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Abstract

This report reviews various optimum decision rules for pattern recogni-

tion, namely, Bayes rule, Chow's rule (optimum error-reject tradeo�), and a

recently proposed class-selective rejection rule. The latter provides an opti-

mum tradeo� between the error rate and the average number of (selected)

classes. A new general relation between the error rate and the average num-

ber of classes is presented. The error rate can directly be computed from the

class-selective reject function, which in turn can be estimated from unlabelled

patterns, by simply counting the rejects. Theoretical as well as practical im-

plications are discussed and some future research directions are proposed.

CR Categories and Subject Descriptors: I.5.0 [Pattern Recognition]: General;

I.5.1 [Pattern Recognition]: Models; I.5.2 [Pattern Recognition]: Design Methodol-

ogy; I.5.m [Pattern Recognition]: Decision.

Key Words: classi�cation, decision rule, Bayes rule, selective rejection, man-

machine interface.
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1 Introduction

Classi�cation of an unknown pattern into one of the known classes is a common task

for many pattern recognition systems. For such a task, the system performance is

mainly characterised by its error rate. However, because of noise and other uncertain

factors inherent in any real system, the error rate can be excessive for some appli-

cations, such as bank check reading [9]. Recognition with a reject option provides a

means to reduce the error rate through a rejection mechanism, i.e., withhold making

a decision if the con�dence is not high enough and direct the rejected pattern to an

exceptional handling, such as manual inspection. With a reject option, the system

performance is characterised by the error-reject tradeo� [2].

From an application point of view, characterising the system performance by the

error-reject tradeo� is appropriate for many tasks, such as those involving optical

character recognition (OCR). The reason is that when a pattern is rejected human

correction can usually lower the classi�cation error without excessive additional

e�orts (humans know quite well the set of characters being used). In contrast, for

applications like face identi�cation, humans may not know or remember all (maybe

a huge amount of) reference faces. In such an application, a rejection would require

the operator to compare the rejected pattern with hundreds, if not thousands, of

reference faces [1]. Therefore, a useful system should not make a simple rejection,

but should provide a (preferably short) list of candidates or classes. For instance,

the top-n ranking is such a mechanism. In this context, the error-reject tradeo�

becomes error-(number-of-classes) tradeo�.

Although the optimum error-reject tradeo� has been known for a long time

[2], the optimum error-(number-of-classes) was discovered only recently [10]. Few

theoretical results on these aspects are available [4, 13].

This report �rst gives an overview of optimum decision rules. A general relation

between error rate and average number of classes is then presented. It will be shown

that the error rate can be estimated directly from the empirical number of classes

assigned to each unlabelled pattern. General properties of the optimum tradeo�

curve are pointed out. Theoretical as well as practical implications are discussed

and future research directions are proposed.

2 Optimum Decision Rules { An Overview

In statistical pattern recognition, the probability that a given sample or pattern x

belongs to the i

th

class, in a N -class problem, is provided by the posterior probability

P (i=x) through the Bayes formula:

P

i

(x) � P (i=x) =

p(x=i) � �

i

p(x)

; i = 1; ::; N (1)
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where p(x=i) is the i

th

class conditional probability density function (p.d.f.), �

i

is

the a priori probability of observing the i

th

class,

P

N

i=1

�

i

= 1, and

1

p(x) =

N

X

j=1

p(x=j) � �

j

(2)

is the absolute probability density function [5, 8]. It follows immediately that the

posterior probabilities sum up to 1, i.e.,

N

X

i=1

P

i

(x) = 1 (3)

The connection between classi�cation and decision is illustrated in Fig. 1, for a

three-class problem. Thus, the (soft) classi�er is a device that computes the posterior

probabilities, for a given x, which is then dichotomised into classes by the decision

process. In most practical applications, fP

i

(x); i = 1; ::; Ng are unknown but can

be estimated from a set of labelled patterns, called training set. Many estimation

methods exist, e.g. Parzen estimate, nearest neighbour, potential functions, and

neural networks [5, 8, 14]. In the following, we assume that fP

i

(x); i = 1; ::; Ng are

known and concentrate our study on the decision process.

