level. No particular knowledge about temporal logics
will be required. However, participant will be expected to have some knowledge and logic in
general. Some knowledge on automata theory will be helpful but is not essential.

3 Relevance

The tutorial introduces a major application area for tableaux as a tool for logical decision proce-
dures.

4 Interest

The tutorial will be of interest to young researchers attending TABLEAUX’11. It covers topics
that usually do not occur in courses at (under)graduate level. The open problems and related
areas to be dealt with in the tutorial may give enthusiatic researchers ideas for future work.

1
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Tutorial: Introduction to Proof Nets

Lutz Straßburger

INRIA Saclay – Île-de-France — Équipe-projet Parsifal

École Polytechnique — LIX — Rue de Saclay — 91128 Palaiseau Cedex — France
lutz at lix dot polytechnique dot fr

This tutorial is intended to be a basic introduction to proof nets. The term
proof net has been coined by Girard [Gir87] for his bureaucracy-free presentation
of proofs in linear logic. He used the term bureaucracy for the phenomenon of
trivial rule permutations in the sequent calculus that do not change the essence
of a proof. From the beginning, proof nets served two purposes: first, provide
a concise presentation of proofs, similar to λ-terms for intuitionistic logic, and
second, to simplify the cut elimination proof and to study the normalization of
proofs.

In the first part of the tutorial I will introduce proof nets for various fragments
of linear logic and discuss various correctness criteria [DR89,HvG03].

In the second part of the tutorial I will present more recent developments
in the area of classical logic. There are, on one side, proof nets that follow the
tradition of the linear logic proof nets [Rob03], and on the other side, there are
proof net variants [LS05] that follow the tradition of Andrews’ matings [And76],
Bibel’s matrix proofs [Bib81], and Buss’ logical flow graphs [Bus91]. The nor-
malization behaviour of these objects is very different from the usual one in the
sequent calculus.

A particularly interesting variant are atomic flows [GG08,GGS10] because
they are subject to transformations that can be lifted to formal derivations in
the deep inference deductive system SKS [BT01], and these transformations can
be composed such that we obtain novel a cut-elimination procedure for SKS.

Although for the “flow graph based” variants of proof nets we do not
(yet) know polynomial correctness critiera, they can be used as invariants for
proofs [Hug06] for investigating the question of the identity of proofs. This allows
to compare proofs in different deductive systems, for example, the same proof
can be given in a natural deduction system and in a tableau system.

The tutorial will be based on material from Chapters 2 and 3 of my
ESSLLI’06 lecture notes [Str06], the work in [Str10], and the Chapter 2 of my
habilitation thesis [Str11].
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Dialogue Games for Classical Logic

Jesse Alama1, Aleks Knoks2, and Sara L. Uckelman2?

1 Center for Artificial Intelligence
New University of Lisbon
j.alama@fct.unl.pt

2 Institute for Logic, Language, and Computation
Universiteit van Amsterdam

knoks@science.uva.nl;S.L.Uckelman@uva.nl

Abstract. We define a class of dialogue games and prove that existence
of winning strategies for the Proponent in this class of games corresponds
to validity in classical propositional logic. Many authors have stated sim-
ilar results without actually proving the correspondence. We modify the
games used for intuitionistic logic given by Fermüller [3]. We employ
standard dialogue games and a standard sequent calculus for classical
logic. The result is a simple correspondence between dialogue games and
classical logic.

1 Introduction

Dialogue games as a semantics for intuitionistic logic (IL) were developed by
Lorenzen in the 1950s as an alternative to the operative approach to logic [8,
9]. A dialogue game is a finitary open two-person zero-sum game between the
Proponent P and the Opponent O. Lorenzen’s goal was to isolate a certain class
of dialogue games such that P has a winning strategy for the dialogue game
beginning with ϕ iff ϕ is a theorem of IL.

The first recognized successful proof for IL was given by Felscher [2]. Felscher’s
proof, though correct, is both complicated, with its introduction of the notion of
protableaux, and difficult to understand. Fermüller [3] provides a variant of the
E rules which allows him to give a simpler proof of the correspondence, without
intermediate recourse to protableaux (the proof also appears in [4]). Our goal in
this paper is to modify Fermüller’s games and prove that these modified games
characterize classical validity; we do this in §3.

