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Part 1

FTP 2011—International Workshop on
First-Order Theorem Proving



Preface

This booklet contains the research papers presented at the International Work-
shop on First-Order Theorem Proving held in Bern, Switzerland, July 4-5, 2011.
The workshop was the eighth in a series of international workshops held since
1997, intended to focus effort on First-Order Theorem Proving as a core theme
of Automated Deduction, and to provide a forum for presentation of recent work
and discussion of research in progress. Previous editions of FTP took place in
Schloss Hagenberg, Austria (1997); Vienna, Austria (1998); St Andrews, Scot-
land (2000); Valencia, Spain (2003); Koblenz, Germany (2005); Liverpool, UK
(2007); and Oslo, Norway (2009).

FTP 2011 was held together with the 20th International Conference on Au-
tomated Reasoning with Analytic Tableaux and Related Methods (Tableaux
2011). On July 5, 2011, there was a joint session with Tableaux 2011, with
Maria Paola Bonacina as joint invited speaker.

The technical program of FTP 2011 consisted of two invited talks, one by
Felix Klaedtke on “Monitoring First-order Temporal Properties,” and one by
Maria Paola Bonacina “On interpolation in decision procedures” (joint with
Tableaux 2011), three regular papers, one system description, and two presen-
tation-only contributions. In addition to the regular papers and the system
description, this booklet includes short abstracts of the presentation-only con-
tributions and the invited talk by Felix Klaedtke. The paper belonging to the
invited talk of Maria Paola Bonacina is included in the Tableaux 2011 proceed-
ings (LNCS vol. 6793, Springer Verlag)

We wish to sincerely thank all the authors who submitted their work for
consideration. And we would like to thank the Program Committee members
and other referees for their great effort and professional work in the review and
selection process. Their names are listed on the following pages.

We are also particularly grateful to the organisers of Tableaux 2011 for both
the practical organisation and their help in attracting funding from the Swiss
National Science Foundation. Last, but not least, we thank the FTP steering
committee, and in particular Ullrich Hustadt for supporting the FTP workshop
series.

July 2011 Martin Giese
Program Chair
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Monitoring First-order Temporal Properties

Felix Klaedtke

Computer Science Department, ETH Zurich, Switzerland

Abstract

In security and compliance, it is often necessary to ensure that agents
and systems comply to complex policies. An example of such a policy
from financial reporting is the requirement that every transaction ¢
of a customer ¢, who has within the last 30 days been involved in
a suspicious transaction t', must be reported as suspicious within
2 days. In this talk, I will give an overview of our approach to
automated compliance checking. In particular, I will present our
monitoring algorithm for checking properties specified in a fragment
of metric first-order temporal logic. I will also report on case studies
in security and compliance monitoring and use these to evaluate
both the suitability of this fragment for expressing complex, realistic
policies and the efficiency of the monitoring algorithm.

Joint work with David Basin, Matus Harvan, Samuel Miiller, and
Eugen Zalinescu.
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QMaxSAT version 0.3 & 0.4

Xuanye An Miyuki Koshimura Hiroshi Fujita
Ryuzo Hasegawa
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744 Motooka, Nishi-ku, Fukuoka, 819-0395 Japan
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Abstract

QMaxSAT is a partial Max-SAT solver obtained by adapting a SAT
solver MiniSat for dealing with Boolean cardinality constraints. The ver-
sion 0.1 was placed first in the industrial subcategory and second in the
crafted subcategory of partial Max-SAT category of the 2010 MaxSAT
evaluation. This paper presents new versions 0.3 and 0.4. The version 0.3
searches a solution by a binary method while version 0.1 does by a linear
method. The version 0.4 alternates linear search and binary search. We
give some experimental results by solving instances taken from the 2010
MaxSAT evaluation.

1 Introduction

Maximum Satisfiability (Max-SAT) is one of optimization counterparts of Boolean
satisfiability (SAT). The objective is to find an assignment that maximizes the
number of satisfied clauses [11, 10]. This is equivalent to finding an assignment
that minimizes the number of unsatisfied clauses. There are two approaches
to solve Max-SAT: approximation and exact algorithms. This paper considers
exact solutions.

The exact solvers can be classified into two approaches. The one implements
a branch and bound scheme and applies several techniques tailored to Max-
SAT [16, 9, 12]. Another makes use of a state-of-the-art SAT solver as an
inference engine [1, 13, 5]. We call this approach SAT-based approach.

QMaxSAT follows SAT-based approach. QMaxSAT is a partial Max-SAT
(PMS) solver which uses CNF encoding of Boolean cardinality constraints. The
old version 0.1 is obtained by adapting a CDCL (Conflict Driven Clause Learn-
ing) [14] based SAT solver MiniSat [8]. It was placed first in the industrial
subcategory and second in the crafted subcategory of the PMS category of the
2010 MaxSAT Evaluation.

PMS is placed between SAT and Max-SAT. Unlike SAT requiring all clauses
to be satisfied, PMS requires that clauses, called soft, are satisfied as many as
possible, while other clauses, called hard, have to be satisfied. The objective of
PMS is to find an assignment that satisfies all hard clauses and maximizes the
number of satisfied soft clauses.

For unsatisfiable SAT instances, usual SAT solvers tell nothing but “unsat-
isfiable.” In order to get more information from unsatisfiable instances with



SAT solvers, new variables called blocking are introduced. Roughly speaking,
the number of satisfied blocking variables corresponds to that of unsatisfied soft
clauses. Thus, the objective of QMaxSAT is to find an assignment that mini-
mizes the number of satisfied blocking variables. Such an assignment can readily
be found by iterative calls to a SAT solver with the cardinality constraints on
blocking variables. QMaxSAT uses Bailleux’s CNF encoding [3] for the Boolean
cardinality constraint.

This paper presents new versions 0.3 and 0.4. The difference between the new
versions and the previous versions 0.1 and 0.2 is how the cardinality constraints
is managed. The new versions deal with both lower and upper bounds of the
Boolean cardinality while the previous versions deal with only the upper bound.
In this way, the new versions realize a binary search for a minimal assignment
while the previous versions perform a linear search. Thus, the new versions
might solve PMS instances faster than the previous versions do. The version
0.3 performs only binary search while version 0.4 alternates binary search and
linear search.

2 Version 0.1 and 0.2

Let C = HUS be a PMS instance consisting of a set H of hard clauses and a set
S of n soft clauses Sy,...,S5,,i.e. S={S1,...,5,}. We construct a new clause
set C® = HUS® by adding a new blocking variable b; to S; (1 < i < n), namely,
Sb = {81 Vby,...,8,Vb,}. Thus, finding a PMS solution of C is reduced to
find the minimal integer k satisfying C® and 7, b; <k, that is, minimize the
number of satisfied blocking variables while satisfying C?.

Let ¢ be a PMS instance augumented with blocking variables. First run
the solver on ¢ to get an initial model and count the number %k of satisfied
blocking variables in the model, then add the constraint saying that the number
of satisfied blocking variables have to be less than k, and run the solver again.
If the problem is unsatisfied, k is the optimum solution. If not, the process is
repeated with the new smaller solution. This process is essentially the same as
the one in solvers for pseudo-Boolean optimization [17] and an algorithm for
MAXONES [4].

The versions 0.1 and 0.2 realize the above process by introducing a CNF
encoding of Boolean cardinality constraints on blocking variables. There are
several works on encoding Boolean cadinality constraints into CNF formulas [3,
18, 15]. QMaxSAT uses Bailleux’s encoding.

In this encoding, we introduce n new variables v; for n blocking variables
bi(1 < i < n). Then, we make a CNF formula C(by,---,by,v1, -, vy,) saying:

1. If m blocking variables are assigned 1, the first m variables v;(1 < i < m)
are going to become assigned 1.

2. If m blocking variables are assigned 0, the last m variables v,_;1+1(1 <
i < m) are going to become assigned 0.

The encoding needs O(n - log n) auxiliary variables and O(n?) clauses. With
the encoding, we encode the constraint I < Y | b; < k by setting the first
variables v;(1 < i <) to 1, and the last n — k variables v;(k < i < n) to 0.
Algorithm 1 shows the procedure of version 0.1. The function solve(A) de-
notes the core part of the SAT solver which returns false when a SAT instance



Algorithm 1 QMaxSAT version 0.1

1: A =CP {C: PMS instance augmented with blocking variables}
2: sat = false; first = true;

3: while (solve(A)) do

4:  Let M be a model of A;

5 “count the number k of blocking variables assigned 1 in M”;
6: sat = true;
7
8
9

if (first) then
first = false;
: A=AAC(by, - ,by, Vi, -, Vy); {augment the constraint to A}

10:  end if
11: fori=k ton do
12: v; = 0;
13:  end for{add the constraint > ., b; < k}
14: end while
15: if (sat) then
16:  return the latest model M;
17: else
18:  return unsatisfiable;
19: end if

A is unsatisfiable and true when A is satisfiable. In the latter case, a model M
of A is obtained through an array from which we count the number & of blocking
variables assigned 1 in M.

After we obtain the first model of C?, we build a CNF formula C(by, - - -, by, v1,- -, V)
which encodes the cardinality constraints (line 9). For every model obtained
through solve(4), we introduce extra constraints (line 11,12,13). The k de-
creases as the procedure progresses. Thus, we reach a fix point at which we
obtain a PMS solution (line 16). If C} is unsatisfiable with no cardinality con-
straint, we conclude C' has no PMS solution, that is, C' is unsatisfiable (line
18).

A drawback of version 0.1 arises from the number of clauses for encoding
Boolean cardinality constraints. Assuming that there are tens of thousands of
soft clauses, the encoding needs hundreds of millions clauses. In our experience,
the clauses cannot be held in 4GB memory when the number of soft clauses is
greater than nine thousands.

Let k1 be the number of blocking variables assigned 1 in the first model M in
the procedure (see Algorithm 1). We can eliminate clauses in C'(by, - -+, by, v1, -+, Uy)
dealing with integers greater than k;. This elimination reduces the number of
clauses for the encoding from O(n?) to O(n - k1). The version 0.2 adopts the
elimination.

3 Version 0.3

Both versions 0.1 and 0.2 count the number of satisfied blocking variables in
each model obtained by the SAT solver. These numbers decrease linearly as
the process proceeds. In this sense, both versions perform a linear search. The
version 0.3, on the other hand, performs a binary search by dealing with both



lower and upper bounds of the number of satisfied blocking variables. Note that
the previous versions manage only the upper bound.

Let ¢ be a PMS instance augumented with blocking variables. First initialize
the lower bound to 0 and the upper bound to n, the number of soft clauses.
Second run the solver on ¢ to get an initial model and count the number k of
blocking variables satisfied in the model. Next, add the constraint saying that
the number of blocking variables satisfied has to be less than [k/2], and run the
solver again. If the problem is unsatisfiable, we conclude that the number of
satisfied blocking variables is at least [k/2], that is, the lower bound is updated
to [k/2] while the upper bound is unchanged. On the other hand, if the problem
is satisfiable, the upper bound is updated to the new k, the number of blocking
variables satisfied in the new model. The process is continued until the lower
bound and the upper bound become equal. In this way, the difference between
the upper bound and the lower bound becomes less than a half of the previous
one after every call of the solver. Thus, version 0.3 realizes a binary search.

Algorithm 2 QMaxSAT version 0.3

1: A =CP; {CP: PMS instance augmented with blocking variables}
2: sat = false; first = true;
3: LB = 0; UB = n; MP = [UB/2]; {n: the number of soft clauses}
4: Ass = T; {assume nothing}
5: while LB < UB do
6: if solve(A,Ass) then
7 Let M be a model of A;
8: “count the number £ of blocking variables assigned 1 in M”;
9: sat = true;
10: UB = k; MP = LB + [(UB — LB)/2];
11: if (first) then
12: first = false;
13: A=AAC(by, -+ ,bp, vy, -, vy); {augment the constraint to A}
14: end if
15:  else
16: if (!sat) then
17: return unsatisfiable;
18: end if
19: LB = MP; MP = LB + [(UB — LB)/2];
20:  end if
21: for¢=1 to LB do
22: vy = 1;

23 end for{LB <Y " b}

24: for i =TUB to n do

25: vi = 0;

26:  end for{} . b, <UB}

27:  Ass = AB o (vi = 0); {assume >, b; < M P}
28: end while

29: return the latest model M;

Algorithm 2 shows the procedure of version 0.3. We introduce new program-
ming variables LB, UB, and MP: LB and UB keep the lower bound and the upper

10



bound, respectively. MP is updated whenever LB or UB is updated for keeping
the middle of LB and UB (lines 3, 10, 19). The function solve(4,Ass) denotes
the core part of the SAT solver which returns false when a SAT instance A
is unsatisfiable and true when A is satisfiable under an assumption Ass. We
require that the solver deals with a problem under an assumption which is a
conjunction of unit clauses. The MiniSat meets the requirement.