2.1 Bayes Rule

Based on the posterior probabilities, the Bayes decision rule assigns to pattern x the

class that has the highest posterior probability. It is known that this rule is optimal

in the sense that no other rules can yield a lower error probability e, or error rate,

given by

e =

Z

X

risk(x)p(x)dx (4)

where risk(x) is the (conditional) probability of making a wrong decision, for a given

x. The (conditional) Bayes risk, i.e., the risk induced by using the Bayes decision

rule is:

risk

Bayes

(x) = 1� max

i2[1;::;N ]

fP

i

(x)g (5)

In the Bayes decision rule, the possible outcomes of the decision process are

limited to the singletons, i.e., subsets that are formed by exactly one class each.

They are f1g, f2g, and f3g for a three-class problem. Fig. 2a illustrates the partition

of the pattern space X into three regions, each of which corresponds to a single class,

when the Bayes rule is used.

1

Without loss of generality, it will be assume that p(x) is nonzero over the entire pattern space

X, otherwise the region over which p(x) is zero is �rst deleted.
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Classification Decisionx

P(1/x)

P(3/x)

{{1}, {2}, {3}

{1,2}, {1,3}, {2,3}

{1,2,3}

φ

Figure 1: Relation between classi�cation and decision. All possible outcomes of the

decision process are shown on the right side.

2

1

32

1

3 2

1

3

1,2

1,2,3

1,3

2,3

Rejection Region

(a) (b) (c)

Figure 2: Three decision types.
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2.2 Chow's Rule

The Bayes rule has also been modi�ed by Chow to cope with a reject option [2, 3].

The idea is that when a pattern lies on or near a separation plane between two

classes, the assignment to one or the other class is merely a guess. In such a case, it

may be better to withhold making the assignment (decision) and to reject the input

pattern. The reject option is desirable in those applications where it is more costly

to make a wrong decision than to withhold making a decision. With a reject option,

the optimality espouses another meaning, that of a tradeo� between the error rate

and the reject rate (reject probability). More speci�cally, Chow's optimum rule

minimises the error rate for a given reject rate, or vice versa. The rule simply

consists in rejecting the pattern if its highest posterior probability is lower than

some threshold (1 � t); t 2 [0; 1 �

1

N

]; otherwise, the decision is identical to Bayes'

one, i.e. choosing the best class. Chow's rule is optimal is the sense that for the same

reject rate speci�ed by the threshold t, no other rules can yield a lower error rate.

Interestingly, the outcomes of Chow's rule are also singletons, like in the Bayes rule,

but augmented by the empty set ;, which represents the reject option; see Figs. 1

and 2b.

For a given value of the threshold t, Chow's rule partitions the pattern space into

a rejection region X

r

, shaded in Fig. 2b, and an acceptance region X

a

, unshaded.

The acceptance rate, a(t), is the integral of the absolute p.d.f. p(x) over the

acceptance region. The reject rate, r(t), is the integral of the same function over

the (complementary) rejection region.

a(t) =

Z

X

a

p(x)dx (6)

r(t) =

Z

X

r

p(x)dx (7)

It follows that

a(t) + r(t) = 1 (8)

which means that a pattern is either accepted or rejected. When it is accepted, the

decision can either be correct or wrong.

