
Modelling Objects in PICT

Jean-Guy Schneider, Markus Lumpe

Software Composition Group

IAM-96-004

January 1996

Abstract

For the development of present-day applications, programming languages supporting

high order abstractions are needed. These high order abstractions are called com-

ponents. Since most of the currently available programming languages and systems

fail to provide su�cient support for specifying and implementing components, we are

developing a new language suitable for software composition. It is not clear how such

a language will look like, what kind of abstractions it must support, and what kind

of formal model it will be based on. Object-oriented programming languages address

some of the needs of present-day applications, and it is therefore obvious to integrate

some of their concepts and abstractions in the language. As a �rst step towards such

an integration, we have to de�ne an object model. Since no generally accepted formal

object model exists, we have chosen the �-calculus as a basis for modelling. In order

to �nd a suitable object model, we have built up an object modelling workbench for

PICT, an implementation of an asynchronous �-calculus. In this work, we de�ne a

�rst abstract object model, describe several implementations of the object model in

PICT, and discuss interesting features and possible extensions.

Keywords: �-calculus, PICT, object modelling, software composition.

CR Categories and Subject Descriptors: D.1.3 [Programming Techniques]:

Concurrent Programming; D.1.5 [Programming Techniques]: Object-oriented Pro-

gramming; D.2.1 [Software Engineering]: Requirements/Speci�cation; D.3.3 [Pro-

gramming Languages]: Language Constructs and Features; F.4.3 [Mathematical Logic

and Formal Languages]: Formal Languages.

Authors' address: Institute for Computer Science and Applied Mathematics

(IAM), University of Berne, Neubr�uckstrasse 10, CH-3012 Bern, Switzerland; e-mail:

fschneidr,lumpeg@iam.unibe.ch; WWW: http://iamwww.unibe.ch/�scg.

1 Introduction

Software development and maintenance has always been an expensive task. To reduce

its costs, special-purpose programming languages and methods have been developed and

used. For present-day applications however, which are getting more complex and increas-

ingly open, these methods and languages are not suitable any more; new ones have to be

developed that address open systems requirements.

1

2 Modelling Objects in PICT

Object-oriented programming addresses some of the needs of present-day applications,

but only o�ers limited support for viewing applications as con�gurations of adaptable and

reusable software components.

What we need are higher abstractions than classes and objects. These higher abstractions

are components, being con�gurable entities which can be composed to build an applica-

tion [ND95]. Unfortunately, most object-oriented techniques fail to provide suitable ab-

stractions for general component speci�cation and component composition (composition

mechanisms) [NM95]. In order to get a system for composition, where components can be

speci�ed and implemented, but also components written in other systems/languages can

be used, we have to de�ne our own composition language. In this language, we would like

to integrate and combine aspects, concepts and paradigms of existing languages and sys-

tems and develop an abstract model for software composition [NGT92, NM95]. Since a lot

of new applications run in distributed environments, our model for software composition

must also support the de�nition and use of concurrent components.

According to [Nie92], the development of concurrent object-based programming languages

has su�ered from the lack of any generally accepted formal foundation for de�ning their

semantics. Several formal models have been presented (refer to [Men94] for a summary),

but none of them has been used as a formal basis for modelling software composition.

Unfortunately it is not clear, what kind of formal model is suitable for software com-

position. Therefore we have to de�ne and implement several models, which need to be

evaluated.

The �-calculus is a calculus in which the topology of communication can evolve dy-

namically during evaluation [Mil89]. It has been successfully used to model objects

[Jon93, BS95a] and simple object-oriented programming languages [Wal95]. Therefore

it seems to be a good formal foundation for modelling software composition, especially

since it possible to embed the �-calculus into the �-calculus, where methods for program

reasoning have been developed. Fortunately there exists an implementation of an asyn-

chronous �-calculus [Pie95b], which has already been used for the implementation of a

simple object model [PT95]. This object model lacks several abstractions available in

most object-oriented languages, but can be used as a basis for further modelling. Based

on this model, we try to �nd other implementations of objects in PICT, in order to obtain

an object modelling workbench. Using this workbench, it will be easier to evaluate and

implement object models which can be used as a basis for a composition language. As a

�rst step towards a modelling workbench, we will only concentrate on modelling common

abstractions used in object technology, which are not necessarily concurrent. Full concur-

rency will be introduced in a later stage, but we will already discuss problems and possible

solutions due to a concurrent object model.

In this work, we �rst de�ne an abstract object model based on object models used in other

programming languages (section 2). In section 3, we describe several implementations of

our model and cite interesting features of PICT. Finally in section 4 we summarize our

work and mention future possible work.

Modelling Objects in PICT 3

2 Object Model

As mentioned above, it is not clear what kind of object models are suitable for software

composition. In order to be able to evaluate several object models, we think that the

modelling workbench should contain features of already existing object models. As a

starting point, we have de�ned a �rst abstract object model, which will be used throughout

the rest of this work. It has been strongly inuenced by the object models of C++ [Str94],

Ei�el [Mey92], and Object Pascal [BF95], and supports the following features:

� class variables,

� class methods,

� instance variables,

� instance methods,

� self-reference of objects,

� inheritance,

� genericity,

� static and dynamic binding.

To keep the �rst model simple, methods and variables of a class are either exported to

clients (public) or hidden (private); no selective export like in Ei�el will be modelled. A

subclass of a given class will inherit all public features

1

and private instance variables

from its superclass, but none of the private methods. A subclass can rede�ne any of its

inherited public features. Although it might be necessary to model multiple inheritance,

we will not discuss problems due to this mechanism.