For every model obtained through solve(A,Ass), the upper bound is up-
dated (line 10). If solve(A,Ass) returns false, the lower bound is updated to MP
(line 19) because there is no model under the assumption LB < """ by < M P.
After the lower bound or the upper bound is updated, we introduce extra con-
straints reflecting the update (lines 21 ~ 26). Moreover, a new assumption is
created (line 27).

4 Version 0.4

Generally speaking, binary search is better than linear search. Practically, how-
ever, there are instances for which linear search is better than binary search.

Let k1 be the same number mentioned in the last paragraph of Section 2.
Assuming k; is the PMS solution. We would conclude that k; is the solution
after the next SAT solver call with version 0.1 and 0.2. However, we would
reach the solution after log k; solver calls with version 0.3. Thus, version 0.3 is
not so good when k; is near to the solution.

The version 0.4 alternates binary search and linear search in order to benefit
from both searches. It is realized by modifying Algorithm 2 as follows:

e Inserting the statement “BIN = 0;” before the line 4.

o Inserting the following statement before the line 19:
“if BIN == 0 then return the latest model M end if;”

e Inserting the statement “BIN = 1-BIN;” before line 27.

e Replacing the statement at line 27 with
“if BIN == 0 then Ass = T else Ass = AP®,,(vi = 0) end if”.

Here, a new programming variable BIN is introduced for indicating the searching
mode: 0 for linear mode and 1 for binary mode. The value of BIN alternates
between 0 and 1.

5 Experimental Results

We implemented QMaxSAT based on MiniSat 2.0. Tables 1 and 2 summarize
the results obtained by running the four versions of QMaxSAT on the PMS
instances of the fifth Max-SAT evaluation (Max-SAT 2010). The instances are
divided into three different categories: random, crafted, and industrial.

The second column shows the number of instances of the corresponding cat-
egory. The third, fourth, fifth and sixth columns show the average cpu time in
seconds for instances solved by version 0.1, 0.2, 0.3 and 0.4, respectively. The
number in parentheses indicates the number of instances solved. The experi-
ments are done on Core i5-750 (4-core 2.66GHz) machine with 4GB memory.
We used 1800 seconds as timeout.
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Table 1: Comparison of four versions for PMS problems from Max-SAT 2010
(Random Category)

| Solver | #ns. | V0.1 | V.02 | V.03 | V.04 |
min2sat/v160c80012/ 30 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)
min2sat/v260c104012/ | 30 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)
min3sat/c70v35013/ | 30 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)
min3sat/c80v40013/ | 30 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)
pmax2sat /hi/ 30 0.00 (1) 0.00 (1) 0.00 (1) 0.00 (1)
pmax2sat/me/ 30 0.00 (0) 0.00 (0) 0.00 (0) 0.00 (0)
pmax3sat/hi/ 30 0.00 (0) 0.00 (0) 644.80 (1) | 1106.63 (1)
pmax3sat 1o/ 30 46.54 (30) | 31.49 (30) | 12.14 (30) | 16.37 (30)

| Al | 240 ][ 45.04 (31) | 30.48 (31) | 31.54 (32) [ 49.93 (32) |

For the random category, we succeed in descreasing the average cpu time
for solving instances in the pmax3sat/lo subcategory with versions 0.3 and 0.4.
The numbers of blocking variables satisfied in PMS solutions of the pmax3sat/lo
subcategory are small, or less than 10. Binary search works well for solving such
problems.

For the crafted category, version 0.4 is the best solver. It succeeds in solving
298 instances. There are 3 instances solved by version 0.2 but unsolved by
version 0.3 while there are 2 instances solved by version 0.3 but unsolved by
version 0.2. The version 0.4 succeeds in solving these 5 instances. From this
viewpoint one may say that version 0.4 benefits from binary and linear searches.

For the industrial category, there seems to be no progress from version 0.2
to 0.3 or 0.4 while there is a little progress from version 0.1 to 0.2. There are
7 instances solved by version 0.2 but unsolved by version 0.3 while there are
8 instances solved by version 0.3 but unsolved by version 0.2. The version 0.4
succeeds in solving 9 instances of these 15 instances. On the other hand, it fails
to solve 5 instances which both versions 0.2 and 0.3 solve. All these experiments
make it clear that alternation of binary and linear searches does not always work
well.

Table 3 shows the average number of SAT solver calls for instances solved
in each category. We except unsatisfiable* PMS instances for calculation. The
number in parentheses indicates the average number of SAT solver calls return-
ing “unsatisfiable”.

The last SAT solver call for each instance usually returns “unsatisfiable”.
Thus, there is at least one SAT solver call returning “unsatisfiable”. However,
some numbers in parentheses are less than one. When we find out a model which
satisfies all soft clauses, we conclude that the model is a PMS solution without
further SAT solver calls. There is no SAT solver call returning “unsatisfiable”
for such instances. There are 20 and 7 such instances in the random category
and the crafted category, respectively.

We succeed in decreasing the number of SAT solver calls with binary search.
For example, it decreases from about eleven to about four for the random cat-
egory. The decrease does not enhance QMaxSAT ’s performance. The main

*There is only one unsatisfiable instance in our experiments. It is in the random category.
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Table 2: Comparison of four versions for PMS problems from Max-SAT 2010

(Crafted and Industrial Categories)

| (z6£) 2299 | (z6€) 16°09 | (162) 90°29 | (628) 8z'cs || L6¥ | v |
(61) 08°F (e1) €8°0 (¢1) TL9 (¢1) 2L’ g1 /Sunnor-oqd
(08) L1728 | (18) ov¥9 | (L) 8,9z | (9L) 88°1¢ 78 /Ipouagoru /obur-oqd
(18) 192 | (08) 2229 | (08) ¥6'16 | (LL) 126V 8 /1pousu /obur-oqd
(ve) 6172 | (gg) o161 | (¥€) 296V | (¥€) €201 VL Juds-doq
(o¥) 010 (%) 11°0 (o%) 0T°0 (07) 01°0 oF /Syw-dog
(92) 6972 | (92) ¢7'0¢ | (92) 20T | (92) 88T 79 /dsw-dog
(91) ¥y | (91) 60°¢S | (91) 9g'¢r | (91) $9°0% LT /duns/ Teyg4-ddng-doq
(zg) cotrr | (1e) ee28 | (1€) €6'8L | (zg) 9z's8 8¢ /nS/TegA-ddry-doq
(cq) yesy | (¥¢) 6L°LT | (¥9) 2,81 | (6¥) 10°9F 6 /1y-doq
(7) Lvo11 | (L) 1676L | (6) 8L6¥8 | (8) 19'86F 4 /SNTNIALOYd
() ¥6005 | (¢) 16°8LF | (9)9L1es | (T) T#'889 9 /ArquiessyodAjordery
(7) 65°8¢ (v) z8ce (7) ¥6°6¢ (7) 0668 p | /uonpedwionooes] jmoir)

I #0A | go0A | zoA | 10A | sur# | I9A[OS _

(A10307R)) TRLIYSNIPU])

[ (862) 19°11T | (¥62) #7701 | (c62) #1876 | (¥62) 69101 || o8¢ | v
(8T) L0'66 |  (8T) ¥0'9L | (8T) L9'88 | (81) €¥'¢ST 2 /99133 /oud-ur
(¢e) L9er1 | (¥2) 60°66 | (92) v0'esT | (V) 68°90C g /a7

(1) 8L1 (¥) 0v'¢ (7) 991 (7) 681 i /andi/0dndsd
(09) 97°1€ (09) 927z¢ | (09) 09°0T (09) TL1T 09 /AAINIDNILS/ANOXVIN
(08) 68°18T | (08) €9°20¢ | (8L) GL69T | (8L) 0T '€LT 08 /IVSE/ANOXVIN
(LT) ¥9°2sT (cz) 0L°69 | (92) 9T'F0T | (92) L&€0T 29 | /AdUINIONYLS/ANDITOXVIN
(08) €0°'16 (62) 9.°68 | (08) GL'F9 (08) L2969 96 /INOANVH/ANDITOXVIN
(7) 9971 (v) gger () 0871 (7) ¥8°71 i /doygqor

| voA | goA | zoA | T1oA | sur# | I9A[0G

(£108090) pogJeI)))
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Table 3: The number of SAT solver calls

| | V0.1 [ V.02 [ V.03 ]| V.04 ]
Random | 11.20 [ 11.17 [ 348 ] 4.26
(0.33) | (0.33) | (0.83) | (0.55)
Crafted | 10.30 [ 11.14 [ 811 | 856
(0.98) | (0.98) | (5.56) | (3.93)
Industrial | 11.47 | 11.79 7.46 6.98
(1.00) | (1.00) | (4.50) | (2.65)

reason is that the number of SAT solver calls returning “unsatisfiable” increases
while that of SAT solver calls returning “satisfiable” decreases. Generally speak-
ing, proving the existence of models is easier than proving the nonexistence of
them.

6 Conclusion

We have presented new versions 0.3 and 0.4 of QMaxSAT, a PMS solver based on
a SAT solver MiniSat. The version 0.3 performs only binary search while version
0.4 alternates binary search and linear search. Experimental results show that
version 0.4 is the best solver among four versions. It succeeds in solving the
most instances taken from the PMS category of 2010 MaxSAT Evaluation.

In our experience, QMaxSAT obviously slows down when the number n of soft
clauses and kT are greater than a few thousands. This is a major drawback of
QMaxSAT and comes from the size O(n-k1) of CNF-encoded Boolean cardinality
constraints. In order to eliminate the drawback, we will replacing the current
encoding with even more compact encodings [2, 7]. These encodings guarantee
a space complexity of O(n - log?ky).

We also plan to extend QMaxSAT to solve weighted Max-SAT problems.
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Generating Schemata of Resolution Proofs*

Vincent Aravantinos and Nicolas Peltier
CNRS, LIG/TU Wien

Abstract

Two distinct algorithms are presented to extract (schemata of) res-
olution proofs from closed tableaux for propositional schemata [4]. The
first one handles the most efficient version of the tableau calculus but
generates very complex derivations (denoted by rather elaborate rewrite
systems). The second one has the advantage that much simpler systems
can be obtained, however the considered proof procedure is less efficient.

In [2, 4] a tableau calculus (called STAB) is presented for reasoning on
schemata of propositional problems. This proof procedure is able to test the
validity of logical formulae built on a set of indexed propositional symbols, using
generalized connectives such as \/;_, or A}_,, where i,n are part of the language
(n denotes a parameter, i.e. an existentially quantified variable). A schema is
unsatisfiable iff it is unsatisfiable for every value of n. STAB combines the usual
expansion rules of propositional logic with some delayed instantiation schemes
that perform a case-analysis on the value of the parameter n. Termination is
ensured for a specific class of schemata, called regular, thanks to a loop detection
rule which is able to prune infinite tableaux into finite ones, by encoding a form
of mathematical induction (by “descente infinie”). A related algorithm, called
DpLL* and based on an extension of the Davis-Putnam-Logemann-Loveland
procedure, is presented in [3].

In the present work, we show that resolution proofs can be automatically ex-
tracted from the closed tableaux constructed by STAB or DPLL* on unsatisfiable
schemata. More precisely, we present an algorithm that, given a closed tableau
T for a schema ¢y, returns a schema of a refutation of ¢, in the resolution
calculus [9]. In the usual propositional case, it is well-known that algorithms
exist to extract resolution proofs from closed tableaux constructed either by the
usual structural rules [11, 13] or by the DPLL algorithm [7, 6]. The resolu-
tion proofs are used in various applications, for instance for certification [14],
for abstraction-refinement [10] or for explanations generation [8]. The present
paper extends these techniques to propositional schemata. Beside the previ-
ously mentioned applications, this turned out to be particularly important in
the context of the ASAP project [1] in which schemata calculi are applied to

*This work has been partly funded by the project ASAP of the French Agence Nationale
de la Recherche (ANR-09-BLAN-0407-01).
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the formalisation and analysis of mathematical proofs via cut-elimination. In-
deed, the algorithm used for cut-elimination, called CERES [5], explicitly relies
on the existence of a resolution proof of the so-called characteristic clause set
extracted from the initial proof. The cut-free proof is reconstructed from this
refutation, by replacing the clauses occurring in this set by some “projections”
of the original proof. While STAB and DPLL* are able to detect the unsat-
isfiability of characteristic clause sets, as such this is completely useless since
actually it is known that those sets are always unsatisfiable (see Proposition 3.2
in [5]). It is thus essential to be able to generate explicitly a representation of
the resolution proof. This is precisely the aim of the present paper. Since the
initial formula depends on a parameter n, its proof will also depend on n (except
in very particular and trivial cases), i.e. it must be a schema of resolution proof
(which will be encoded by recursive definitions).