The accuracy or correct recognition rate, c(t), is the expected value of the max-

imum posterior probability, max

i2[1;::;N ]

fP

i

(x)g, over the acceptance region.

c(t) =

Z

X

a

( max

i2[1;::;N ]

fP

i

(x)g)p(x)dx (9)

The error rate, e(t), is the expected value of the Bayes risk over the acceptance

region

e(t) =

Z

X

a

(1� max

i2[1;::;N ]

fP

i

(x)g)p(x)dx (10)

Obviously,

a(t) = c(t) + e(t) (11)
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and therefore

c(t) + e(t) + r(t) = 1 (12)

As t increases from 0 to (1�

1

N

), the rejection threshold (1�t) decreases, and the

reject rate r(t) decreases whereas the error rate e(t) increases. When t = 1�

1

N

, the

rejection threshold (1�t) equals

1

N

, and Chow's rule becomes Bayes rule, also called

recognition at zero rejection level or forced choice. It turns out that it is possible

to express the error rate directly as a function of the reject rate via the Stieltjes

integral [3].

e(t

ope

) = �

Z

t

ope

0

t � dr(t) (13)

where 'ope' stands for operating. (For an introduction to the Stieltjes integral, see

[17].)

The marvelous feature of the above equation is that it allows the computation

of the error rate at any level t from r(t) solely and that the latter can be estimated

from unlabelled patterns, by just counting the rejects. In other words, the error rate

at any level can be estimated without knowing the true classes of the patterns. For

a more detailed discussion, see also [7]. In particular, the Bayes error rate is given

by

e

Bayes

= e(t

ope

= 1�

1

N

) = �

Z

1�

1

N

t=0

t � dr(t) (14)

2.3 Optimum Class-Selective Rejection Rule

Recently, an optimum class-selective rejection rule was proposed [10]. It di�ers from

Chow's in that the outcomes of the decision process are extended to the power set

of the set of classes, while excluding the empty set ;. In Chow's rule, a pattern is

rejected if its highest posterior probability is lower than a given threshold, disregard-

ing the probability distribution of the remaining classes. Instead, the new rejection

rule is class-selective. That is, it does not reject the pattern from all classes but

only from those classes that are most unlikely to issue the pattern. For instance,

for a pattern lying on the separation plane between classes 1 and 2, while being

very far away from the center of the third class, the rule rejects only the third class

and declares that the pattern belongs to the group composed of the �rst and the

second classes. In other words, the pattern space is partitioned into regions each

of which corresponds to a subset of classes. Since there are 2

N

subsets in a set of

N elements, the resulting partition comprises 2

N

� 1 regions, excluding the empty

set, in a N -class problem. In Fig. 2c, there are 2

3

� 1 = 7 regions corresponding

to the subsets f1g, f2g, f3g, f1; 2g, f1; 3g, f2; 3g, and f1; 2; 3g. It can readily be

seen that there exists a trivial partition - that assigns the whole pattern space to

the group composed of all N classes - which nulli�es the error rate. This partition

would correspond to a no-decision rule, however.

In order to de�ne the optimality of the class-selective rejection rule while avoiding

the trivial partition, an additional constraint { the average number of classes �n {
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was introduced [10].

�n =

Z

X

n(x)p(x)dx (15)

where n(x) is the number of classes assigned to pattern x. The choice of �n =

E

X

[n(x)] is natural, and more importantly, it can be directly estimated from exper-

iments by the sample mean

1

N

s

P

N

s

i=1

n

i

, where n

i

is the number of classes assigned

to pattern x

i

, and N

s

is the total number of patterns involved in the experiment.

The optimality of the class-selective rejection rule is then de�ned as the rule that

minimises the error rate for a given average number of classes. The error rate is still

given by Eq. (4), but risk(x), i.e., the conditional probability of making an error

becomes

risk(x) = 1 �

X

i2Selected Subset

P

i

(x) =

X

i2Rejected Subset

P

i

(x) (16)

For instance, if the Selected Subset for pattern x is f1; 3g in a three-class problem,

then risk(x) = 1 � [P

1

(x) + P

3

(x)] = P

2

(x), due to Eq. (3). Notice that Eq. (16) is

a general form of Eq. (5) in that if the Bayes rule is used, i.e., select only the single

best class, then Eq. (16) becomes Eq. (5). Substituting Eq. (16) into Eq. (4), the

error rate becomes

e =

Z

X

[1�

X

i2Selected Subset

P

i

(x)]p(x)dx (17)

The optimum class-selective rejection rule assigns to pattern x all classes whose

posterior probability is greater than a pre-speci�ed threshold t. If there exist no

such classes, the rule simply selects the (a) single best class [10]. Notice that the

key point in this rule is the choice of the number of best classes, n(x; t), to be

assigned to pattern x. The rule is optimum in the sense that for a given average

number of classes, no other rules can yield a lower error rate.