Since we do not know yet what kind of features are necessary for an object model for

software composition, it is possible that we have to add other features to our list. They

will be added and modelled during evaluation.

In Figure 1, the interfaces of two example classes are described in pseudo-code notation

which will be used throughout the rest of this work to explain our object modellings in

PICT. The example classes use most of the features introduced above. The class IntStack

de�nes a class for integer stacks with its usual features. The keyword public is used to

de�ne features of a class which are exported to clients, whereas private denotes features

only visible within the class. common is used to de�ne features shared by all objects of

a class (class variables and methods), and override is used to specify an inherited feature

which will be rede�ned. The class IntStack has a class variable Pushed, which is used

to count the number of items pushed on all stacks. The class IntTower is a subclass of

IntStack, where it is only possible to push items in a decreasing order. A description of

both classes can be found in Appendix A or in [BL94].

1

The term feature is used like in Ei�el; it denotes methods and variables of a class.

4 Modelling Objects in PICT

class IntStack = f

private

LocalPushed : Integer;

Contents : List of Integer;

public

function empty () : Boolean;

procedure push (Value: Integer);

procedure pop ();

function top () : Integer;

function localPushed () : Integer;

private

Pushed : Integer; common;

public

function pushed () : Integer ; common;

g

class IntTower = IntStack f

private

function CanPush (Value: Integer) : Boolean;

public

procedure push (Value: Integer); override;

g

Figure 1: Abstract object model.

3 Implementation in PICT

In this section, we will describe several PICT implementations of the abstract object

model. Readers not familiar with the language PICT can �nd an introduction in [Pie95b]

or [Var96]. For additional background in the �-calculus, please refer to [Mil89, Mil91].

Details about the implementation of PICT, especially its type system, are described in

[Tur96].

3.1 Object model of Pierce and Turner

In [PT95, Pie95b, Tur96], Pierce and Turner introduce a simple object model based on

processes: an object is a process consisting of

� a server process with some internal state, being able to service requests of clients to

query and manipulate the state, and

� a set of request channels, which can be used by clients to request services.

Modelling Objects in PICT 5

The following process based reference cell [Tur96] illustrates their object model:

def ref [init] =

let

new Contents

run Contents!init

in

set = abs [v,c] > Contents?_ > (Contents!v | c![]) end,

get = abs [r] > Contents?v > (Contents!v | r!v) end

end

A process based reference cell consists of an internal channel Contents, which is used to

store the internal state of the object, and two request channels (set to set a new state

and get to read the current state). The initial state of the reference cell is set by the init

parameter. In order to protect against other processes reading and writing Contents, its

declaration and initialization is wrapped in a local block.

Each request channel is the interface to another process. Theses processes are de�ned

as anonymous process abstractions (using the keyword abs), and are the only processes

being able to query and manipulate the state of the object. In order to simplify their use,

they are packed in a record.

The let ... in ... end construct de�nes a process template, which can be used by the

function ref to create reference cell objects

2

val cell = ref [50]

Requests to an object are performed by the usual dot notation:

run cell.set[20]; prInt [cell.get[]];

The reader may have noticed that are no explicit type annotations in the reference cell

example. The correct types are inferred by the type inference algorithm included in PICT.

As a �rst approach, we will base our modelling on the object model described in this

section and extend it wherever needed.

3.2 Model 1

In Figure 2, the complete PICT code of our �rst implementation is described. Like in

the simple object model of Pierce and Turner [PT95, Pie95b], an object is modelled as

a process, instance variables are modelled as local channels, and methods are de�ned as

a record of process abstractions. For list processing and exception handling, prede�ned

libraries are used [Pie95a]. Although the implementation only works for integers, it can

be easily extended for any kind of objects by introducing a generic parameter [Pie95b].

Figure 9 for an example)

In order to model the class variable Pushed, a global channel Pushed is de�ned and initial-

ized to 0. Each stack object gets this channel as a parameter at creation and can use it as

2

The process ref can be seen as a reference cell factory.

6 Modelling Objects in PICT

def IntStack [Pushed: ^Int] =

let

new LocalPushed

run LocalPushed!0

new Contents: ^(List Int)

run Contents ! (nil[])

def empty [res] > Contents?aList > (Contents!aList | res!(null[aList]))

in

record

empty = empty,

push = abs [v,c] > Contents?aList > LocalPushed?v > Pushed?g >

(Contents!(cons [v, aList]) |

LocalPushed!(v+1) | Pushed!(g+1) | c![]) end,

pop = abs [c] >

(if (empty[]) then

raise![exitOnExn, "Pop on empty stack!",c]

else

Contents?aList > LocalPushed?v > Pushed?g >

(Contents!(cdr[aList]) | LocalPushed!(v-1) |

Pushed!(g-1) | c![])

end) end,

top = abs [t] >

(if (empty[]) then

raise[exitOnExn, "Top on empty stack!"];

else

Contents?aList >

(Contents!aList | t!(car[aList]))

end) end,

localPushed = abs [l] > LocalPushed?v > (LocalPushed!v | l!v) end

end

end

new Pushed {- class variable -}

run Pushed!0

def pushed [g] > Pushed?v > (Pushed!v | g!v) {- class method -}

Figure 2: Source code of �rst model.

if it were an instance variable. Of course, any other process can also modify the contents

of this channel, and therefore we do not have the kind of data encapsulation needed.