2 Previous work

Numerous classes of dialogue games for classical logic have been defined in the lit-
erature, but with few exceptions, the correspondence between the class of games

? The first and third authors were funded by the FCT/NWO/DFG project
“Dialogical Foundations of Semantics” (DiFoS) in the ESF EuroCoRes pro-
gramme LogICCC (FCT LogICCC/0001/2007; LogICCC-FP004; DN 231-80-002;
CN 2008/08314/GW). The authors would like to thank Morton Heine Sørensen for
comments on an earlier version of this paper.
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and classical validity is merely asserted, and not proved [1, §2], [5, pp. 352–53], [6,
pp. 217–18], [7, p. 305], [9, p. 194], [10, §1.5], [11, §2], [12, passim], [14, p. 152].
The three exceptions are due to Fermüller and Sørensen & Urzyczyn. In [3],
Fermüller defines classes of “parallel” dialogue games which capture various in-
termediate logics, including classical logic, characterized by various hypersequent
calculi. In [13], Sørensen and Urzyczyn offer an elegant and compact correspon-
dence between Felscher’s dialogues for classical logic and a “dialogue-inspired”
variant of the sequent calculus LK for classical logic that they call LKD. The
calculus LKD has only three rules: a left-rule, a right-rule, and one structural
rule, cut, which can be eliminated [13, Cor. 3.4]. The left and right rules have
side conditions that are built directly from the dialogue rules for attacks and
defenses of formulas; this justifies the presence of only two logical rules in the
calculus, rather than the customary array of left and right rules for each of the
connectives.

Our result in this paper improves on both Fermüller’s and Sørensen and
Urzyczyn’s proofs. We show that, in the classical case, Fermüller’s use of par-
allel dialogue games and hypersequents can be avoided, and that a correspon-
dence with a standard sequent calculus, rather than Sørensen and Urzyczyn’s
“dialogue-inspired” version can be established.

3 Classical dialogical logic

Our language is a basic propositional language with a designated atom ⊥ (fal-
sum). We define ¬ϕ as ϕ→⊥. We will also make use of so-called symbolic attacks,
∧L, ∧R, and ?.

Dialogue games are specified by two types of rules, particle (local) rules and
structural (global) rules. Particle rules (see Table 1) give the attack and defense
conditions for each type of formula; note that we allow attacks on atoms, but
these attacks cannot be defended. Structural rules define which sequences of
dialogical moves will count as legal dialogues. A dialogue is a sequence of attacks
and defenses that begins with a finite (possibly empty) multiset Π of formulas
that are initially granted by O and a finite (nonempty) multiset ∆ of formulas
that are initially disputed by O. Formulas that have been initially granted by
O can be attacked by P at any time, and formulas that are initially disputed
by O can be asserted as a defense by P at any time. In the case where ∆ is a
singleton, we can understand the game as beginning with an assertion of ∆ by
P, with the first move then being an attack on ∆ by O.

Definition 1 (CL structural rules).

Start The first move of the dialogue is carried out by O and consists in an
attack on (the unique) initially disputed formula ϕ.

Alternation Moves strictly alternate between players O and P.
Atom Atomic formulas, including ⊥, may be stated by both players, but only O

can attack them.
E Each move of O reacts directly to the immediately preceding move by P.
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Assertion Attack Response

p (atomic) ? —
ϕ ∧ ψ ∧L ϕ

∧R ψ
ϕ ∨ ψ ? ϕ or ψ
ϕ→ ψ ϕ ψ

Table 1. Particle rules for dialogue games

Definition 2 (Active formula). The most recent formula which P has as-
serted that O must attack in the next round is the active formula, if it exists.

Definition 3 (Winning conditions (for P)).

WCL The game ends with P winning if Π ∩∆ 6= ∅.
W⊥ The game ends when ⊥ is granted.