The rest of the paper is structured as follows. In Section 1 we introduce
the basic notions and notations used throughout our work, in particular the
logic of propositional schemata (syntax and semantics). In Section 2 we define a
tableau-based proof procedure for this logic. This calculus simulates both STAB
and DpLL* (for the specific class of schemata considered in the present paper).
In Section 3 we provide an algorithm to extract resolution proofs from closed
tableaux. Similarly to the formulse themselves, the constructed derivations are
represented by rewrite systems. In Section 4 we introduce a second algorithm
which generates simpler derivations but that requires that one of the closure
rules defined in Section 2 (the so-called Loop Detection rule) be replaced by
a less powerful rule, called the Global Loop Detection rule. Section 5 briefly
concludes our work. Due to space restrictions, the proofs are omitted. They
can be found at http://arxiv.org/abs/1106.2692.

1 Propositional schemata

The definitions used in the present paper differ from the previous ones, but the
considered logic is equivalent to the class of regular schemata considered in [2] (it
is thus strictly less expressive than general schemata, for which the satisfiability
problem is undecidable). We consider three disjoint sets of symbols: a set of
arithmetic variables V, a set of propositional variables €1 and a set of defined
symbols Y. Let < be a total well-founded ordering on the symbols in Y. An
index expression is either a natural number or of the form n + k, where n
is an arithmetic variable and k is a natural number. Let I be a set of index
expressions. The set F(I) of formule built on I is inductively defined as follows:
if pe QUTY and a € T then p, € F(I); T,L € F(I); and if ¢, € F(I) then
—¢, PNV U, A, ¢ = ¢ and ¢ < 1 are in F(I).

Definition 1 We assume that each element v € T is mapped to two rewrite
rules pl and p? that are respectively of the form v; 1 — ¢ (inductive case) and
vg — ¢ (base case), where ¢ € F({i+1,1,0}), v € F({0}) and:

1. For every atom 7, occurring in ¢ such that 7 € T we have either 7 < v
and o € {i+1,i,0} or 7 =v and a € {0,1}.
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2. For every atom 7, occurring in ¢ such that 7 € T we have 7 < v and
a=0. <&

We denote by R the rewrite system: {pl,p% | v e T}.

The rules pl, and p? are provided by the user, they encode the semantics
of the defined symbols. Conditions 1 and 2 in Definition 1 ensure that R is
convergent. For every formula ¢, we denote by ¢l the unique normal form of
0.

A schema (of parameter n) is an element of F({0,n,n+ 1}). We denote by
¢{n < k} the formula obtained from ¢ by replacing every occurrence of n by
k. Obviously for any schema ¢, ¢p{n + k} € F({0,k,k + 1}). A propositional
formula is a formula ¢ € F(N) containing no defined symbols. Notice that if
¢ € F(N) then ¢|% is a propositional formula.

An interpretation is a function mapping every arithmetic variable n to a
natural number and every atom of the form p; (where k € N) to a truth value
true or false. An interpretation I wvalidates a propositional formula ¢ iff one of
the following conditions holds: ¢ is of the form p; and I(py) = true; ¢ is of the
form —) and I does not validate v; or ¢ is of the form ¢ V ¢s (resp. ¥ A1)
and [ validates ¢ or ¢o (resp. ¥ and s). I validates a schema ¢ (written
I |= ¢) iff T validates ¢{n < I(n)}lr. We write ¢ |= ¢ if every interpretation
I validating ¢ also validates ¢ and ¢ = if ¢ =9 and ¢ | ¢.

Example 2 The schema pgAA}_; (pi—1 = pi) A—pa is encoded by poAvy A—py,
where v is defined by the rules: viy1 — (=p; Vpir1) Avs and vg — T.

The schema \/_; pi A Ai_; —p: is encoded by 7, A 74, where 7 and 7/ are
defined by the rules: 7547 — pip1 V71, 70 = L, 7y = pipa AT and ) — T.

Both schemata are obviously unsatisfiable.

The schema (py < (Po—1 < (... (p1 < po)...))) is defined by v, where:
Vi = (piy1 © v)) and v — po. &

2 Proof procedure

In this section we define the proof procedure used to decide the validity of
propositional schemata. We assume for simplicity that the considered schemata
are in negative normal form and that the defined symbols occur only positively!.

The procedure is similar to the one presented in [2] and based on proposi-
tional block tableaux [12]. It constructs a tree labeled by finite sets of schemata,

using expansion rules of the form: , meaning that a leaf whose label

d
Wyl Wy
is of the form ® U ®’ (and does not already contain 1) is expanded by adding k
children labeled by ®' U Wy, ..., & U Wy respectively. If a is a node in T, then
T (o) denotes the label of . The expansion rules are defined as follows:

LIf a defined symbol v occurs negatively then it is easy to replace every literal of the form
- by an atom U, where U denotes the complementary of v. The rewrite rules for U are
obtained by negating the right-hand side of the rules of v, e.g. the atom ¥ corresponding
to the symbol v in Example 2 is defined by the rewrite rules Ti41 — (pi A —pi+1) V U; and
vy — L.
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Normalisation: _ Yo if v, is reducible w.r.t. R
Uaxl/R

V-Decomposition A-Decomposition Closure

VY PAY ¢, ¢
ol ¢, 1
Pn+k “Potk

Purity rule:

- T if k£ > 0 and the previous rules do not apply

Note that the notion of pure literal is much simpler here than in [2]. This is
due to the fact that no constant index distinct from 0 and no index of the form
i+ k where k > 1 are allowed.

A node that is irreducible w.r.t. all the previous rules is called a layer. The
Loop Detection rule applies to nodes containing previously generated layers:

Loop Detection: % if a non leaf layer labeled by ® exists in the tree

Note that the layer does not necessarily occur in the same branch as the one
on which the rule is applied. The essential point is that the set of schemata ®
has already been considered somewhere — consequently if it has a model then
an open branch necessarily exists elsewhere in the tree.

Finally, the last rule performs a case analysis on n (in this particular rule,
® denotes the whole label of the considered node):

P if no other rule applies

Explosion: ®{n 0} | ®{n<n+1} and n occurs in @

A tableau is closed if the labels of all leaves contain L.

Theorem 3 The tableau expansion rules are terminating, i.e. there is no in-
finite sequence (T;)ien such that for every i € N, Tiy1 is obtained from T; by
applying one of the previous rules.

The next theorem states that the calculus is correct:

Theorem 4 If T contains an irreducible leaf not containing 1, then the label
of the root of T is satisfiable.

We will not prove the converse (namely that the root of every closed tableau
is unsatisfiable), because this is subsumed by Theorem 12 in Section 3 (ensuring
the existence of a resolution proof for every instance of the root schema).

Example 5 The schema ¢ : pg A —=p,, A vy, where v is defined as in Example 2
is unsatisfiable. For instance, ¢{n <+ 2} is pg A =pa A (=po V p1) A (—p1 V p2).
The reader can check that the expansion rules construct the following tableau.
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The root is actually a layer, hence the Explosion rule is applied on it. The node
(3) is deduced by the Purity rule and closed by applying the Loop Detection
rule (with the root). The other rule applications are straightforward.

¢ (7)

Po, 7Po, Vo (1) Po, " Pn4+1Un+1 (6)
\ \
il P0> "Pnt1> Uns (7Pa V Pay1) (5)

Po; 7Pn+15Un;s Pnt1 (2) Po; 7Pn+1,Uny P (4)
\ |
1 Po; Uns 7Pn (3)
|
1 L)

The DPLL* procedure in [3] can be simulated by the previous expansion
rules, simply by adding for each propositional symbol p € €, a defined symbol
vP with two rules: v{,; = ((psV—p:)AvY) and v — T. Then the case splitting
rule of the DPLL procedure on a variable p corresponds to an application of the
A-rule on v? 114w (vielding p, V —py) followed by an application of the V-rule on
P V —pn. The propagation rule is then simulated by combining the V-rule and
the closure rule?.

3 Constructing resolution proofs

3.1 Propositional resolution calculus

We first briefly recall the notion of resolution inference (in propositional logic).
A literal is either an atom pj or the negation of an atom —py (where p € Q
and k € N). A clause is a (possibly empty) disjunction (or set) of literals. A

derivation from a set of clauses S is a finite sequence C1, ..., C,, such that for
every i € [1,m], C; is either an element of S or obtained from Ci,...,C,,—1 by
VX pp VY

applying the resolution rule, defined as follows: XUy

A refutation is a derivation containing | (the empty clause). For any formula
¢, A is a derivation from ¢ if it is a derivation from a clausal form of ¢.

It is well-known [9] that every unsatisfiable set of (propositional) clauses has
a refutation. In the context of propositional schemata, this means that every
instance ¢{n < k}lr of an unsatisfiable propositional schema ¢ of parameter
n has a refutation Ay (which in general depends on k). The problem is then
to construct a representation of the sequence of refutations Ag, Ay, ..., Ag,...

2This “trick” does not actually simulate the full procedure in [3], because the latter handles
schemata that are more complex than the ones considered in the present paper, possibly
containing nested iterations.
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This sequence may be seen as a schema of refutation which (similarly to the
semantics of the defined symbols) will be denoted by a system of rewrite rules.
From now, we assume that the considered schema is in conjunctive normal form
(i.e. it contains no conjunctions inside disjunctions, even if these conjunctions
are “hidden” in the inductive definitions of the defined symbols, e.g. the schema
Pn V Un, where v is defined as in Example 2 is forbidden).

3.2 A language for representing refutations

Additional definitions are needed to provide suitable formal languages for denot-
ing such schemata of derivations. Let D and X be two disjoint sets of symbols
(disjoint from V,  and Y). The symbols in D are the A-symbols and the ones
in X are the A-variables. The symbols in X are intended to be instantiated
by schemata, whereas the symbols d € D will denote schemata of refutations,
defined by induction (and possibly depending on an additional argument A de-
noting a formula). We assume that < is extended into a well-founded ordering
on D.
Formally, the set of A-expressions is inductively defined as follows:
- All schemata and all A-variables are A-expressions.

- If d € D, a is an index expression and A is a A-expression, then d, and
de(A) are A-expressions.

- If A and T" are A-expressions then AVI', AAT and AT are A-expressions.
The expression A-T' is to be interpreted as the concatenation of two sequences
A and T'. Note that A-expressions can represent uniformly schemata of clauses,
schemata of clause sets, or schemata of derivations (i.e. schemata of sequences
of clauses). For the sake of conciseness and simplicity, the previous definition
does not ensure that the constructions are well-typed, e.g. we can consider A-
expressions of the form AVI where A and T are two sequences of clauses (which
obviously does not make sense: A and I' should rather be clauses). But in the
forthcoming definitions we will ensure that all the considered A-expressions are
well-typed.

Example 6 Let d € D. Then (p2 V qo) - d2(qo) - 7qo - L is a A-expression. &

A A-expression is ground if it contains no index variable and no A-variable.
In order to interpret (ground) A-expressions, the value of the A-symbols is
specified using a rewrite system, exactly as schemata can be transformed into
propositional formulse by interpreting the defined symbols (using the rewrite
system R). The rewrite systems used in this section are more complicated than
in the previous one, since the symbols in D may have an additional argument.

A A-substitution is a function mapping every arithmetic variable to an index
expression and every A-variable to a A-expression. If A is a A-expression and
o is a A-substitution, then Ao denotes the A-expression obtained from A by
replacing every variable x € VU X by o(z).