The call of pop or top is only valid if the stack is not empty; on a call on an empty stack

an exception is raised, and the program terminates. Both methods have to check whether

there is at least one item pushed onto the stack before they can proceed. Since stack

objects already have a function empty, it is obvious to use this function within pop and

top. Because the simple object model of Pierce and Turner does not local method calls,

the implementation of empty has to move to the declaration part of IntStack: a function

empty is de�ned within the scope of IntStack. Due to the use of di�erent name spaces

in PICT, it is possible to have a label and a process with the same name in the scope of

a record. The request channel empty forwards its requests directly to the (local) process

of the same name.

Modelling Objects in PICT 7

def IntStack [Pushed: ^Int] =

let

...

in

record

...

end

end

def IntStackClass [] =

let

new Pushed

run Pushed!0

in

record

pushed = abs [g] > Pushed?v > (Pushed!v | g!v) end,

Create = abs [] = IntStack [Pushed] end,

GetClassName = abs [] = "IntStack" end

end

end

Figure 3: Source code of second model.

Stack objects can be created by

val s1 = IntStack[Pushed]

methods are called by the usual dot notation

run s1.push[5]; prInt[s1.localPushed[]];

Several abstractions are not supported by this �rst model. For example it is not possible

to model self-reference of objects (which is needed for the support of dynamic binding and

the local call of exported methods), and there is no possibility to express inheritance. This

approach does not encapsulate common class features: class variables and methods are

de�ned and implemented in the global scope. The following models will discuss possible

solutions of these problems.

3.3 Model 2

Throughout the rest of this section, we will not show the complete PICT code of our

implementations, but only the major di�erences to the previous versions.

In order to make the channel Pushed only visible to integer stacks, it is not correct to

de�ne it in the declaration part of IntStack. Each stack would get its own nonshared

instance variable Pushed, which is not the intended behaviour if we want to model class

variables. To solve the problem of class variables and methods, we have to �nd another

solution.

On of the main ideas of CLOS [Pae93, KdRB91], Smalltalk [GR89], and other recent

publications [BS95b, Chi95] is the de�nition of classes as metaobjects and the introduction

8 Modelling Objects in PICT

of metaobject protocols. For the purpose of modelling objects in PICT, we currently do not

intend to introduce a full metaobject protocol. The metaobject de�ned by IntStackClass

described in Figure 3 is only responsible for the declaration and initialization of class

variables, de�nition of class methods, and creation of instances of the class. The process

abstraction IntStack is de�ned the same way as in the previous model.

Before objects of the class IntStack can be instantiated, the corresponding metaobject has

to be created:

val IntStackMetaObj = IntStackClass[]

Stack objects are instantiated by

val s1 = IntStackMetaObj.Create[]

By introducing metaobjects, we are now able to model class methods and class variables

for the corresponding class. Since PICT is statically typed, not only instances of a class,

but also the corresponding metaobject and all its methods are well typed (not like in

CLOS or Smalltalk, where metaobjects are untyped). Therefore, the IntStackMetaObj

metaobject generates integer stacks (as desired). If we would like to have generic stacks,

we have to introduce a generic parameter for IntStackClass (refer to section 3.9). The

only other change is the rede�nition of Create in IntStackMetaObj:

Create = abs [:T:][] = Stack [:T:][Pushed] end

Now it is possible to create stacks with items of a di�erent type, like

val s1 = StackMetaObj.Create [:String:][]

for string stacks. The class variable Pushed still counts the items pushed on all stacks,

whatever their type of items is. In section 3.9 we will show the implementation of a generic

stack class.

3.4 Model 3

If we want to introduce an pseudo instance variable Self

3

, which is the self-reference to

an object, Self must have a type which corresponds to the type of the object. Since

PICT uses di�erent name spaces for types and process abstractions, the type for the class

IntStack is also called IntStack. Like all instance variables, we will model Self as a

local channel. Therefore, Self is of type ^IntStack (channel of IntStack).

As a �rst attempt, one could try to model self-reference as a parameter at object creation

(like Pushed):

val s1 = IntStackMetaObj.Create [s1, ...]

3

This pseudo-variable is comparable to this in C++, Current in Ei�el, and self in Smalltalk.

Modelling Objects in PICT 9

def IntStack [Pushed: ^Int, MetaInfo: IntStackClass] : IntStack =

let

val MetaObj = unfold (MetaInfo)

new Self: ^IntStack

...

in

(fold IntStack record

...

setSelf = abs [s,c] > (Self!s | c![]) end

end)

end

def IntStackClass [] : IntStackClass =

let

new Self: ^IntStackClass

...

in

(fold IntStackClass record

Create = abs [NewObj] > Self?Meta > Self!Meta |

(let

val obj = IntStack [Pushed, Meta]

in

(unfold obj).setSelf [obj]; NewObj!obj

end) end,

setSelf = abs [s,c] > (Self!s | c![]) end,

...

end)

end

Figure 4: Source code of third model.

This does not work in PICT because it is not possible to use the value de�ned in a value

abstraction recursively. Therefore the self-reference has to be assigned after the object has

been created:

val s1 = IntStackMetaObj.Create [...]

run s1.setSelf [s1];

The method setSelf assigns the value of the object to its pseudo-variable Self (Figure 4).