To establish the correspondence between classical validity and (existence of)
winning strategies, we use a variant of the sequent calculus system GKcp [15] for
classical propositional logic, which is itself a variant of the standard contraction-
and weakening-friendly formulation of LK that copies the principal formula into
the premise (or premises).

Definition 4 (The system GKcp′). Derivable objects are sequents Π ⇒ ∆,
where Π and ∆ are multisets of formulas. The sequent system GKcp′ is specified
by the axioms and rules in Figure 1, together with the usual weakening and
contraction rules on both the left and the right, as well as cut.

Axioms: ϕ,Π ⇒ ∆,ϕ and ⊥, Π ⇒ ∆

A ∨B,A,Π ⇒ ∆ A ∨B,B,Π ⇒ ∆
∨L

A ∨B,Π ⇒ ∆

Π ⇒ ∆,A ∨B,A,B
∨R

Π ⇒ ∆,A ∨B
A ∧B,A,B,Π ⇒ ∆

∧L
A ∧B,Π ⇒ ∆

Π ⇒ ∆,A ∧B,A Π ⇒ ∆,A ∧B,B
∧R

Π ⇒ ∆,A ∧B
A→ B,Π ⇒ ∆,A A→ B,B,Π ⇒ ∆

→L
A→ B,Π ⇒ ∆

A,Π ⇒ ∆,A→ B,B
→R

Π ⇒ ∆,A→ B

Fig. 1. Axioms and rules for GKcp′.

This system differs from ordinary GKcp in that we do not require the ϕ in the
first axiom to be atomic.

Proposition 1. A,Π ⇒ A → B,∆ is provable in GKcp′ iff Π ⇒ A → B,∆
is provable in GKcp′.

Proposition 2. A,Π ⇒ A → B,B,∆ is provable in GKcp′ iff A,Π ⇒ A →
B,∆ is provable.
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Theorem 1. Every winning strategy τ for Π ` C,∆ (i.e., for dialogue with
initially disputed formula C where player O initially grants the formulas in Π
and disputes the formulas in ∆) can be transformed into a GKcp′-deduction
of Π ⇒ C,∆.

The proof of Thm. 1 is a straightforward adaptation of Fermüller’s Thm. 1 [3].
Our proof that if ϕ is classically valid, then there exists a winning strategy for
ϕ in our classical dialogue game is constructive: we will map strongly analytic
GKcp′-deductions into winning strategies.

Definition 5. A GKcp′-deduction is called strongly analytic if it contains no
application of weakening, contraction, or cut.

It is a well-known fact that:

Lemma 1. GKcp′ ` Π ⇒ ∆ iff there exists a strongly analytic deduction of
Π ⇒ ∆ in GKcp′ [15].

Lemma 2. Π ⇒ ∅ is provable in GKcp′ iff Π ⇒⊥ is provable in GKcp′.

This brings us to the main result of this paper.

Theorem 2. For every strongly analytic GKcp′-deduction of Π ⇒ ∆ and for
every formula ϕ in ∆, there exists a winning strategy for the dialogue whose
initial dialogue sequent is Π ` ∆ and for which O’s initial attack is against ϕ.

Proof. In light of Lemma 2, we may assume that ∆ is non-empty. The proof is
by structural induction.

(1) The end-sequent Π ⇒ ∆ of δ is an axiom because there exists a formula
A such that A ∈ Π and A ∈ ∆. Regardless of which formula in ∆ that O attacks
initially, it is clear that after this initial move we reach a winning state for P.

(2) The end-sequent Π ⇒ ∆ of δ is an axiom because ⊥∈ Π. The existence
of a winning strategy here, regardless of the formula of ∆ initially attacked by
O, is as in the previous case.