Definition 7 A D-system is a set of rewrite rules of the form A — IT", where
AT are two A-expressions such that every arithmetic variable and every A-
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variable occurring in T' also occurs in A. A D-system is propositional if it
contains no A-variables (it may contain arithmetic variables).

Given two A-expressions A and I' and a D-system R, we write A —gy T if
there exists a rule A’ — I in R and a A-substitution ¢ such that T" is obtained
from A by replacing an occurrence of an expression A’c by IVo. O

For matching, the associativity and commutativity of logical symbols are not
taken into account in general, except for conjunctions occurring at the root level
(this rather unusual convention is needed to ensure confluence without having
to bother on the order of the schemata at the root level). For instance the
rule d(p A ((r A q) V —r)) — p does not apply on d(p A (—r V (r A ¢))) nor on
d(pA((gAr)V=r)), but it applies on d(((rAq)V—r)Ap). Similarly, d(pAg) — p
applies on d(p) by assuming ¢ = T.

Example 8 Consider the following rewrite system (Z is a A-variable).
{dis1(Z2) = (pag1 V) - (p1V Z) - di(Z), do(Z) — —po- Z}
The reader can check that it reduces the A-expression of Example 6 to:

(P2 V qo) - (=p2 V1) - (p1V qo) - (=p1 Vo) - (PoV qo) - —Po - qo - —qo - L
This last expression is a refutation. L)

3.3 From closed tableaux to resolution proofs

Let 7 be a closed tableau of a schema ¢. The general idea is to construct,
from T, a D-system R(T) representing a schema of refutation for ¢. Obviously,
R(T) represents an inductive proof of the assertion: “for every n € N, the
corresponding instance of ¢ is unsatisfiable”. Ideally, we would just refute the
base case, and then build a refutation of ¢ at n+ 1 from a refutation of ¢ at n.
However, as often in inductive reasoning, we need to generalize the conjecture
in order to refute it properly. This is done as follows: recall that our aim is
to construct a refutation of ¢, i.e. a derivation of L from ¢; instead, however,
R(T) will describe how to build a derivation of X from ¢ V X, for any X
(formally, X will be a A-variable). Then, our original goal will be reached by
just substituting | to X. In practice, we need to generalize even more this
reasoning since the construction of 3(7") is done by mapping every node o of
T to some rewrite rules. So, instead of considering only the root schema ¢, we
need to consider all the formulee {¢1,..., ¢} that occur in T(a). And, instead
of building a derivation of X from ¢V X, we build a derivation of X7 V---V X}
from (o1 VX1)A---A(prV Xy), for some A-variables X7, ..., Xi. More precisely
we build a derivation of a clause C' C X; V...V X, since some formule ¢; V X;
may be useless. We retrieve our original goal when we just substitute the root
of T to a.

The following definition constructs a D-system 2R(7) and two A-symbols v
and p® such that, if 7(a) = {¢1,...,¢r} and U denotes the formula (¢1V X1) A
<+ A (¢r V X}) then pg(U) denotes the above clause C' and v (U) denotes a
derivation of C from U. This system is constructed by induction on the tableau.
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Definition 9 Let 7 be a tableau. We map every node o in 7 to two A-symbols
v®* and pu®. We assume that the symbols v and p® are pairwise distinct. The
system of rules R(T) is defined by the rules in R and the following rules, for
every node « in T (we distinguish several cases, according to the rule applied
on «):

- If no rule is applied on a: v ((LVX)AY) = X pd((LVX)AY) = X

- If the Normalisation rule is applied on «, using a formula ¢, yielding a
node f:
v ((9V X)AY) = (6l VX) AY)
pa((0V X)AY) = 1 ((br VX) AY)
- If the Closure rule is applied on «, using ¢ and —¢:

vV X)A (- VY)AZ) = (m¢VY) - (v X) - (X VY)
e ($VX)A(mVY) A Z) = (X VY)
- If A-Decomposition is applied on «, yielding a child j:
v (01 A d2) VX)AY) = v ((¢1 V X) A (¢2V X)AY)

P (((p1 Ad2) VX)AY) = pl (31 V X) A (d2 VX)AY)

- If V-Decomposition is applied on a using a formula ¢ V ¢ and yielding
two children 8y and [s:

v (@1Vh2)VX)NY) = 17 ((61V(62VX))AY )15 (" ((61V(92V X)) AY )AY)
e (D1 V d2) V X)AY) = 2 (u (91 V ($2 V X)) AY)AY)
- If the Purity rule is applied on «, on a formula ¢, yielding a node 3:

@V X)AY) = (V)  pg((0VX)AY) = pf(Y)
- If the Loop Detection rule is applied on «, using a layer 3:
v (X) = ) (X) g (X) = pg(X)

- If the Explosion rule is applied on «, yielding two children 8, and fs,
corresponding to the cases n <— 0 and n <— n + 1 respectively:

V(X)) = g (X)) v (X) = PU(X) p§(X) = pg (X)) plea(X) = pf2(X)

&
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Note that all the symbols ¢, ¢1,¢o denote meta-variables, and not A-
variables (hence they cannot be instantiated during rewriting, in contrast to
X,Y,...).

Before establishing the properties of R(T ), we show an example of applica-
tion:

Example 10 Consider the proof tree of Example 5. The reader can check that
R(T) contains the following rules:

va((poVX)A(-poVY) A Z) = (PpoVX) (FpoVY) - (XVY)
ps((poVX)A (mpo VY) A Z) - XVY

Va((par VX)A (ot VY)AZ) = (pa1 VX) - (mpap1 VY) - (X VY)
g (Par1 VX)A (mpayi VY)AZ) = X VY

Ve (X) = 1 (X)

1z (X) = pu(X)

Va((Pas1 VX)AY) - va(Y)

Ha((—pag1 VX)AY) = ua(Y)

Ve (((5pa V pay1) VX) AY) = G (((pas1) V (mpa VX)) AY)

) Vo (2 (Pat1 V (pa VX)) AY) AY)
ta(((=pa V pas1) VX)AY) = pa(pa((Par1 V (mpa VX)) AY)AY)
Vg ((vat1V X)AY) = (((-paVpar1) VX)Ava AY)
ta (Va1 V X) AY) = pa(((-paVpas1) VX) Ava AY)
vy (X) - 1(X)

g (X) - pp(X)
]/1?+1(X) — VS(X)
NZ+1(X) — HE(X)

The A-expression 1, ((poV L) A (=pa V L) A (vg V L)) denotes a refutation of
PoA—py Avy. This rewrite system is complex and hardly readable, fortunately it
can be simplified by instantiating the arguments when possible and by statically
evaluating the derivations that do no depend on the value of the parameter n.
For instance the A-symbol v is only called on the formula T, = (po V L) A
(=pn V L) A (v, V L). Thus the rule v7(X) — 1v¢(X) may be simplified by
instantiating X by Ty and evaluating the right-hand side: v§(Ty) — po - —po - L

Similarly, the rule v/, (X) — v¢(X) can be replaced by the following rule (in
this case only a partial evaluation is possible since some parts of the derivation
depend on the value of n): v, (Thy1) = (7Pa V Pat1) - “Pat1 - Pa - Ve (Th)

The obtained system (only containing the two previous rules) is obviously
much simpler than the original one, in particular it is propositional (no schema
variables occur in it). To improve readability, the expression 1/ (T},) could be
simply replaced by a fresh symbol 17 (with no argument). &

Lemma 11 Let T be a tableau. R(T) is convergent.

For any A-expression T', we denote by T g (7) the normal form of T. We
now state the soundness of our algorithm.

Theorem 12 Let T be a closed tableau containing a node «. Let n be the
parameter of T (a). Let T(a) = {p1,...,¢n} and let & = (p1VL)A.. A(PpVL).
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For any k € N, v (®{n < k})lm(7) is a refutation of ®{n < k}|r. Thus
T («) is unsatisfiable.

Note that the size of the rewrite system 9R(7) is clearly linear w.r.t. the one
of the tableau 7.

The simplification phase used in Example 10 can be applied in a systematic
way. However, it is not always sufficient to reduce the rewrite system into a
propositional one. Actually, it is not difficult to see that as soon as a node «
exists in the tableau on which the V-Decomposition rule is applied, yielding two
branches $; and (5 that are both looping on an ascendant of «, then the use of
schema variables cannot be avoided.

Example 13 Consider for instance the schema: ¢ : =pg A =go A (Pa V Gn) A Un,
where v is defined by the rules: viy1 — (gi V = pity1) A (pi V 7git1) A vi and
vg — T. The following tableau is constructed:

(0
Pn Gn
Po Pnt1 40 n+1
1 Gn “Pn+1 L1 Dn Qn+1
1 (loop) € 1 (loop) €

The corresponding rewrite system (after partial evaluation and simplifica-
tion) is the following (¢} corresponds to the refutation of ¢):

Va (=po A =qo A (pa V @) A U) —
v2(—po A=go A (Pa V ga) A n) - V2 (—Po A =G0 A Ga A Un)
5 (=po A (po V X)AY) = =po- (po vV X) - X
Vas1(=po A =go A (Pat1 V X) Avat1) —
(Pat1 V X) - (ga V =Pat1) - (Ga V X) - 12 (=po A =qo A (ga V X) A vg)
Vg(ﬁpo AlgVX)ANY) = g0 (@oV X)X
Vs (=0 A =go A (Gayr V X) Atni1) —
(Gar1V X) - (PaV 2Gas1) - (P V X) - 12 (=P0 A =G0 A (Pa V X) A )

The system still contains A-variables, although some of them have been
removed by static evaluation. Note that it could be further simplified (for
instance by moving the axioms such as —pg outside the inductive definitions),
but the use of A-variables cannot be avoided. &

We now focus on an alternative approach that has the advantage that only
propositional rewrite systems are generated.
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4 Globally looping tableaux

Compared to the previous approach, the second algorithm generates much sim-
pler rewrite systems, but it has the drawback that a more restrictive version of
the Loop Detection rule must be used to prune the tableaux into finite ones. At
a very high and informal level: in the first approach, we were building mutu-
ally inductive proofs of several lemmata, whereas, in the second approach, we
manage to have one single invariant proved by a single induction.

We first need to introduce some additional terminology. A node « is of rank
k in a tableau T of root g if there are exactly k applications of the Explosion
rule between 8 and « (including 3, but not «). Leaves(7, «) denotes the set of
non-closed leaves below « in T, Layers(7, k) denotes the set of layers of rank &
in 7 and Layers(T, k, @) denotes the set of layers of rank k in T that occur below
a. For any set of formulae ®, we denote by A ® the conjunction /\d>€¢> o. UT
is a tableau and N is a set of nodes in 7, then 7T[N] denotes the disjunction
Vaen AT (). We write cnf(¢) for a (subsumption-minimal) clausal form of

AIR-

Definition 14 A tableau T is globally looping (w.r.t. two natural numbers k
and n) iff the following conditions hold:

1. n<k.
2. T[Layers(T, k)] = T [Layers(T,n)] (modulo AC and idempotence).
3. All non-closed leaves in T are of a rank greater or equal to k.

Then the Global Loop Detection rule closes every node in Layers(T, k). <&

By definition, after the Global Loop Detection rule is applied, all branches
containing the parameter n are closed and the construction of the tableau is
over (since no leaf can be expanded anymore). Note that the Global Loop
Detection rule can be simulated by several applications of the Loop Detection
rule introduced in Section 2. Indeed, assume that a pair of natural numbers
(k, n) satisfying the conditions of Definition 14 exists. Then, by Condition 2, for
every layer « of rank k, there exists a layer 3 of rank n such that 7(«) = T(8).
Thus the Loop Detection rule applies on « (w.l.0.g. we assume that the layers
of rank n are constructed before those of rank k in all parallel branches, which
is possible since n < k). However, it is easy to see that the converse does not
hold: the Global Loop Detection rule is strictly less general than the looping
rule. It is, however, powerful enough to ensure termination, provided that a fair
strategy is used to expand the tableau, as stated by the following theorem:

Theorem 15 Let (7;)ien be an infinite sequence of tableauz such that, for every
1 €N, Tiy1 is obtained from T; by applying one of the Expansion rules of Section
2, other than the Loop Detection rule. Assume, moreover, that for every k € N,
there exists n € N such that every non-closed leaf in T, is of a rank greater
than k (i.e. no branch is indefinitely “frozen”, the rank of the leaves increases
indefinitely). There exists n € N such that Ty, is globally looping.
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We now show that from every tableau 7T, one can extract a resolution deriva-
tion from the root of 7 of the disjunction of the leaves of 7. We first restrict
ourselves to tableaux built without the Explosion and Loop Detection rules. We
focus on such tableaux because they correspond to the subtrees that are found
“between” two layers in an tableau built without restriction on the rules. More
precisely, take a layer « of some rank m in a tableau 7 (built without restriction
on the rules). Then the subtree of 7 of root « and whose leaves are the layers of
rank m+ 1 below « is indeed a tree built without Explosion nor Loop Detection
(by definition of a layer).