In all previous models, we did not have to explicitly specify the type of IntStack nor

IntStackClass; it is inferred by the type inference system of PICT. If we want to use

Self within instance methods, its exact type has to be known at the position where it is

used. If we do not give an explicit type annotation for Self, the type inference algorithm

cannot infer the correct type; an explicit type annotation is required. Since IntStack has

10 Modelling Objects in PICT

a method setSelf with a parameter of type IntStack, the type of IntStack is recursive

type IntStack =

Rec(T) Record

push: ![Int,Sig],

pop: ![Sig],

top: ![!Int],

empty: ![!Bool],

localPushed: ![!Int],

setSelf: ![T,Sig]

end

and the pseudo-variable Self is of type ^IntStack (Figure 4). Since we also need to model

self-reference of the metaobject, the metaobject type is de�ned accordingly:

type IntStackClass =

Rec(T) Record

pushed: ![!Int],

Create: ![!IntStack],

GetClassName: ![!String],

setSelf: ![T,Sig]

end

Due to the fact that both IntStack and IntStackClass are recursive types, the program-

mer has to take care of correct folding and unfolding of entities of both types [Pie95a]:

unfold transforms a value with a recursive type in one with a nonrecursive type, fold is

used for the inverse transformation. The major drawback of recursive types is that no

subtype relation can be established between them: two recursive types A and B are either

equal or noncomparable

4

. Since this is not suitable for modelling inheritance (where we

need subtype relations), recursive types must be omitted. This will be a topic of the next

section.

Another disadvantage of this model is that the method setSelf is exported, which in fact

should not happen. It is possible to abuse setSelf like in

val s1 = IntStackMetaObj.Create[]

val s2 = IntStackMetaObj.Create[]

run s1.setSelf[s2];

which is probably not the way setSelf should be used.

3.5 Model 4

The previous model (Figure 4) has two major disadvantages: export of setSelf and use

of recursive types. With the model introduced in this section we will be able to get rid of

most of these disadvantages.

The method setSelf has two preconditions: �rst it must be applied as the �rst method

to the object, and second it has to be used with the object itself as the one and only

4

According to Pierce, this will likely be changed in a future version of PICT.

Modelling Objects in PICT 11

def IntStack [Pushed: ^Int, MetaObj: IntStackClass] : IntStackImpl =

let

new Self: ^IntStack

...

in

record

...

setSelf = abs [s,c] > (Self!s | c![]) end

end

end

def IntStackClass [] : IntStackClassImpl =

let

new Self: ^IntStackClass

...

in

record

Create = abs [NewObj: !IntStack] > Self?Meta > Self!Meta |

(let

val obj = IntStack [Pushed, Meta]

in

obj.setSelf [obj]; NewObj!obj

end) end,

...

end

end

Figure 5: Source code of fourth model.

parameter. Other usages are forbidden. The model described in section 3.4 does not

guarantee the correct behaviour when setSelf is abused. In order to prevent abuse,

one could think of changing the implementation of IntStack by using choice and event

channels [Pie95b] in a way that setSelf is only accepted as the �rst method call. This

would guarantee the �rst precondition, the second still remains open. What we need is a

construct where either the use of more than one setSelf causes a compile time error or

setSelf is not used any more. In the next section we will show how this is possible.

As a �rst approach for preventing the abuse of methods like setSelf and increasing the

possibilities of data encapsulation, we introduce the notion of interface and implementation

type. In the interface type, all features meant to be used by clients of an object are

speci�ed. The implementation type extends the interface by implementation details only

used by the object itself and its corresponding metaobject. Private methods of a class are

not part of the implementation type.

The interface and implementation type of IntStack and IntStackClass are de�ned as

follows:

12 Modelling Objects in PICT

type IntStack = {- Interface Type -}

Record

push: ![Int,Sig],

...

localPushed: ![!Int]

end

type IntStackImpl = IntStack {- Implementation Type -}

with

setSelf: ![IntStack,Sig]

end

type IntStackClass = MetaObject IntStack {- Interface Type -}

with

pushed: ![!Int]

end

type IntStackClassImpl = IntStackClass {- Implementation Type -}

with

setSelf: ![IntStackClass,Sig]

end

The with operator extends a given Record type with new �elds. If such a �eld already

exists, it is overwritten by the new one. As a step towards a modular programming

environment, a generic metaobject type has been introduced, where the common features

of all metaobjects are combined:

type MetaObject T =

Record

Create: ![!T],

GetClassName: ![!String]

end

The Create method of the metaobject (Figure 5) creates an object of type IntStackImpl,

and can therefore use the method setSelf. The result channel NewObj on the other hand

is of type IntStack, which is a supertype of IntStackImpl. Since it is possible to send

along a channel a value of a subtype of the actual channel type, it is safe to send an

object of type IntStackImpl along a channel of type IntStack. Although Create creates

an object of type IntStackImpl, the static type of the created object is IntStack, and

only methods de�ned for this type can be used. The implementation part of the object

has simply been cut o�. This is the �rst time we use type restriction for improving data

encapsulation.

The main reason why a recursive type had to be introduced in the previous model was the

parameter of the method setSelf, which had to be equal to the type of the object itself.

By changing the type of the parameter to IntStack, the type of IntStackImpl is not

recursive any more, and the value represented by the channel Self is of type IntStack.

With this solution, the usage of Self is restricted only to features of the interface type.

Another major problem has still not been solved: we have no chance to check whether

the value passed to an object using setSelf is identical to the object itself. In order to

guarantee the second precondition (refer to Page 11), we must look for another solution.

Modelling Objects in PICT 13

def IntStackClass [] : IntStackClass =

let

val MetaSelf = emptyRef [:IntStackClass:][]

...

def Create [] : IntStackImpl =

let

val Self = emptyRef [:IntStackImpl:][]

val NewInstance =

let

val LocalPushed = ref[0]

val Contents = ref [nil[]]

in

record

pop = abs [c] > if ((Self.get[]).empty)

then ...

...