(3) The final rule application of δ is → R. That is, δ ends as follows:

A,Π ⇒ A→ B,B,∆→ R
Π ⇒ A→ B,∆

We build a winning strategy for Π ⇒ A → B,∆ and for any initially disputed
formula ϕ in {A → B} ∪ ∆ as follows. The game begins with an attack by O
on ϕ. The dialogue state is now Π ′ ` A → B,∆, where Π ′ is Π in case ϕ is
not an implication and Π ∪{C} in case ϕ is an implication C → D. P responds
by asserting A → B (this is one of the initially disputed formulas). Since P’s
move is a defense, by Rule E, in the next round O must attack this assertion
by asserting the antecedent A. Let P defend against this attack by asserting B;
we are now at an O-node and the dialogue state is A,Π ` A → B,∆′. By the
induction hypothesis, for this sequent we have a winning strategy τ . Simply glue
τ to the end of the linear order of length 4 that we have defined so far. The
result is a winning strategy, because we have accounted for all possible moves
by O.

The remaining cases (for L→, ∨ and ∧) are analogous.
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4 Conclusion

We have provided a class of dialogue games and proved that existence of winning
strategies for the Proponent in these games corresponds to classical derivability
in the sequent calculus system GKcp′. Our proof improves on two previous
results by using standard dialogue games instead of parallel dialogue games, as
well as a standard classical sequent calculus.
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A dynamic programming algorithm for prime
implicates?

Andrew Matusiewicz

SUNY Albany CS Department

1 Introduction

Prime implicants were introduced by Quine [6] as a means of finding minimal
representations of boolean functions, and since then the problem of finding prime
implicants of a boolean function has been the subject of many algorithms and
papers [7, 8, 1, 3]. The dual problem of finding prime implicates (minimal clauses
implied by a formula) has use in contexts such as belief revision [10], abductive
reasoning, and recently, polysynchronous systems via the work of Shukla et. al.
[2].

Here we address the problem of generating all prime implicates of a CNF for-
mula and present an algorithm parameterized in the channelwidth of the formula,
a value corresponding to the treewidth of a graph associated with the formula.
We believe this to be the first algorithm for this problem so parameterized.

The problems of finding prime implicates from CNF and finding prime im-
plicants from DNF are equivalent via duality and thus this algorithm applies to
the latter, more traditional problem as well. The algorithm is presented in its
“implicate-CNF” form to support Sandeep Shukla’s work on polysynchronous
systems.

2 Preliminaries

For substitutions on boolean formula we use notation from [9], modified for CNF.
For a set of variables V , Γ (V ) is the set of all complete assignments mapping V
to {0, 1}. Γ (∅) has exactly one member — the empty assignment. The restriction
of the assignment γ to the set of variables V is expressed as γ|V .

For a formula F , F [c/v] is F under the substitution of constant c ∈ {0, 1}
for variable v. Similarly, for γ ∈ Γ (V ), F [γ] is F under the assignment γ.

A clause is a disjunction of propositional literals. A clause C subsumes a
clause D iff the literals of C are a subset of those of D. Here subset is not strict,
so any clause subsumes itself. All clauses are subsumed by the empty clause,
denoted as �, which is equivalent to “false”.

An implicate of a formula is a clause implied by the formula, and we call
an implicate prime if it is subsumed by no other. Let P(F ) be the set of prime
implicates of the formula F .

? This research was supported in part by the National Science Foundation under grants
IIS-0712849 and IIS-0712752, and by the Air Force Research Laboratory, Award No.
FA8750-10-1-0206, Subaward No. 450044-19191.
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2.1 Structure Trees

Suppose we have a clausal formula F = {C1, C2, . . . , Cm} with variables V =
{v1, v2, . . . , vn}. A structure tree for F is a triple 〈T,A,B〉 where

– T is a rooted tree with nodes I
– A : I → 2V is such that {A(i)|i ∈ I} partitions V
– B : I → 2F is such that {B(i)|i ∈ I} partitions F

In addition, for each clause C ∈ B(i) if one of its variables v is in A(j) then j
must be an ancestor of i. We say the terms “descendant and “ancestor” include
the node in question, so that any node is both a descendant and ancestor of
itself. We say that A and B locate variables and clauses at each node, so A(i)
and B(i) are the variables and clauses located at i.

A few associated definitions will be useful:

– The channel variables CV (i) of a node i are those occurring in A(j) for
some ancestor j of i and also in some clause in B(k) for a descendant of k
of i.