We first build derivations for such subtrees, those derivations will then be
used as the base elements for building the final schema of refutation. For such
a tree 7 and a node « of T, the next definition introduces A(T, «), which is
intended to be a derivation of cnf(7 [Leaves(T, «)]) from cnf(7 (c)).

Definition 16 Let 7 be a tableau constructed using the Expansion rules, ez-
cept the Explosion and Loop Detection rules. Let o be a node in 7. We define
a derivation A(T,«) inductively, according to the rule that is applied on «:

- If a is a leaf, then A(T,«) is defined as the sequence of clauses in
enf(T («)).
- If the Closure rule is applied on «, using two formule ¢ and —¢, then

A(T,a) = ¢- = - L (notice that since the formulae are in NNF, ¢ must
be an atom).

- If the Normalisation, Purity or A-Decomposition rule is applied on «,
yielding a node 3 then A(T, o) = A(T, A).

- Finally, assume that the V-Decomposition rule is applied on « yielding
two nodes 81 and B3. Let ®; and ®5 be the clausal forms of ¢ and ¢o
respectively. For any C' € ®,, let A’(C) be the derivation obtained from
A(T, 81) by replacing every occurrence of a clause D € ®; by DV C (and
by adding the disjunction VC to every descendant of D).

For any clause C’ in cnf(7 [Leaves(T, 51)]), we construct a derivation
A"(C") from A(T, B2) by replacing every occurrence of a clause D € ®q
by DV C’" (and by adding the disjunction VC’ to every descendant of
D). Then A(T,a) is the concatenation of all the derivations A’(C) and
A"(C") (with C € ®5 and C’ € cnf(T [Leaves(T, £1)])).

Only the case of disjunction is non-trivial. Informally, it does nothing more
than building, for two sets of clauses S; and Sa, a derivation of cnf(S; V S3)
from two derivations of S7 and Ss.

Thus the function 7 («) — A(T,«) allows us to build derivations from
subtrees of a whole tableau. Intuitively, the next step is to put together those
derivations according to the positions of the corresponding subtrees in the main
tableau. Consider a rank m in a tableau 7. One can apply the function A
to all the (parallel) subtrees whose root is a layer of rank m. Then we can do
the same at rank m + 1, append every resulting derivation to the derivation
obtained from the parent tree, and go on at rank m 4 2, etc. This intuitively
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gives the structure of a rewrite system where n decreases each time we go to
the next rank. However this gives us a tree-like structure (to every derivation
corresponding to a subtree U we append the derivations corresponding to all
the leaves of U, and go on with the trees below those leaves) similar to the
rewrite systems presented in Section 3. Instead we would like a more linear
structure. So we will consider at once all the layers of a given rank and get only
one derivation corresponding to those nodes. For this, we need a way to apply
A to all the subtrees at once. This is actually done by building a new tableau
from the subtrees.

Let 7 be a tableau of root a. Assume that 7 is globally looping w.r.t. n
and k, with n < k. Let m < k. We denote by U(7,m) a tableau whose root is
labeled by a formula 7 [Layers(7T,m)] (note that we take all the layers of rank m
at a time), and obtained by applying the V and A-Decomposition and Closure
rules (and only these rules) until irreducibility. By definition, since the root
formula of U(7, m) is the disjunction of the labels of the layers in Layers(7,m),
every non-closed leaf 8 of U(T,m) is labeled by a set of formulee of the form
T (vg), where vg € Layers(7,m). Furthermore, for every v € Layers(T,m),
there exists a leaf 8 of U(T,m) such that y3 = 7. Since m < k and since by
Definition 14 the leaves of 7 must be of a rank greater or equal to k, the node
vg cannot be a leaf of 7. This implies that some rule is applied on 5. But
the only rule that is applicable on a layer (beside the Global Loop Detection
rule that cannot be applied on layers of a rank distinct from k) is the Explosion
rule. Hence T necessarily contains two subtableaux, written 7'50 and 7;31, of
roots T (y5){n < 0} and T (v5){n < n + 1} respectively. Then V°(T,m) and
VY(T,m) denote respectively the tableaux obtained from U(T,m){n < 0} and
U(T,m){n < n+ 1} by:

- Replacing every leaf 3 by 77 and Tj respectively.

- Removing, in the obtained tableau, all applications of the Explosion rule3
(and all the nodes that occur below such an application).

By applying the above function A(7, ) on the two tableaux V1(7,m) and

VO(T,m), we define the following derivations (where a denotes the root of

VYT, m) and V(T ,m)):

AT, m) EAWVYT,m),0) AT, m) = AV (T, m),a)

Let T be a tableau that is globally looping w.r.t. two numbers n < k. We
associate to each natural number m < k a symbol ™. Let S8*(T) the system
containing the following rules. Note that V°(7,m) and V!(T,m) are defined
only w.r.t. the rank m, but not w.r.t. a particular node. Thus, contrarily to
the transformation of Section 3, there is not one derivation per node, but rather
one derivation per rank.

W= AT m) Al = AT, m) A (fm+1<k) Af5 — AT, k) -

3Note that, although no application of the Explosion rule occurs in U(7,m), some appli-
cations of this rule may occur in 7}31
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Intuitively, we are appending the derivations, rank after rank, until we reach
the rank k£ where the Global Loop Detection applies. In this case we get back at
the rank of looping n. Thus we can see the use of grouping the derivations by
rank (instead of node) as it allows to benefit from the simplified form of looping
induced by the Global Loop Detection rule. In the end, the resulting rewrite
system is indeed much simpler.

Proposition 17 R*(T) is convergent.
Note that, by definition, R*(7) is always propositional (unlike (7).

Theorem 18 Let T be a tableau of root o that is globally looping w.r.t. two
numbers n, k, withn < k. Let m < k. For alli € N, v{"|oi~(1) 15 a refutation of
enf(T[Layers(T,m)]){n < i}lr. Thus in particular, if « is a layer, ’7?%%*(7’)
is a refutation of T (a){n < i}lxr.

When « is not a layer, the rewrite system is easily adapted by prepending
the derivation obtained by applying A to the subtree of 7 whose leaves are the
layers of rank 0.

Example 19 Consider the tableau of Example 13. This tableau is actually
globally looping. The following rewrite system is constructed (after partial
evaluation and simplification):

Yo — PoVqo-—po-qo-—qo- L
Yotr1 = (Par1Vaar1) (@ V o Pas1) - (@ Vaat1) - (Po V 2Gat1) - (Ga V D) - Ta

Compared with the system produced by the previous method (see Example
13), these rules are obviously simpler (no schema variable are needed, and only
linear recursion is used). Furthermore, it is easy to check that they generate
much shorter derivations. &

5 Conclusion

Two distinct algorithms have been designed for extracting schemata of reso-
lution proofs from closed tableaux. This work is motivated by the fact that
such refutations are needed for some natural applications of schemata calculus
(unsatisfiability detection is not always sufficient). In particular, the explicit
generation of the proofs (even in the form of proof schemata) makes possible
the certification of the results produced by the provers. The first algorithm
tackles the tableau calculus in its full generality, but it yields very complex rep-
resentations of the derivations (which will make them less usable in practice,
in particular they are not very informative for a human user). The second one
uses a less powerful calculus, but it generates schemata of refutations in a much
simpler format (propositional rewrite systems are obtained).

There is thus a natural trade-off between the two presented methods: none of
them is uniformly superior to the other. The choice between the two algorithms
should be made according to the considered applications, and/or to the form of

29



the constructed tableaux. In some cases, as shown by the examples in Section
3, the first approach generates a propositional rewrite system. In this case
it should of course be preferred. Future work includes the implementation of
the two methods and the precise evaluation of the complexity of the second
algorithm. One could also wonder whether a polynomial algorithm generating
propositional derivations exists for the general case. We conjecture that the use
of A-variables cannot be avoided in general.
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Abstract

Blind signatures are signature schemes that keep the content confiden-
tial and have applications in modern cryptography for electronic voting
and digital cash schemes. We study three unification problems based on
an equational theory for blind signatures. This theory consists of two
axioms, namely

U(S(B(m,z)),x) = S(m) (&1)
mx* B(n,r) = B(mxn,r) (&)

derived from its implementation with RSA. First, the unification prob-
lem modulo &; is shown to be N P-complete and of type finitary. An
algorithm based on deduction rules is given. Second, unification in &
is shown to be decidable and of type unitary. Likewise, we give an al-
gorithm which returns a unique unifier if there exists one and provide
necessary failure rule mechanisms to detect function clash, occur-check
and infinite splitting. Finally, the combination of unification problems &;
and & turns out to be decidable. The result follows from techniques of
equational term rewriting systems and unification in the subtheories &;
and &. Consequently, these results are useful for symbolic analysis of
protocols deploying blind signatures.

1 Introduction

In formal cryptographic protocol analysis, messages are represented as terms,
where the functions in the terms represent actions that can be performed on
messages, such as encrypting a message with some key, hashing a message, or
calculating the exclusive OR of two messages.

A protocol is described formally by the actions of a principal, who will receive
a message, and then send out another message based on the message received.
An attack can be represented by the intruder learning some secret. A tool for
cryptographic protocol analysis can then work its way back from the goal to
initial facts, to see if a sequence of actions which leads to the intruder learning

*Partially supported by the NSF grants CNS-0831209 and CNS-0905286
fPartially supported by the NSF grants CNS-0831305 and CNS-0905378
*Partially supported by the NSF grants CNS-0831209 and CNS-0905286
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the secret message is possible. At each stage of this search, unification must
be performed between terms representing messages sent and terms representing
messages that are expected to be received. These terms may contain variables
representing unknowns.

Traditionally, cryptographic protocol analysis tools work in the free algebra,
which gives no meaning to the function symbols, and terms can only be equal
if they are syntactically the same. However, tools such as the Maude NPA [7]
can give a deeper analysis. Equational properties of terms can be given, which
take into account the meaning of a function symbol. Then unification can be
performed modulo the equational theory.

For example, consider the case of blind signatures. There is a blinding
function B, which blinds a message m with a given key x. We can represent
this by the term B(m,z). There is an unblinding function U which performs
the inverse of unblinding for some key. There is also a signing function. Blind
signatures have the property that if a message m is blinded with some key z,
then signed, and then unblinded with z, the signed message will emerge. These
are called blind signatures, because the signer could not tell what was being
signed. Blind signatures are used in electronic voting and digital cash [5]. The
properties we have just described can be represented by the following equation:

U(S(B(m,z)),z) = 5(m)

Blind RSA signatures [4] are created by multiplying the message m by a
random number r raised to a public key e. Therefore, multiplying an RSA-
blinded message by another number (message) is equivalent to multiplying the
two messages and then blinding them.

The two properties mentioned above are represented by the following axioms:

U(S(B(m,z)),z) = S(m) (1)
m* B(n,r) = B(mx*n,r) (2)

We denote axiom (1) as equational theory &£; and axiom (2) as &,.

Performing unification modulo &£, and &, will allow a cryptographic analysis
tool to give a deeper analysis of a cryptographic protocol which uses blinding.
Therefore, in this paper we give unification algorithms for £;, & and the theory
consisting of both of them.

The algorithms given are based on inference rules originally given in [14],
which gave a unification algorithm for one-sided distributivity. We give an
algorithm to generate a complete set of unifiers for each of these theories. The
algorithm for & runs in nondeterministic polynomial time and gives a finite
complete set of unifiers. The algorithm for &£, gives a single most general unifier,
and the algorithm for the combination of the two also gives a finite complete
set of unifiers.

We describe the algorithm for £; in Section 3, for &, in Section 4, and for
the combination in Section 5.