MetaObj = MetaSelf {- Reference Cell of Meta Object -}

end

end

in

Self.set[NewInstance];

Self.get[]

end

...

in

...

end

Figure 6: Source code of �fth model.

3.6 Model 5

The models described in the previous sections still have several problems, which we will

solve in this section. We will introduce a much more convenient way for modelling self-

references, which also leads to a much better data encapsulation.

As an improvement, the process de�nition IntStack is not in the �le scope any more, but

has moved to the declaration part of the metaobject. Now it is not possible any more to

create stacks without using the Create method of the metaobject.

The �rst simple object which is modelled in [Pie95b] is a reference cell (refer also to

section 3.1). A reference cell is an updatable data structure [Tur96]. By using the set

method, a new value can be assigned to the reference cell; the get function returns the

value actually stored. Although a reference cell uses a local channel to store the value,

the exact implementation is not of primary concern to us. Reference cells can either be

created by using

val cell = ref [:type:][initVal]

where a initial value is set, or

val cell = emptyRef [:type:][]

where no initial value is assigned.

14 Modelling Objects in PICT

As shown in Figure 6, the Create method of the metaobject has changed. In the declara-

tion part, an empty reference cell (Self) and an object NewInstance of type IntStackImpl

are created. The value of NewInstance is then assigned as the (�rst) contents of the ref-

erence cell. As the result of Create, the contents of the reference cell (the newly created

object) is returned. Since the name Self and its type is known, it can be used within the

declaration of NewInstance. Self.get[] is nothing other than an alias to NewInstance,

and can be used as the self-reference instead. The self-reference cannot be changed any

more, because it is not possible to access the reference cell Self from outside the object.

The same encoding is also used to obtain a self-reference of the metaobject (not shown in

Figure 6). This solution has two major advantages: an elegant modelling of self-references

and an easy way to make the distinction between the internal representation of an object

and its exported interface.

Although the Create method de�ned in the declaration part of IntStackClass creates

an object of type IntStackImpl, the exported Create method returns an object of type

IntStack. Again type restriction is used to hide the implementation part of an object.

The modelling of instance variables has also changed: reference cells are used instead of

local channels. This has the advantage of making them easier to use, but it means that

we can no longer synchronize concurrent accesses. Various approaches are possible for

avoiding interferences and deadlock, but a detailed investigation will be a topic of future

work. For some preliminary results in modelling concurrency control, refer to [Var96].

3.7 Model 6

One of the main features of object oriented programming is inheritance. Usually one

distinguishes between interface inheritance and code inheritance. Interface inheritance is

not a problem in PICT since it is possible to extend a given record type with new �elds. We

have already used this construct in previous models (IntStackImpl inherits the interface

of IntStack). Code inheritance is more di�cult. What we need is an abstraction where a

subclass of a given class can reuse the code implemented in its superclass. In the previous

model, all process abstractions are de�ned within the scope of IntStack. No other process

has had the possibility to access the implementation. The data encapsulation we use is

too restricted; it needs to be opened.

In order to understand one possibility to export the implementation of a process abstrac-

tion, we have to investigate the translation of the process de�nition abstraction def into

core PICT. A process name de�ned as

def name [par] > proc

is translated into

new name

run name?*[par] > proc

Since process abstractions are translated into channels and channel names are values, it

is possible to pass a process abstraction to another process. By introducing a method

getMethods, each object can send its private process de�nitions to other objects. This

is not a very convenient solution since the exact type of getMethods has to be speci�ed,

Modelling Objects in PICT 15

type IntStackClass = MetaObject IntStack {- Interface Type -}

with

pushed: ![!Int],

Pushed: Ref Int

end

type IntStackImpl = IntStack {- Implementation Type -}

with

MetaObj: Ref IntStackClass,

Contents: Ref (List Int),

LocalPushed: Ref Int

end

...

def IntStack'pop [Self: IntStackImpl] = {- Method Definition in File Scope -}

if (Self.empty[]) then

raise [exitOnExn, "Pop on empty Stack!"]

else

let

val Stk = Self.Contents.get[]

val Pushed = (Self.MetaObj.get[]).Pushed

in

Self.Contents.set [cdr [Stk]];

Self.LocalPushed.set [Self.LocalPushed.get[] - 1];

Pushed.set[Pushed.get[] - 1]

end

end

Figure 7: Source code of sixth model.

which usually is not trivial and results in redundant type annotations.

Due to the fact that process de�nitions have to be opened anyway, an easier solution is

chosen. Each class declares its instance variables as reference cells in its implementation

type (Figure 7). All exported methods are de�ned globally, with a parameter of the

corresponding implementation type as an additional �rst parameter. This is the typical

implementation of C++ methods. We use name mangling to unambiguously specify the

method name

5

. The external object interface is not a�ected by this modi�cation. Within

a method, it is necessary to access instance variables or call other instance methods by

using the self-reference. This is the reason why instance variables have to be de�ned in

the implementation type. Objects can use any of the globally de�ned methods if their

implementation type is a subtype of the �rst parameter of the feature. This is important

for modelling inheritance.

An object's metaobject information is stored in a reference cell. Therefore it is possible to

change the metaobject of an object, which is necessary when objects should change their

type at runtime. This is often used in prototype based languages [Lie86]. Note that it is

only possible to change an object's metaobject when the type of the new metaobject is a

subtype of the object's metaobject type.

5

We have chosen ClassName'methodName to name methods.

16 Modelling Objects in PICT

This model has an additional property: it is the �rst model supporting dynamic binding.