– For node i, the descendant formula Fi is a formula consisting of all the
clauses mapped to decendants of i.

The channelwidth of a structure tree S is CW (S) = maxi∈I |CV (i)|, and
the channelwidth of a formula F , CW (F ), is the minimum channelwidth over
all structure trees of that formula. A structure tree whose channelwidth achieves
this minimum is an optimal structure tree.

The following lemma, proven in [9], describes the separation properties in-
duced on a CNF formula by a structure tree.

Lemma 1. For an internal node i of a structure tree having distinct children
j1, j2, their descendant formula Fj1 and Fj2 may share only the channel variables
of i.

Stearns and Hunt introduce structure trees in [9] and show that for a formula
F , CW (F ) − 1 is equal to the treewidth of the interaction graph of the vari-
ables — a graph of variables connected iff they appear together in some clause.
Also, the width-preserving transformation from a tree decomposition of the in-
teraction graph to a structure tree is simple and efficient, allowing existing tree
decomposition algorithms to be applied to finding good structure trees.

3 Tables and their Scopes

In this section we describe a dynamic programming (DP) algorithm for prime
implicates that employs a structure tree of the CNF formula in question. Like
most such algorithms, this one is built around the construction of tables.

Let F be a formula and V a set of variables. Consider a function t from Γ (V )
to clause sets such that t(γ) = P(F [γ]). We will call t the table for F with
scope V . It is obvious that such a function is well-defined and unique, so we use
the definite article. Each individual mapping from an assignment to a clause set
we refer to as an entry in the table.
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Given a structure tree S = 〈T,A,B〉, the table for node i, denoted Ti, is
simply the table for Fi with scope CV (i). It is these tables that our dynamic
programming algorithm will construct recursively.

3.1 The S Operator and Scope Adjustment

We have established in previous papers [4, 5] the existence of a O(n4) algorithm
mapping P0 = P(F [0/v]) and P1 = P(F [1/v]) to P(F ). We can express this
algebraically as S(P0, P1, v) = P(F ) where S is the operation in question.

We may extend the usage of S to a table with scope V , yielding another
table with a smaller scope. We call this extension ContractOne and define it as
follows:

ContractOne(t, v) := {γ 7→ S(t(γ0), t(γ1), v) | γ ∈ Γ (V \ {v})}.
where γc is γ ∪ {v 7→ c} for c ∈ {0, 1}. Note that t(γc) = P(F [γ][c/v]) and

thus, denoting P(F [γ][c/v]) with Pγc, ContractOne(t, v)(γ) = S(Pγ0, Pγ1, v) =
P(F [γ]). This operation may be regarded as a single variable “contraction” of t
along v, as ContractOne(t, v) is precisely the table for F with scope V \ {v}.

With this in mind we define two utility functions on tables: “Expand” and
“Contract”. Expand produces a new table which has a scope that is a superset of
the given table and Contract produces a table with scope a subset of the original
table.

Definition 1. Where t is the table for F with scope V andW ⊆ V , with V \W =
{vi1 , . . . , vik},

Contract(t,W ) := ContractOne(. . .ContractOne(t, vi1) . . . , vik).

Definition 2. Where t is the table for F with scope V and W ⊇ V ,

Expand(t,W ) := {γ 7→ t(γ|V ) | γ ∈ Γ (W )}.
Contract always produces precisely the table for F with scope W — this

follows directly from the correctness of ContractOne. Expand only preserves F
when the new variables in W do not occur in F , and under this constraint its
correctness is trivial.

Combining Contract and Expand , we may produce a simple and succinct
function ReScope(t,W ) := Expand(Contract(t, V ∩W ),W ), which adjusts the
scope of a table arbitrarily and preserves the underlying formula F under the
condition that any variables added to the scope do not occur in F .

3.2 Unioning Tables

In general, the union of two sets of prime implicates is not a set of prime impli-
cates. However, when formulas F1 and F2 are variable-disjoint, P(F1)∪P(F2) =
P(F1 ∧ F2)1, an easily proven fact that we make liberal use of in our algorithm.