In order to state the rule formally, let us introduce the sequence fQ

i

(x)g, which is

simply an reordered sequence of fP

i

(x)g in decreasing order of posterior probability

fP

i

(x); i = 1; ::; Ng ! fQ

i

(x); i = 1; ::; Ng=Q

i

(x) � Q

i+1

(x); i = 1; ::; N � 1 (18)

Thus, Q

1

(x) is the maximum posterior probability of pattern x. The risk de�ned by

Eq. (16) can then be expressed in a more explicit form as follows

risk(x; t) = 1�

n(x;t)

X

i=1

Q

i

(x) (19)

The optimum class-selective rejection rule is formally given by

Decision Rule [10]: The optimum class-selective rejection rule assigns to pattern

x the n

�

(x; t) best classes, where

n

�

(x; t) = min

k2[1;N ]

fk=Q

k+1

(x) � tg (20)
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with the convention

Q

N+1

(x) = 0 (21)

and the domain of the pre-speci�ed threshold

0 � t �

1

2

(22)

Remarks: It is instructive to distinguish two cases, depending on the relative value

of Q

1

(x) = max

i2[1;::;N ]

fP

i

(x)g with respect to t:

� Case a: Q

1

(x) > t: We get Q

n

�

(x) > t. This is obvious for n

�

= 1. For

n

�

> 1, suppose that Q

n

�

(x) � t, then 9k(= n

�

� 1) such that Q

k+1(=n

�

)

� t,

k(= n

�

� 1) � 1 ) k 2 [1; ::; N ], and k(= n

�

� 1) < n

�

, which means that

the optimum decision rule given by Eq. (20) had not been used (n

�

is not the

minimum value possible).

� Case b: Q

1

(x) � t: We have Q

n

�

(x) � t and n

�

(x) = 1. The �rst statement

is obvious because Q

1

(x) = max

i2[1;::;N ]

fP

i

(x)g � t implies that 8i;Q

i

(x) � t,

including i = n

�

. The second statement is due to the fact that the optimum

rule sets the cardinal number equal to the minimum index, which is 1.

Finally, let us consider the range of t 2 [0;

1

2

]. Since the decision rule involves the

comparison between t and posterior probabilities, it makes sense only for t 2 [0; 1].

On the other hand, when t �

1

2

, it can be easily seen that the rule is identical to the

Bayes rule, i.e., choose the single best class. Indeed, in Case a, Q

1

> t �

1

2

implies

Q

2

<

1

2

� t, and thus n

�

= 1. In Case b, n

�

= 1. In any case, we choose only the

best class. Only when t becomes smaller than

1

2

does the rule provide the possibility

of choosing more than one class.

3 Functional Relation Between e and �n

The tradeo� between error rate and average number of classes at all levels t is an

important description of the performance of recognition systems. When t varies

from

1

2

to 0, the average number of classes �n(t) increases due to the emergence of

groups composed of more than one class each. At the same time, the error rate e(t)

decreases since assigning more classes to a pattern reduces the risk of making an

error. Thus both �n(t) and e(t) are monotonic functions of t, and we can compute

the tradeo� curve e versus �n from e(t) and �n(t). Fig. 3 shows a typical e(�n) curve.

In this section we will show that there exists a functional relation between e(t) and

�n(t), and that �n(t) alone completely speci�es e(t) in the same manner as Eq. (13)

does for the e(r) curve.