2 Preliminaries

We introduce some basic definitions here. The reader is referred to the survey [2]
for more details.
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Let S = {s1 :7E t1,...,5m :E tm} be an E-unification problem. An E-
unifier for S is a substitution o such that o(s;) =5 o(t;) for all 1 < ¢ < m.
That is, equality modulo E , =g, in S is satisfied if we apply o to every equation.
The set of all E-unifiers of S is denoted by Ug(S). It is said that o is more
general modulo E than 0 on a set of variables V', denoted as ¢ <p 0, if and only
if there is a substitution 7 such that o7(z) =g 6(z) for all z € V. A complete
set of E-unifiers of S is a set ¥ of substitutions such that every 6 € ¥ is an
FE-unifier and for every F-unifier 6, there is a substitution ¢ € ¥ where o <p 0
holds. A complete set of E-unifiers > of a unification problem S is said to be
minimal if and only if for any two FE-unifiers ¢ and 0 in X, 0 <g 6 implies that
g =g 9

An FE-unification problem § is of type unitary, if the minimal complete set
of E-unifiers of S has size one. S is finitary (infinitary) if the minimal complete
set of F-unifiers of it is finite (infinite). We note that the minimal set of unifiers
might be empty even when the problem is unifiable. We say S is of type zero
in that case. An equational theory F is unitary if the maximal type of an FE-
unification problem is unitary. Similarly, F is finitary if E-unification problems
have at most type finitary. If there exists a problem of type infinitary on E
and no problem of type nullary, then E is infinitary. E has type zero (or E is
nullary) if it has a problem of type zero.

A set of equations (i.e., a unification problem) is said to be in dag-solved
form (or d-solved form) if and only if they can be arranged as a list

T :?tl, vy Ty :?tn
where (a) each left-hand side z; is a distinct variable, and (b) V1 <i < j <mn:
x; does not occur in t; ([8]). It is not hard to see that a unification problem in
dag-solved form has a unique most general unifier which can be obtained in a
straightforward way [8]. If a set of equations £Q is in dag-solved form, we say
that £Q is solved.

A rewrite rule is an ordered pair (I, r) of terms such that the variables in
r also appear in [. It is often written as [ — r. A rewrite system R is set of
rewrite rules (I, 7). Let R be a rewrite system and E a set of equations. We
define eztended rewriting with R modulo E, expressed as

5 —p\R t,

if and only if there exist a rule  — r in R and a position p in s such that s|, <%
o(l), t = slo(r)], for some substitution o. See [9] and [3] for detailed expositions
of equational rewriting.

A rewrite rule I — 7 is optimally reducing® if and only if for any substitution
6 for which 6(r) is R-reducible, there is a proper subterm s of | such that 6(s)
is R-reducible. A rewrite system R is optimally reducing iff every rule in it is
optimally reducing modulo R.

3 Unification in &

We show that &;-unification is NP-Complete and give a nondeterministic algo-
rithm for it.

IFor term rewriting systems this notion was first introduced in [12], and has been general-
ized in [6].
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To show NP-Hardness, the NP-complete problem monotone 1-in-3 3SAT
will be polynomially reduced to &£;-unifiability.

The definition of monotone 1-in-3 3SAT is as follows:

Given: A set of clauses C' = {cy, ..., ¢, } where each clause has exactly three
propositional variables.

Question: Is there a satisfying assignment such that exactly one variable is
set to true in each clause?

Let C = ¢1 A -+ A ¢y be an instance of the 1-in-3 3SAT problem and
V ={u1,...,un} be variables occurring in C, i.e., V. = Var(C). We show how
to construct an instance S of the & -unification problem from C such that S is
unifiable if and only if C is satisfiable.

First of all, we define ground terms a1, as, as as follows:

ai :B(B(l,O),O)
az = B(B(Oa 1)30)
a3 = B(B(0,0),1)

For any clause ¢; = (u;,, Wiy, Uiy), wi; €V, i =1,...,mand j =1,2,3, we
introduce a term T; = B(B(ui, , Uiy ), Uiy )-

In addition, auxiliary variables x;,y;, 2; and a constant m are created. The
equation constructed for ¢; is

U(S(B(m,U(S(B(m,y;)), as))), U(S(B(m,a1)), T1)) =¢,
U(S(B(m, i), U(S(B(m, zi)), a2)).

We note that separate variables x;,y;, z;, which are also pairwise distinct,
are created for each clause c¢;. To follow the results more easily, we define ¢; 1,
ti72 and ti73.

t;1 =U(S(B(m,a1)),T;)
ti72 = U(S(B(ma yz))7 a3)
tis =U(S(B(m, z)), a2)
Therefore, we can now rewrite the equation into the following form:

U(S(B(m,t;2)),ti1) =¢, U(S(B(m,z;)),ti3)

Obviously, we in general obtain a set of equations rather than one equation
from a given 1-in-3 3SAT instance C. Let us denote this set by S.

Lemma 3.1. S is unifiable if and only if C is satisfiable.

Proof. If C is satisfiable, S is unified trivially. Each clause is assigned to one
of (1,0,0) or (0,1,0) or (0,0,1). We simply unify corresponding ax (k = 1,2,3)
with T}’s in each equation. For instance, if T; ::‘;1 aq, then ¢; 1 221 S(m) and
the solution follows from assigning a3 to y; and ¢; 3 to x;. Similar for T; :751 as
and Ti ::';«1 as.

Conversely, let S be unified by following the settings above. For each clause
¢; in C, it is straightforward to verify that the equation is satisfied if and only
if ;1 :?g1 tio or 11 :?51 ti3. One of these equations is satisfied when and
only when exactly one of T; =% ay or T; =;, ay or T; ={ as is unified. By
definition, there is only one variable u;; in T; assigned to 1 in the solution. We
can set the corresponding variable to true in each clause of C' to build a 1-in-3
satisfying assignment. ([l
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Thus, we finally obtain
Theorem 3.2. & -unification is NP-complete.

Proof. NP-hardness follows from the previous lemma. Membership in NP fol-
lows from the fact that the term rewriting system

U(S(B(m,x)),z) — S(m)
is optimally reducing and convergent. O

Since unification modulo convergent, optimally reducing term rewriting sys-
tems is finitary? we get

Theorem 3.3. &, -unification is finitary, and there is an algorithm for comput-
ing a complete set of £ -unifiers.

Proof. An alternative proof would be to observe that &, is saturated under
ordered paramodulation and then use the result in [10] or [13]. O

However, we also show this in the next section by devising a new algorithm.

3.1 Algorithm

In this section we outline a nondeterministic algorithm for the general &;-
unification problem which we plan to implement. In addition, this algorithm
returns a complete set of unifiers for a given problem. We assume, without loss
of generality, that each equation is in one of the following standard forms:

L X="V

2. X ="U(V,Y)

3. X ="B(V,Y)

4. X =" S(V)

5 X ="f(V1,..., V)

In this setting X, V., V1,...,V, and Y are variables and f is an uninterpreted
function symbol with arity n.

Transformation rules are created based on the equation forms we specified.
Note that rules (hl) and (h2) are nondeterministic and applied “most lazily.”
The goal is to transform the given set of equations to dag-solved form.

2Strictly speaking, this is not shown in [12]. But it is not hard to show, see [6].

35



{(X="V} w &Q

(a) (X =7 V}U [V/X|(£Q) if X occurs in £Q
o) £Q W {X ="B(V,Y), X =" B(W,T)}
EQ U {X="B(V,Y), V="W,Y="T}
© £Q W {X =" S(V), X =T S(W)}
¢ £Q U (X ="S(V), V="W}
@ EQ W {X="U(V,Y), V="SW), W ="BW,Y))}
EQ U {X ="S(W), V="S(W'), W =" BW,Y))}
@ EQ W {X="U(V,Y), X ="S(W)}
¢ £Q U {X =L S(W), V =" S(W"), W' =% B(W,Y))}
(0 EQuw {(X="UWVY) X="UWY)}
EQ U {V="W, X =TUW,Y)}
© EQ w {X ="U(V,Y), X ="U(V,T)}

EQ U {X=TUWY),Y="T}

£Q W {X =' U(Y,2)}
(h1) D if EQW{X =" U(Y, Z)} is not solved
£Q U (Y =" S(Y'), Y/ =7 B(M, Z), X =" S(M)}

EQ W {X="U(V,W), X ="U(,2)}
EQU {X="UWY,2),V="Y,W="2}

Variables Y’ M in rule (h1l) and W' in rule (e) are fresh variables.

For uninterpreted function symbols, we have

EQ W {X="f(V1,....,Vp), X =" f(Wy,...,W,)}

(1) ? ? ?
EQ U X = f(Vi,o o Vo), Vi =/ Wi, .., Vo =2 W, )

We use rule (a) to eliminate a variable V' from the rest of the system. By
rules (b), (¢), (f), (g) and (i), we remove function symbols from the problem, i.e.,
narrow the equations. Right after applying those rules, we apply rule (a) to the
resulting equations for variable elimination. The soundness of rules (b) — (h2)
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follows from axiom (1).

Rule (a) is applied most eagerly, followed by the cancellation rules (b), (c),
(), (g) and (i), then (d) and (e) in that order of priority. As mentioned earlier,
the nondeterministic rules (h1) and (h2) have the lowest priority.

We have the following failure rules:

£Q W {X="U(Y), X =" BW,T)}
FAIL

(F1)

EQ W {X="B(VY), X =" S(W)}

F2
(2) FAIL

We also add a failure rule, which is applied when at least one of f and g is
an uninterpreted function symbol.

F3) QWX f(Vl’...JZ?‘ZI})L’ X="gW, W)} (f £29)

These rules could be combined into

EQ W {X="Ff(Vi,.... V), X =" g(Wy,...,W,,)}

(F4) if (f #g) and {f, g} # {U, S}
FAIL

Another kind of failure is occur-check which can be implemented as an ex-
tended cycle check as done in algorithms for standard unification. (This can
be defined similar to the failure rule (F2) in the next section.) In the presence
of the nondeterministic rules (h1) and (h2) this is enough to catch all failures.
For instance, consider X =" U(Y, X). If (hl) is not applied at all, this would
cause occur-check failure. But once (hl) is applied we get the set of equations
{y =" S(Y"), Y =" B(M,X), X =" S(M)} which is unifiable.

Termination can be shown by using the following measure

m(S) = (number of occurrences of the symbol U, number of unsolved
variables)

The first component decreases in all applications of rules (d) through (h2).
Furthermore, it does not increase in rules (a)-(c) and (i). The second component
clearly decreases in the case of rule (a); it also decreases for rules (b), (c¢) and (i),
provided that rule (a) is applied immediately afterwards. Since (a) is applied
most eagerly, this follows.

Theorem 3.4. Rules (a)-(i) terminate.

4 Unification in &

We describe an algorithm by using transformation rules, as we did for £; in
Section 3.1. Furthermore, the algorithm returns a most general unifier if the
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input equations are unifiable. Without loss of generality, equations will be in
one of these forms:

X="V, X="BV,Y), X =" VY, X = f(Vi,...,Vp)

(U, V,V1,...,V,and Y are variables and f is an uninterpreted function symbol
with arity n.)

Both of the function symbols, B and *, are cancellative. Note that we do
not assume that B or % is commutative or associative.

(X="V} w £Q

(a) X 7 VIo V/X](€Q) if X occursin £Q

(b) EQ w {X="B(V,Y), X="BW,T)}
EQU{X="BWV,Y), V="W,Y="T}

© EQ W {X="VxY, X="WxT}

EQUI{X="VxY, V="W,Y="T}

EQ w {U="B(X,Y), U="U, *U,y}

d
(@) EQ U {X="U, %2 Uy="B(Z,Y), U="U, xU,}

Rule (d) (the “splitting rule”) introduces a fresh variable Z.
To handle uninterpreted functions, we add the same rules as in the case of &;.

EQ W {X ="f(Vi,....Vo), X =" f(W,...,W,)}
EQ U X ="f(Vi,oo W), Vi = Wi, ., Vi =" Wi}

(e)

A standard failure rule for function clash is:

EQ WX ="f(V1,....,Vin), X =" g(Wy,...,W,)}

(F1) LA (f # g) and {fg} # {B.+}
FAIL

The outline of the algorithm is as follows: As long as rules are applicable,
rules (a) and (F1) are applied most eagerly, and the cancellative rules (b), (c)
and (e) come next. The splitting rule (d) is applied, if necessary, at the end,
i.e., rule (d) has the lowest priority.

The proof of correctness for this algorithm is similar to the one in Tiden-
Arnborg [14].