1 This is true in all instances except the following: P(F ∧ 0) 6= P(F ) ∪ P(0). This is
simply because P(0) = {�}, and the empty clause � subsumes any clauses in P(F ).
For simplicity we will use “∪” , but understand that if one of the arguments to ∪ is
{�}, the result is always {�}.
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In this vein, we extend the “∪” operation to tables with the same scope in the
following manner: if t1 and t2 are tables of F1 and F2 both having scope V ,
t = t1 ∪ t2 means that t(γ) = t1(γ) ∪ t2(γ) for each γ in Γ (V ). As substitution
of γ removes any variables in V , Var(F1) ∩Var(F2) ⊆ V implies t is a table for
F1 ∧ F2 with scope V .

The condition that tables need identical scope to be combined using “∪”
explains the need for Contract and Expand — before combining tables, we must
first alter them to the same scope.

3.3 DP algorithm for prime implicates

With the above supporting definitions, we may define our dynamic programming
algorithm. To show the correctness of DPPrimeImp, we examine the correctness

Algorithm 1: DPPrimeImp(S, i)

input : S = 〈T, α, β〉 – a structure tree for F ; i – a node of T
output: Ti – the table for node i
Initially, let Ti be a table with scope CV (i) and entries undefined;
Let G be a formula with clauses B(i);
for γ ∈ Γ (CV (i)) do

if G[γ] = 0 then Ti(γ) := {�} ;
if G[γ] = 1 then Ti(γ) := {} ;

Let j1, . . . , jn be the children of i ;
for j ∈ {j1, . . . , jn} do

Let Tj = DPPrimeImp(S, j) ; // Recurse

T′
j := ReScope(T′

j , CV (i)) ; // Table for Fj, scope CV (i)
Ti := Ti ∪ T′

j ; // Add Fj’s PIs to Ti

return Ti;

of the first and second loops separately.
In the first loop, with G defined as in the pseudocode, we construct the table

for G with scope CV (i). Observe that if i is a leaf node, then Fi = G and CV (i)
is simply Var(G). In this case constructing the table Ti is a trivial matter of
iterating over assignments in Γ (CV (i)) and adding the entry γ 7→ {} if G[γ] = 1
and γ 7→ {�} if G[γ] = 0 (recall P(1) = {} and P(0) = {�}).

Therefore if i is a leaf, the first loop is sufficient to construct Ti. If i has
children j1, . . . , jn where n 6= 0 then the second loop has items to iterate over
and recurses on each child in turn. Obtaining each child table Tj we adjust its
scope to CV (i) with ReScope. ReScope is valid here because any variables in
CV (i) not in CV (j) are the result of some clause located at i, which is not
contained in Fj , so any new variables introduced by ReScope are not in Fj .

Finally we union Ti with T′
j , which corresponds to conjunction as for distinct

children j1, j2, any variable shared by Fj1 and Fj2 is contained in CV (i) by
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lemma 1. Conjoining the tables of the children to that of G reflects the fact that
when i is an internal node Fi = G ∧ Fj1 ∧ . . . ∧ Fjn .

Thus at the end DPPrimeImp, we have that Ti is indeed the table for Fi
with scope CV (i).

To obtain P(F ), let r be the root node of S. We may obtain r’s table, Tr,
simply by invoking DPPrimeImp(S, r). Since all nodes in T are descendants of
r, we have Fr = F . Thus Tr is a table for our original formula F with scope
CV (r).

Using ReScope(Tr,∅), we may narrow our scope to the empty set. Such
a table has only one entry, that corresponding to the empty assignment γ∅.
Obviously, Fr[γ∅] = Fr = F . This yields the following top-level function for the
entire algorithm, and a lemma asserting its correctness.

Definition 3. Where S = 〈T, α, β〉 is a structure tree for F , r is the root of S,
and γ∅ is the empty assignment,

Primes(S) := ReScope(DPPrimeImp(S, r),∅)(γ∅).

Lemma 2. Where S is a structure tree for F , Primes(S) = P(F ).
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