Consider an incremental change of t by �t > 0. For a given x, let us examine

the optimum cardinal numbers and risks at levels t and t+�t, respectively. Direct

applications of Eqs. (20) and (19) yield

2

2

For simplicity, the superscript '*' will be omitted.
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n
_

e

0

t=0

t

t=1/2

1 N2 3
-1/2

Figure 3: A typical e(�n) curve.

n(x; t) = min

k2[1;N ]

fk=Q

k+1

(x) � tg (23)

n(x; t+�t) = min

k2[1;N ]

fk=Q

k+1

(x) � t+�tg (24)

risk(x; t) = 1�

n(x;t)

X

i=1

Q

i

(x) (25)

risk(x; t+�t) = 1�

n(x;t+�t)

X

i=1

Q

i

(x) (26)

De�ne the incremental changes of the cardinal number and risk by

�n(x; t;�t) = n(x; t+�t)� n(x; t) (27)

and

�risk(x; t;�t) = risk(x; t+�t)� risk(x; t) (28)

When t increases, the optimum decision rule selects less classes and thus �n � 0

and �risk � 0. More precisely,

�risk =

n(t)

X

i=1

Q

i

�

n(t+�t)

X

i=1

Q

i

(29)

If �n = 0, we have �risk = 0. Otherwise, �n < 0, i.e., n(t+�t) < n(t), and

10



�risk =

n(t)

X

i=n(t+�t)+1

Q

i

= Q

n(t+�t)+1

+Q

n(t+�t)+2

+ :::+Q

n(t)

(30)

Recall that n(t) is the optimum cardinal number at t, and n(t) > n(t+�t) � 1.

This means that we are not is Case b of Remarks, but must be in Case a. Hence,

Q

n(t)

> t.

On the other hand, n(t+�t) is the optimum cardinal number at t+�t, Eq. (24)

implies Q

n(t+�t)+1

� t+�t.

Taking into account the decreasing nature of fQ

i

(x)g, we can set an upper-bound

and a lower-bound on the summing terms of �risk as follows

t+�t � Q

n(t+�t)+1

� Q

n(t+�t)+2

� ::: � Q

n(t)

� t (31)

Summing up all Q

i

s leads to

(t+�t) � [n(t)� n(t+�t)] �

n(t)

X

i=n(t+�t)+1

Q

i

> t � [n(t)� n(t+�t)] (32)

or

� (t+�t) ��n � �risk > �t ��n (33)

Taking the expectation of both sides with respect to x, we get

� (t+�t) ���n � �e > �t ���n (34)

By varying t from 0 to t

ope

('ope' stands for operating) with constant increment

�t, and summing up all partial variations, we get

�

X

t ���n�

X

�t ���n �

X

�e > �

X

t ���n (35)

Letting �t ! 0, we can drop the second order in�nitesimal term �t � ��n and

get the Stieltjes integral [17]

e(t

ope

) =

Z

t

ope

t=0

de(t) = �

Z

t

ope

t=0

t � d�n(t) (36)

In particular, the Bayes error rate is given by

e

Bayes

= e(t

ope

=

1

2

) = �

Z 1

2

t=0

t � d�n(t) (37)

4 Properties of Optimum e� �n Curves

Whenever the optimum class-selective rejection rule is used, the e� �n curve exhibits

the following properties.

� e(�n) is non-increasing.
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� The slope varies from �

1

2

to 0, as �n increases from 1 to N .

� e(�n) is concave upward.

Fig. 3 shows a typical e(�n) curve.

The non-increasing nature of e(�n) can easily be veri�ed by considering Eq. (34)

and letting �t! 0.

de

d�n

= lim

��n!0

�e

��n

= �t (38)

Since t 2 [0;

1

2

], we get

de

d�n

� 0, con�rming that e(�n) is non-increasing.

When t decreases from

1

2

down to 0, �n increases from 1 (Bayes rule) to N (the

trivial partition), and Eq. (38) shows that the slope varies from �

1

2

to 0. Interest-

ingly, the value of the slope at the origin is totally independent of any other system

parameters (e.g. various probabilities and total number of classes), and always

equals �

1

2

.