We define the following relations between terms.

o U >, V iff there is an equation U =T % V'

o U >, V iff there is an equation U =V « T
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U =, V iff there is an equation U = B(T,V)

U >+, V iff there is an equation U = B(V,T)
e U= VitU >, VorU», V

UspViftU >, VorlU?:»,V

U > V iff there is an equation U = f(...,V,...), where f is uninter-
preted.

Let = = >, U >, U >p; U >, U>y, ie., the union of the four relations
above. Thus, each of these relations is a subrelation of >. Alternatively, > = >,
U>p U>y.

We define an extended occur-check failure rule using >.

£Q . + )
(F2) FAIL if X =1 X for some X

Let ~pp(x), and ~,g) be the reflexive, symmetric and transitive closures for
and >, respectively.
We also define a set of relations 8 = {81, S2} where

~r

*

® 1 = ~pp(x) O =B O ~pp(x)
® B2 = ~ip(B) © =« © ~Vip(B)-

One can define two interpretations for £2, namely interpreting B as left and
* as right projections. We denote these interpretations as projection functions
symbols rp(x), and Ip(B). For instance, if we interpret * as right projection by
rp(*), then the axiom m#* B(n,r) = B((m=n),r) is trivially satisfied. The same
holds if we take B as left projection.

Both interpretations give valid models for the theory. That is, if a problem
is solvable modulo &,, it is also solvable modulo any of these interpretations.
This fact is used to prove the following lemma.

Lemma 4.1. If one of 1 or B is cyclic, then the problem is not solvable.

Proof. Without loss of generality assume 7 is not well-founded. If we interpret
% with rp(*) (which gives a model for &), it is not hard to see that all variables
in the same ~,)-equivalence class become equal to each other. Hence the
relation »>p becomes not well founded on the set of variables. This implies
that there is a cycle w.r.t. > p in the interpreted problem (which is a standard
unification problem) and hence there is no solution. Thus the result follows,
since the interpreted problem is solvable if the original problem is solvable. A
similar argument holds for fs. (I

Therefore, we introduce the following failure rule:

(F3) % if any of the B, i € {1,2}, is cyclic

We will illustrate these with an example. Let U =’ B(X,Y)and U =T UyxUs
be two equations. After rule (d) is applied to this pair of equations, we get

U="UyxUy, X ="U1 %2, Uy ="B(Z,Y)
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Figure 1: Splitting

where Z is a new variable. Now observe that Z ~y,py Uz and Z ~,,,) X.
Thus every new variable introduced by an application of rule (d) is below an
already existing variables by >, and >p (see Figure 1) and also equivalent to
existing variables by one of {~,,(.), ~ip(B)}-

Lemma 4.2. For each equivalence relation in {N,.p(*), Nlp(B)}, the number of
equivalence classes does not increase with the splitting rule.

Proof. Trivial, since if we apply rule (d), we see that new variable Z ‘joins’ the
existing ~,p(.)- and ~, g)-equivalence classes (see Figure 1). O

The number of equivalence classes modulo any equivalence relation will be
less than or equal to the number of initial variables in a given problem.

Lemma 4.3. If rules (a)-(d) are applied infinitely, then one of the relations B,
(i=1,2) is cyclic.
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Proof. The only case we need to look at carefully is when the splitting rule is
applied. By Lemma 4.2 new variables will not create new equivalence classes;
instead they join already existing equivalence classes. Note that for every new
variable X created by the splitting rule there is another variable Y >, X which
was created earlier. Thus if splitting goes on indefinitely, then we get arbitrarily
long chains of the form

Xy = Xpy 7o

But since the number of ~,)- equivalence classes for the problem do not
increase, there are indices j and k such that j < k and X;;, ~;p) Xj,. (In
fact, if n is the number of variables in the original problem, then j < £ < n+1).
This will cause B3 to be cyclic after finitely many steps. O

Theorem 4.4. The unification problem modulo &, s decidable.

Proof. Let S be a problem modulo &. If S is unifiable, rules (a)-(e) will return
a solution. On the other hand, if S is not unifiable, then the possible errors
are function clash, occur check error and infinite splitting among variables.
Rules (F1) and (F2) detect function clash and occur check in finite time. In
the case of infinite splitting, the algorithm will encounter the failure rule (F3)
which checks if any of f; relations is cyclic. Thus, our algorithm decides if S is
unifiable (and computes a comlete set of unifiers) O

Theorem 4.5. Unifiability modulo &, is in P.

Proof. By Lemma 4.2, we know that the number of equivalence classes remains
same throughout the algorithm. Let n be the number of variables. It is easy to
see that the number of equivalence classes in both ~,g) and ~, ) is at most
n. Note that the algorithm terminates if rule (d) terminates. Rule (d) removes
an existing [-edge between equivalence classes and adds a new one, which is
one level below the old one with respect to r, (see Figure 1). By Lemma 4.3,
this cannot go on for more than n times without failure. Therefore the result
follows. O

In the next section, we show that the cardinality of minimal complete set of
unifiers is “one”.
4.1 Unification Type of &

We know that standard forms can be used to represent any problem modulo &,.
Therefore, the transformation rules which we define form a complete method
for the problem. We use this fact indirectly to show that the unification type
of & is unitary. We first prove that the transformation steps (a)—(e) “preserve
unifiers.”

Lemma 4.6. Let S be a unification problem in standard form and let S’ be
obtained after applying one of (a)-(e). Then

1. Every unifier of 8’ is a unifier of S.

2. For every unifier o of S there is a unifier & of S’ such that o =Var(s) 0.
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Theorem 4.7. The unification type of £y is unitary, and our algorithm com-
putes a complete set of Ey-unifiers.

Proof. Let T be the solved form for S. It is easy to see that 7 itself is a
sequential unifier, and the corresponding parallel unifier, say o, is a unifier of
S. On the other hand, let § be a unifier of S. By induction on the number of
steps we can show, using Lemma 4.6, that there is a unifier 6 of T such that
0 =Var(s) 6. We can now show that 6 is an instance of o. O

5 Unification in & U &

We show the decidability of unification modulo the union of & and &. This
theory has the following convergent system:

U(S(B(m,x)),z) — S(m)

m* B(n,r) — B(m=x*n,r)

Orienting the second axiom the other way causes the Knuth-Bendix completion
procedure to diverge.

Let us consider the term rewriting system U(S(B(m,z)),z) — S(m) as-
sociated with & and denote it by R. Consequently, we use the equational (or
class) rewriting relation R/E; and the extended rewriting relation £5\R which
is between R and R/&, i.e.,

R C &\R C R/E

From Section 3, we know that R is convergent and optimally reducing. We
extend these results to £2\R. In other words, we show that £\R is convergent
and optimally reducing modulo &;.

Termination of R/E; follows easily. We observe that for each term ¢, its
equivalence class [t]:g2 is finite. Applying the rewrite rule in R modulo &
causes a U symbol to disappear. Hence there is no infinite descending chain
t —Rr/e, t —R/g, --.- Furthermore, termination of £\R follows.

Recall that R is £2-confluent if and only if for every s, such that s = ¢, ¢,

there exist ', ¢" such that s -z \p s’ and t -\ 1/, and " =¢, ¢’ [11].
Lemma 5.1. &\R is convergent modulo E.

Proof. This follows from the critical pair criteria given by Jouannaud and Kirch-
ner [9]. That is, if R/&, is terminating and all E;-classes are finite, then £5\R
is confluent if and only if all critical pairs in CPg,(R,R) and CPg, (R, &) are
joinable. Note that all equivalence classes of £; are finite and R /&y is termi-
nating. Furthermore, the subterm ordering modulo &, denoted as Z,, is also
well-founded [3] since the equation m x B(n,r) = B(mx*n,r) is regular and size-
preserving, i.e., left and right hand sides of the equation are of the same size.
Thus the necessary conditions to apply the result in [9] are satisfied. Consider
the complete sets of Es-critical pairs CPg,(R,R). The only non-variable posi-
tion p in term [ = U(S(B(m, x)), ) such that |, can be unified with (a variant
of) I modulo & is p = € (i.e., at the root). But this leads to a trivial critical
pair. It is not hard to see that the set of critical pairs C'Pg, (R, &2), obtained
from overlapping R “below” &,, is empty. Since E-unification is decidable and
unitary, the result follows. ([l
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We next extend the optimal reducibility of R to the optimal £-reducibility
of R. A rewrite rule | — 7 is optimally E-reducing if and only if for any
substitution 6 for which 0(r) is E\ R-reducible, there is a proper subterm s of [
such that 0(s) is E\ R-reducible. A rewrite system R is optimally E-reducing iff
every rule in it is optimally E-reducing modulo R.

Lemma 5.2. R is optimally Es-reducing.

Proof. Straightforward, since for all substitutions 6, 8(S(m)) is reducible if and
only if #(m) is. O

Furthermore, we use the following fact about £\R. Since the root symbol
of the left-hand side of &1, namely U, is not in Sig(&2), if s is in normal form
and 6 is an irreducible substitution modulo £5\R, then #(s) can be reduced to
its £\ R-normal form in |s| steps by the innermost reduction strategy.

As mentioned earlier, it was shown by Narendran et al [12] that every opti-
mally reducing and confluent term rewriting system has a decidable unification
problem. We give a similar proof to the one in [12] for showing that £2\R is
decidable.

Theorem 5.3. Unification modulo €1 U &y is decidable and finitary, and there
is an algorithm to compute a complete set of £1 U Ex-unifiers.

Proof. Let s and t be two terms and # an irreducible substitution that unifies
them. 0(s) and 6(t) are reduced to £\ R-normal forms by the rule

U(S(B(m,x)),z) — S(m)

in at most |s| and |t| steps respectively by the innermost reduction strat-
egy. Consider the sequence of positions where the reductions occur. With-
out performing unification, we instead mimic each reduction step as s, :?g2
n(U(S(B(m,x)),x)), where p is a position that a reduction occurs and 7 an
appropriate renaming. Repeat the same for new term s [n(S(m))], and so on.
Thus, the idea is to transform the problem by mimicking an innermost reduc-
tion sequence where the reductions take place at each original term position.
We obtain at most |s| + |[t| + 1 equations to be unified. We apply E-unification
to the resulting equations and see if there is a solution. Since Es-unification is
decidable and unitary, the result follows. O

6 Conclusion

We have given an equational theory based on the RSA implementation of blind
signaures and studied three relevant unification problems. We first considered
the two axioms & and & as separate theories and finally unification modulo
&1 U &, which turned out to be decidable and finitary. The equational theories
we consider are only some of the many possible axiomatizations about blind
signatures. Future work would include incorporating other equational axioms.
Furthermore, we plan to implement the algorithms and integrate them with the
Maude-NPA protocol analyzer [7].

43



References

[1] S. Anantharaman, H. Lin, C. Lynch, P. Narendran, M. Rusinowitch. “Cap
Unification: Application to Protocol Security modulo Homomorphic Encryp-
tion”. In: Proc. of the 5th ACM Symp. on Information, Computer and Com-
munications Security, ASTACCS’10, pp. 192—-203, April 2010.

[2] F. Baader, W. Snyder. “Unification Theory”. In: Handbook of Automated
Reasoning, pp. 440-526, Elsevier Sc. Publishers B.V.; 2001.

[3] L. Bachmair. Canonical Equational Proofs. Birkhduser 1991.

[4] D. Chaum. “Security without Identification: Transaction System to Make
Big Brother Obsolete”. Communications of the ACM 28(2): 1030-1044, 1985.

[5] D. Chaum. “Blind signatures for untraceable payments”. In: Advances in
Cryptology - Crypto ’82 199-203, 1983.

[6] H. Comon-Lundh, S. Delaune. “The finite variant property: how to get rid of
some algebraic properties”. In: Proc. of RTA05 (J. Giesl, ed.), LNCS 3467,
pages 294-307. Springer-Verlag, 2005.

[7] S. Escobar, C. Meadows, J. Meseguer. “Maude-NPA: Cryptographic Pro-
tocol Analysis Modulo Equational Properties”. In: Foundations of Security
Analysis and Design V, FOSAD 2007/2008/2009 Tutorial Lectures (A. Al-
dini, G. Barthe, and R. Gorrieri, eds.) LNCS 5705, pages 1-50.

[8] J.-P. Jouannaud, C. Kirchner. “Solving equations in abstract algebras: a
rule-based survey of unification.” In: Computational Logic: Essays in Honor
of Alan Robinson, pp. 360-394, MIT Press, Boston (1991).