Dynamic binding is only available for exported methods, but this is not a restriction,

because there is no need to bind private methods dynamically. With this model, we can

use both static and dynamic binding. In order to use dynamic binding, a method has

to be called through an object (Smalltalk terminology: sending a message to an object).

To force a method to be bound statically, we have to call this method directly without

an object. The following code fragment shows the static and the dynamic binding of the

method push of the class IntStack:

val s1 = IntStackMetaObj.Create[]

...

IntStack'push[s1,1];

6

{- static binding -}

...

s1.push[1]; {- dynamic binding -}

This example needs some explanations. In order to obtain static or dynamic binding,

di�erent call mechanisms have to be used. For static binding the method is called directly,

and for dynamic binding the method is selected through the exported interface of the

object.

In order to understand how dynamic binding works, we take a closer look at the imple-

mentation of C++, where a method table is used to select virtual methods. This table

contains pointers to all virtual methods which are de�ned (inherited, rede�ned or new de-

�ned) for the class. Each object has an unnamed hidden instance variable which belongs

to the virtual method table of the class [Bor91]. The user has no access to this instance

variable. The value of this instance variable is set in the constructor(s) of the class.

All object models we have de�ned so far do not use an explicit method table. In fact,

these models do not support dynamic binding. But we have a comparable construct which

can serve as method table { the interface record.

In the interface record, the public interface of an object is encoded. Only public methods

can be bound dynamically. Like in C++, private methods are always bound statically.

The interface record initialization hides the name mangling of the methods and provides

the user with the original call interface for the methods:

record

empty = abs [] = IntStack'empty[Self.get[]] end,

push = abs [v] = IntStack'push[Self.get[],v] end,

...

end

The anonymous process abstractions used to initialize the record values play roughly speak-

ing the role of pointers to the methods. Therefore we have a comparable implementation

of a virtual method table in PICT. Moreover, this implementation has an advantage over

the C++ solution. The current object Self is bound to the �rst parameter within the

initialization of the record �elds. There is no need to provide the current object as �rst

6

This only works if s1 is of type IntStackImpl.

Modelling Objects in PICT 17

parameter every time a method is called (like in the C++ implementation). Therefore,

the call interface of the methods remain the same according to their de�nition:

procedure push (Value: Integer);

is translated into

push = abs[v] = IntStack'push[Self.get[],v] end

which can be used like

aStackObj.push[2];

3.8 Model 7

In all the previous models we tried to obtain a su�cient data encapsulation. With the

model presented in this section, we �nally start to model inheritance.

In Figure 1 we have introduced a class IntTower, which is subclass of IntStack. As we will

see in this section, the corresponding type IntTower is also a subtype of IntStack.

Before the implementation of IntTower can be modelled, the corresponding types have to

be de�ned:

type IntTower = IntStack {- IntTower <: IntStack -}

type IntStackClass = MetaObject IntStack

with

pushed: ![!Int],

Pushed: Ref Int

end

type IntTowerClass = MetaObject IntTower

with {- IntTowerClass <: IntStackClass -}

pushed: ![!Int],

Pushed: Ref Int

end

type IntStackImpl = IntStack

with

LocalPushed: Ref Int,

Contents: Ref (List Int),

MetaObj: IntStackClass

end

type IntTowerImpl = IntStackImpl {- IntTowerImpl <: IntStackImpl -}

with

MetaObj: IntTowerClass

end

Since the class IntTower has exactly the same interface as the class IntStack, the interface

type IntTower is equal to the type IntStack (and also a subtype of IntStack). Both

classes have the same class variables and class methods, and therefore the corresponding

18 Modelling Objects in PICT

def IntTowerClass [] : IntTowerClass =

let

...

def Create [] : IntTowerImpl =

let

val Self = emptyRef [:IntTowerImpl:][]

val NewInstance =

let

val LocalPushed = ref[0]

val Contents = ref [nil[]]

in

record

empty = abs[] = IntStack'empty [Self.get[]] end,

push = abs [v] = IntTower'push [Self.get[],v] end,

...

MetaObj = MetaSelf.get[]

end

end

in

Self.set[NewInstance];

Self.get[]

end

...

in

...

end

Figure 8: Source code of seventh model.

metaobjects have an equal interface type, too. As already mentioned on Page 15, methods

de�ned for IntStack can be used by other objects if their implementation type is a subtype

of IntStackImpl. Hence it is necessary to de�ne the implementation types in a way that

IntTowerImpl is a subtype of IntStackImpl. This can be achieved by slightly modifying

the implementation type introduced in Figure 7: the object's metaobject information is

not stored in a reference cell any more, but as a constant. This is necessary because if

type A is a subtype of B, then Ref A is not a subtype of Ref B any more.

The implementation of IntTower is shown in Figure 8. It is very similar to the one of

IntStack in the previous section (Figure 7): instance methods are de�ned in the �le

scope, instance variables are implemented using reference cells. One may notice that the

private method CanPush

7

is not part of the implementation type of IntTower, but is

still has to be de�ned in the �le scope (and not in the declaration part of IntTower).

A small problem arises when a subclass rede�nes a method, but still needs to call the

inherited method (IntTower rede�nes push, but still needs the version implemented for

IntStack). Since PICT does not support operator overloading [CW85], name mangling

is used to unambiguously name methods with the "same" name, but implemented for

di�erent classes (refer also to Page 15).

Whenever inheritance is introduced, the question is whether it is possible to rede�ne

7

For the complete implementation of CanPush refer to Figure 10.