By taking the derivative of Eq. (38) with respect to �n, we get

d

2

e

d�n

2

= �

dt

d�n

(39)

When t increases (dt > 0), the optimum rule selects less classes (d�n � 0), and thus

d

2

e

d�n

2

� 0. Hence e(�n) is concave upward.

5 Examples

Consider a three-class problem. Each class p.d.f is a Gaussian with unit standard

deviation. The center coordinates of classes 1, 2, and 3 are (0:0; 1:0), (�

p

3

2

;�

1

2

),

and (

p

3

2

;�

1

2

), respectively. The a priori probabilities of all three classes are equal

to

1

3

.

The error rate versus the average number of classes, e � �n curve, obtained by

using the optimum decision rule is plotted in Fig. 4. This curve is obtained by

varying t from

1

2

down to 0, and numerically integrating Eqs. (15) and (17).

The dotted line in Fig. 4, representing the tangent at the origin (�n = 1; t =

1

2

),

shows that the slope is equal to �

1

2

, according to Eq. (38).

6 Implications and Future Research

The main results presented in this report �ll a hole in the theory of optimumdecision

rules for pattern recognition. For the optimum class-selective rejection rule, the

functional relation between error rate and average number of classes, Eq. (36), is

established. It takes the same form as Chow's optimum error-reject tradeo� curve,

Eq. (13).

The optimum e� �n curve shares many properties with Chow's optimum error-

reject, e � r, curve [3]. Since the slope of the e � �n curve is �t, the tradeo�, i.e.,

12



: OPTIMUM DECISION RULE

Error rate versus average number of classes

1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

0.0

0.04

0.08

0.11

0.15

0.19

0.23

0.27

0.3

AVERAGE NUMBER OF CLASSES

ERROR RATE

t = 0

t

t = 1/2

Figure 4: Relation between error rate and average number of classes for a three class

problem. The dotted line represents the tangent at the origin and has a slope equal

to �

1

2

.
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the ratio of error reduction to additional average number of classes, is most e�ective

near the origin (�n = 1; t =

1

2

). This is common in our practical experience: excessive

additional classes are generally required to reduce residual errors. For Chow's error-

reject curve, the same behaviour can be observed: excessive rejection is generally

required to reduce residual errors. Moreover, the non-decreasing nature and the

upward concavity are common properties to both e� �n and e� r curves.

In practice, all properties (Section 4) derived from the optimum recognition

system can serve as checking criteria of the classi�er design. Indeed, these properties

are necessary conditions for an optimum classi�er. If empirical data do not �t

these properties, we can conclude that there is a 
aw in the design of the classi�er,

although no more speci�c information is available as to where the 
aw(s) may be.

In contrast, a well �tting of empirical data to these properties does not imply that

the classi�er is optimum, although it may constitute a strong support.

The use of Eq. (36) in estimating the error rate without having recourse to the

true labels of testing patterns should be further investigated. The study should take

into account the observations made by Fukunaga and Kessel in [7] on the Stieltjes

integral, Eq. (13), proposed by Chow [3]. See also [18, 11] for reviews of error

estimation methods. Other interesting related papers are [19, 12, 6, 16, 15].

7 Conclusion

We have reviewed various optimum decision rules for pattern recognition, namely,

Bayes rule, Chow's rule (optimum error-reject tradeo�), and a recently proposed

class-selective rejection rule. The latter provides an optimum tradeo� between the

error rate and the average number of classes. A new general relation between the

error rate and the average number of classes is presented. It is expressed by a

Stieltjes integral and takes a similar form as Chow's optimum error-reject curve.

This integral allows the error rate to be computed from the class-selective reject

function, which can be estimated from unlabelled patterns, by simply counting the

rejects. Further investigation on the use of this integral for error estimation should

be pursued. Many general properties of the optimum tradeo� curve are derived.

They constitute a set of necessary conditions for an optimum recognition system,

and thus can serve as checking criteria of the classi�er design.
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