[9] J.-P. Jouannaud, H. Kirchner. “Completion of a Set of Rules Modulo a Set
of Equations”. SIAM J. Comput. 15(4): 1155-1194, 1986.

[10] C. Lynch, B. Morawska. “Basic Syntactic Mutation.” In: Proc. of CADE
2002 (A. Voronkov, ed.), LNCS 2392, pages 471-485.

[11] C. Meadows, P. Narendran. “A Unification Algorithm for the Group Diffie-
Hellman Protocol”. In: Proc. of WITS 2002 3(1-2): 14-15, 2002.

[12] P. Narendran, F. Pfenning, R. Statman. “On the Unification Problem for
Cartesian Closed Categories”. J. Symbolic Logic 62(2): 636-647, 1997.

[13] R. Nieuwenhuis. “Basic paramodulation and decidable theories.” In: Proc.
11th IEEE Symposium on Logic in Computer Science (LICS’96) 473-482.

[14] E. Tiden, S. Arnborg. “Unification Problems with One-sided Distributiv-
ity”. Journal of Symbolic Computation 3(1-2): 183-202, 1987.

44



Incremental Variable Splitting

(Presentation-only paper)

C. M. Hansen, R. Antonsen, M. Giese, and A. Waaler
Dept. of Informatics, University of Oslo, Norway

In free-variable tableau calculi, free variables are introduced as place-holders
when expanding universal formulas in order to postpone the choice of an instan-
tiation, see e.g. [4]. Free variables are instantiated when branches are closed,
by unifying potentially complementary formulas on a branch. The expansion of
disjunctive formulas splits a proof into several branches, and the same free vari-
able can occur on more than one branch. Usually, occurrences of a free variable
on different branches have to be instantiated consistently to ensure soundness.

Antonsen and Waaler [1, 2] have analyzed the dependency between branch-
ing and the instantiation of free variables and have arrived at a criterion that,
in some cases, permits to instantiate a free variable differently on different
branches. Such divergent instantiation is referred to as variable splitting.

Unfortunately, the variable splitting technique gives only a global criterion
that states when a substitution that closes all branches, possibly instantiating
free variables on different branches differently, is admissible. No hint is given as
to how the existence of such an admissible closing substitution can be ensured
during proof search, short of performing an admissibility check for all possible
closing substitutions after each proof step. As it stands, the existing work on
variable splitting is therefore not suited for direct implementation.

We found that a similar problem of applying a global closure check after
each proof step lies at the heart of the incremental closure approach proposed
by Giese [5, 6]. Incremental closure is mainly designed as a method to avoid the
backtracking usually employed when searching for free variable tableau proofs.
Instead of globally instantiating free variables when a branch can be closed,
incremental closure determines after each proof step whether there is a way to
close all branches of a proof simultaneously. To do this efficiently, the set of
closing substitutions for every subderivation is kept track of during proof search,
and this information is updated whenever a new complementary pair of literals
(i.e. a connection) is introduced. Syntactic unification constraints are used to
represent sets of substitutions.

The main contribution in this article is to show how the incremental closure
approach can be extended to provide an incremental, and therefore tractable
evaluation of the global closure criterion of the variable splitting calculus. This
is done by recasting the admissibility condition for closing substitutions into
a constraint satisfaction problem. The constraint language contains syntactic
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unification constraints like in [5], and additionally ordering and consistency con-
straints to express the admissibility criterion of variable splitting. The resulting
mechanism allows to check the existence of an admissible closing substitution
incrementally during the construction of a proof.

We present a rule-based algorithm for testing satisfiability of constraints that
is an extension of the well-known rule system for syntactic unification of Comon
and Kirchner [3].

We have implementeted our approach in a prototypical variable splitting
theorem prover. This implementation allows to apply the same strategy for rule
applications both with and without variable splitting, which gives us a means of
direct comparison between the two approaches. We present experimental results
from running the prover on a wide range of problems.
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Abstract

First-order modal logics have many applications, e.g., in planning, natural lan-
guage processing, program verification, querying knowledge bases, and modeling
communication. This paper gives an overview of several new implementations
of theorem provers for first-order modal logics based on different proof calculi.
Among these calculi are the standard sequent calculus, a prefixed tableau calcu-
lus, an embedding into simple type theory, and an instance-based method. All
these theorem provers are tested and evaluated on the QMLTP problem library for
first-order modal logic. The results of these test runs are compared and analyzed.

1 Introduction

Modal logics extend classical logic with the modalities it is necessarily true that” and
it is possibly true that” represented by the unary operators O and <, respectively.
First-order modal logics extend propositional modal logics by domains specifying sets
of objects that are associated with each world, and the standard universal and existential
quantifiers [9, 15, 17].

First-order modal logics allow a natural and compact knowledge representation.
The subtle combination of the modal operators and first-order logic enables specifica-
tions of epistemic, dynamic and temporal aspects, and of infinite sets of objects. For
this reason, first-order modal logics have many applications, e.g., in planning, natu-
ral language processing, program verification, querying knowledge bases, and mod-
eling communication. In these applications modalities are used to represent incom-
plete knowledge, programs, or to contrast different sources of information. First-order
components, such as variables, functions, predicates and quantifiers enable to describe
objects, their properties, types, and abstract information that can be instantiated later.

For example, the planning system PKS [27] constructs conditional plans. It uses
modal operators to represent incomplete knowledge, constants and predicates to de-
scribe objects and their properties, and variables and functions to generate abstract
plans, which are instantiated later, when sufficient knowledge is available. An inference
procedure for a restricted quantified modal logic determines whether the plan achieves

*This work is partly funded by the German Science Foundation DFG under reference number KR858/9-1.
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the goal and the preconditions of the actions hold, and generates the effects of the
actions. PKS can be applied to, e.g., dialogue planning [37]. The dialogue system Ar-
timis [33] and the sentence-planner SPUD [40] plan, generate and interpret sentences in
a natural language. They use modalities to distinguish beliefs, intentions and actions of
the system and the user. First-order logic components represent objects, properties and
quantified statements. Variables enable to process abstract instructions that can be in-
stantiated later when more information is available [39]. An inference engine is adapted
to plan and interpret the sentences. The systems KIV [31], VSE-II [1] and KeY [8] are
advanced tools for program verification and synthesis. Their proof components use
dynamic and temporal first-order logic which are closely related to first-order modal
logic. The modalities represent programs, whereas functions, variables and quantifiers
characterize attributes, types and the creation of objects. Likewise the verification of
database update programs [36] and the integration of UML specification [10] can be
described in first-order modal logic. A first-order modal logic is also used as query
language for description logic knowledge bases [11]. Automated reasoning is required
to answer queries and to verify and optimize integrity conditions. Finally, first-order
modal logics are used to describe communication and cooperation [12, 23].

All these applications require the use of automated theorem proving (ATP) systems
for first-order modal logics. Whereas there are some ATP systems available for propo-
sitional modal logics, e.g., MSPASS [20] and modleanTAP [4], there are currently only
few ATP systems that can deal with the full first-order fragment of modal logics.

The purpose of this paper is to introduce some new ATP systems for first-order
modal logics and to evaluate, compare and analyze their performance on a standardized
problem set. The reader is assumed to be familiar with the syntax and semantics of first-
order modal logics, see, e.g., [15, 17]. If not stated otherwise the standard semantics
and the following options regarding first-order terms for all evaluated ATP systems are
considered: term designation is rigid, i.e., the terms denote the same object in each
world, and terms are assumed to be local, i.e., any ground term denotes an existing
object for each world.

This paper is structured as follows. In Section 2 all new and existing ATP systems
for first-order modal logics are shortly described. Section 3 provides details about the
used problem set and presents comprehensive performance results and comparisons
of all described ATP systems. Section 4 concludes with a short summary and a few
remarks on future work.

2 Implementing First-Order Modal Theorem Provers

The following (new and existing) ATP systems for first-order modal logics are de-
scribed in this section: MleanSeP based on the standard sequent calculus, GQML-
Prover and MleanTAP based on tableau calculi, M-Leo-II and M-Satallax based on an
embedding into simple type theory and the f2p-MSPASS based on an instance-based
method. Table 1 gives an overview of these systems.

2.1 Sequent Calculus

MleanSeP implements the standard sequent calculus for several modal logics.! It is
implemented in Prolog. Proof search is carried out in an analytic way and free-variables
are used in combination with a dynamic Skolemization that is calculated during the

IMieanSeP can be downloaded at www.leancop.de/mleansep/programs/mleansepll.pl .
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actual proof search. Together with the occurs-check of the term unification algorithm
this ensures that the Eigenvariable condition is respected.

MleanSeP 1.1 can deal with the first-order cumulative and constant domains of the
modal logics K, K4, D, D4, S4, and T. To deal with constant domains, the Barcan
formula? is automatically added to the given formula in a preprocessing step.

2.2 Tableau Calculi

GQML-Prover [44] is based on a free-variable tableau calculus using annotated tableau
nodes and function symbols. It uses a liberalized §*-rule and is implemented in
OCaml. GQML-Prover 1.2 can deal with cumulative, constant and varying domains
of the modal logics K, K4, D, S4, and T, using rigid or non-rigid terms, and local or
non-local terms.

MleanTAP implements a prefixed tableau calculus.> The compact system is imple-
mented in Prolog. It uses not only free term variables but also free string variables for
the prefixes and a prefix unification procedure. It is based on the ileanTAP system for
first-order intuitionistic logic [24]. At first MleanTAP performs a purely classical proof
search. After a classical proof is found, the prefixes of those literals that close branches
in the (classical) tableau are unified. The existence of a prefix substitution ensures that
the given formula is valid in modal logic as well [45]. If no prefix substitution exists
backtracking is done in order to find alternative classical proofs (and prefixes). To deal
with different modal logics only the prefix unification procedure has to be adapted [22].

MleanTAP 1.1 can deal with the first-order cumulative and constant domains of the
modal logics D and S4. By further modifying the prefix unification algorithm MlearTAP
can be extended to the modal logics D4, S5, and T.

2.3 Embedding into Simple Type Theory

M-Leo-II 1.2 and M-Satallax 1.4 extend the ATP systems Leo-II 1.2 and Satallax 1.4
to first-order modal logics, respectively. Both provers use an embedding of quantified
modal logic into simple type theory [6]. Leo-II [7] and Satallax [2] are ATP systems
for typed higher-order logic.* Leo-II is based on an extensional higher-order reso-
lution calculus. It cooperates with a first-order ATP system, by default E [34], and
applies term sharing and term indexing techniques. It is implemented in OCaml. Sa-
tallax uses a complete ground tableau calculus for higher-order logic to generate suc-
cessively propositional clauses and calls MiniSat repeatedly to test unsatisfiability of
these clauses. It can be regarded as an instance-based method for higher-order logic.
Satallax is implemented in Steel Bank Common (SBC) Lisp.

Currently the embedding of quantified modal logic into simple type theory works
for constant domains only. Thus, M-Leo-II 1.2 and M-Satallax 1.4 can deal with the
first-order constant domains of the modal logics K, D, S4, S5, and T.

2The Barcan formula scheme has the form V#(Op(Z) = OVZp(Z) with & = 21, ..., xy, for all predi-
cates p withn > 1.

3MlearTAP can be downloaded at www . leancop.de/mleantap/programs/mleantapll.pl .

4These two higher-order ATP systems were selected as they have the best performance of all currently
available systems for higher-order logic [43].
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2.4 Instance-Based Method

f2p-MSPASS 3.0 uses an instance-based method to generate ground formulas and the
ATP system MSPASS 3.0 for proving formulas in propositional modal logic. Like
most instance-based methods, the f2p-MSPASS system consists of two components.
The first component, called first2p, takes a first-order modal formula, removes all
quantifiers and replaces every variable with a unique constant. The second compo-
nent, MSPASS [20], takes the resulting (ground) formula and tries to find a proof or
a counter model. If a counter model is found first2p adds quantified subformulas to
the original formula and instantiates variables with new terms. Afterwards MSPASS is
again used to find a proof for the resulting formula. If first2p is unable to add any new
instances of subformulas, the original formula is invalid.

first2p is written in Prolog. It does not translate the given formula into any clausal
form but preserves its structure throughout the whole proof process. Due to the restric-
tions of modal logics this instance-based approach does only work for formulas that
contain either only existential or only universal quantifiers. MSPASS is an extension
of and incorporated into the resolution-based ATP system SPASS. It uses several 