Modelling Objects in PICT 19

val StackClass : ![:T:][!(Stack T)] =

let

val pushed = ref[0]

in

abs [:T:][] =

let

val localPushed = ref[0]

val Contents = ref [nil[]]

in

record

empty = abs[] = null[Contents.get[]] end,

...

localPushed = abs [] = localPushed.get[] end

end

end

end

end

Figure 9: Source code of generic procedural stack class.

inherited features in a covariant or contravariant way [Mey88], and what the consequences

are. Well, if a method is rede�ned in a covariant way (e.g., the type of a parameter is

replaced by a subtype), the subclass is not a subtype of the superclass any more. Hence,

none of the methods or functions de�ned for the superclass can be used; they have to

be all rewritten. By rede�ning a method in a contravariant way (e.g., replacing the type

of a parameter by a supertype), the subclass is still a subtype of the superclass, but the

inherited version of a rede�ned method cannot be used any more.

In principle, we can now model all the features introduced in our object model in section 2,

but is there a better solution? We answer this question in the next section.

3.9 Model 8

In this section we will introduce a di�erent approach for modelling objects. It is based

on a Scheme [Dyb87] implementation described in [FWH92] (see also Appendix B). The

main di�erence to the previous models is that the stack class is not de�ned as a process

abstraction (using def), but as a value expression (Figure 9). This guarantees that only

one metaobject instance per class exists. Instance methods are again de�ned in the scope

of the value expression, and are therefore only accessible by objects of the corresponding

class. The implementation described in Figure 9 does not support class methods nor self-

reference, but again we can model self-reference using a reference cell according to Model

5 (which is done for the TowerClass implementation in Figure 10). Class methods will be

reintroduced in the next section.

The careful reader may have noticed that we have mentioned a few times possible ex-

tensions to our implementation in order to de�ne generic classes, even in the presence of

metaobjects. In order to show an example how generic classes can be de�ned in PICT, we

have slightly changed our implementation and de�ned a generic stack class StackClass.

The type of the value StackClass is equal to ![:T:][!(Stack T)], where the type Stack

20 Modelling Objects in PICT

val TowerClass =

abs [:T:][greater: ![T, T, !Bool]] =

let

val Self = emptyRef [:(TowerImpl T):][]

val Super = StackClass [:T:][]

def CanPush [v] = {- private method -}

if ((Self.get[]).empty[]) then

true

else

if (greater [(Self.get[]).top[], v])

then true

else false

end

end

val NewInstance =

Super with

push = abs [v] =

if (CanPush[v]) then

Super.push[v]

else

raise[exitOnExn, "Tower: Invalid Push!"]

end end

end

in

Self.set [NewInstance];

Self.get[]

end

end

Figure 10: Source code of generic procedural tower class.

is de�ned as

type Stack T =

Record

push: ![T,Sig],

pop: ![Sig],

top: ![!T],

empty: ![!Bool],

localPushed: ![!Int]

end

Due to the fact that we have only introduced explicit type annotations where it was

needed, only very few changes have to be made to the IntStack implementation in order

to obtain a generic stack.

To model inheritance, we also take a di�erent approach: we use delegation semantics. A

subclass does not inherit the features of its superclass, but has an instance of its superclass

(Figure 10). A similar approach is used in Self [US87] and Sina [Aks89, Ber94].

Modelling Objects in PICT 21

Probably this modelling needs a few words of explanation. The with operator cannot

only be used to extend a Record type with new �elds (refer to Page 12), but also to

extend and rede�ne a record value. If a �eld exists more than once, only the last �eld is

valid (all others get overwritten). This mechanism is used in TowerClass to inherit and

rede�ne features from StackClass. Due to the fact that a subclass does not inherit from

its superclass, but has an instance instead, only the exported features of the superclass

can be accessed; internal representation and implementation is not visible. This has the

consequence that dynamic binding is not possible. If the subclass rede�nes a method which

is called by another method de�ned in an ancestor class (and not rede�ned in the subclass),

the original and not the rede�ned method will be called. Although this does not seem to

be desirable, it could be a �rst approach for an object model for software composition,

because the behaviour of an object does not implicitly depend on its environment; it can

only be changed explicitly. In order to achieve dynamic binding, the superclass object

must be explicitly told which method implementation has to be called (inherited version

or rede�ned version), or a di�erent approach to implement methods has to be found.

But this model has also its advantages. Since a subclass cannot access the private instance

variables of its ancestor, its implementation does not depend on the ancestors implemen-

tation. If concurrent objects are de�ned, we think that we can omit inheritance anomalies

[MY93] by using our kind of model, but this still is a subject of current research. Another

point is that it is not necessary any more to use name mangling for naming methods; a

method foo is simply called by (Self.get[]).foo or Super.foo.

Like the stack implementation, the tower implementation described in Figure 10 is generic.

The method CanPush has to compare the top element with each item to be pushed onto

the tower. In the previous model, the operator >> is used for that, which is only de�ned

for integers (and its subtypes), but not for any other type. Because PICT does not

allow operator overloading

8

, each tower object needs a comparison operator valid for the

type of elements stored. In order to implement a generic tower, each tower object has

to be furnished with the valid comparison operator (for example with a parameter at

instantiation like in Figure 10).

3.10 Model 9

In this section, we extend the last model in order to obtain dynamic binding again. What

is the problem? When we use inheritance, we instantiate an object of the superclass.

When we rede�ne a method of the superclass, the rede�ned method will only be used in

the subtype. It is not possible to force the superclass object to use the rede�ned method.

The reason why dynamic binding is not supported by this approach is that Self within the

instance of the superclass refers to the superclass object, but not to the subclass object:

Tower Stack
Super

Self Self

To achieve the e�ect of dynamic binding, Self of the superclass object has to refer to the

8

In C++, the operator >> would simply be overloaded.

22 Modelling Objects in PICT

subclass object:

Tower Stack
Super

Self

Self

What we need is an instance of a superclass object where Self refers to the subclass object.

To do so, we introduce so-called intermediate objects where all methods and instance

variables of a class are de�ned, but where Self is unbound: all methods have an additional

�rst parameter Self. The metaobject of each class de�nes a process CreateIntermediate

(comparable with a generator in [Coo89, CP94]) where the intermediate object of the class

is de�ned:

def CreateIntermediate[] = {- defined in IntStackClass -}

let

val LocalPushed = ref[0] {- private instance variables -}

val Contents = ref[nil[]]

in

record

empty = abs [Self: IntStackImpl] = null[Contents.get[]] end,

push = abs [Self: IntStackImpl, v] = ... end,

...

localPushed = abs [Self: IntStackImpl] = LocalPushed.get[] end

end

end

In the Create method of the metaobject, an intermediate object is created, each exported

method is bound to a method de�ned in the intermediate object, and the correct binding

of Self is established. Like in the previous model, an empty reference cell is used to model

self-reference.

def Create[] : IntStack = {- defined in IntStackClass -}

let

val IntStackIntermediate = CreateIntermediate[]

val Self = emptyRef[:IntStackImpl:][]

val NewInstance =

record

empty = abs [] = IntStackIntermediate.empty[Self.get[]] end,

push = abs [v] = IntStackIntermediate.push[Self.get[], v] end,

...

end

in

Self.set[NewInstance]

Self.get[]

end

Besides the implementation of all public class methods and the method Create, which

creates new objects (like in the previous model), the metaobject exports the method

CreateIntermediate. This method returns a fresh copy of an intermediate object of the

class.

The modelling of inheritance is now straightforward. In order to reuse the methods de�ned

in an ancestor class, the metaobject of a class gets a fresh copy of the intermediate object

Modelling Objects in PICT 23

of its direct superclass. This intermediate object is then used to de�ne the intermediate

object of the class itself. It is possible to (i) override methods, (ii) de�ne new methods,

and (iii) call inherited methods.

def CreateIntermediate[] = {- defined in IntTowerClass -}

let

val SuperIntermediate = IntStackClass.CreateIntermediate[]

def CanPush [Self: IntTowerImpl, v] = ...

{- check whether v is smaller than top -}

in

SuperIntermediate with

push = abs [Self: IntTowerImpl, v] =

if (CanPush[Self,v]) then

SuperIntermediate.push[Self,v]

else

raise[exitOnExn,"Tower : Invalid Push"]

end end

end

end

The Create method of the tower metaobject is de�ned in the same way as in the stack

class. For the complete code of the stack and tower classes, refer to Appendix C.

A further change in comparison to Model 4 is that private instance variables have been

removed from the implementation type. The way we use delegation does only allow the

access to public features. We think that the implementation type can be used to model

protected features, but this is a topic of future research.

The reader should note that this model has the disadvantage that the method

CreateIntermediate is exported by the metaobject. This violates data encapsulation,

but it is necessary to obtain code reuse. There is no need that a client of an object uses

this method.

4 Conclusion and future work

In the last section we have introduced several implementations of object models. The idea

behind the work was not to �nd only one implementation for a speci�c model, but to

obtain an object modelling workbench for PICT. Using this workbench, it will be easier to

de�ne a suitable object model for software composition. We did not only try to keep the

implementations simple, but also tried to write generic code in order to reuse code as much

as possible. All the models we have presented so far are sequential models. Although the

goal is to �nd a concurrent object model, we have concentrated on sequential aspects of

object models as a �rst step. Besides �nding other implementations, the de�nition and

mapping of a concurrent object model will be the goal of our future work, as a next step

towards an object model for a composition language.

PICT is a suitable language for modelling objects, although there are a few language

features which make modelling a bit di�cult. First of all, recursive types do not only

require explicit folding and unfolding by the programmer, but no subtype relation can be

established between them. Reference cells are very handy to model variables, but they do

24 Modelling Objects in PICT

require a more sophisticated concurrency control, and they interfere with subtype relations

(if the type A is a subtype of B, then Ref A is neither a subtype of Ref B nor vice versa),

too.

There are some features which could be introduced into PICT in order to obtain a more

e�cient code reuse. For example, it should be possible to annotate the type parameters

of a type operator with an upper bound

9

, like

type T = ...

type TO (X: T) = ...

The type operator TO can now only be used when its type parameter is of type T. Especially

in the context of de�ning record types for objects this would be very handy. A useful

extension would be a type operator to merge two given Record types to get one record

type, and another operator to merge two record values to form one record.

In PICT it is possible to have anonymous process de�nitions (using abs), but it is not

possible to have anonymous type de�nitions. Sometimes it would be easier to declare

a value (with no type annotation) and use the type of the previously declared value to

de�ne another type or value. This could be achieved by introducing a typeof operator,

returning the static type of an expression. This operator could then be used in a context

where a type is required.

Last but not least, in none of our object models it was possible to compare objects. Since

objects are modelled as records, a generic comparison operator for records is required,

which is not available in the current version of PICT. A solution to this problem is the

assignment of an unique integer value to each object, which can be used to compare

objects. Of course this can only be used to check whether to variables have a reference to

the same object, but it is not possible to compare to nonidentical objects having the same

abstract representation.

Probably a very challenging work would be to �nd a minimal set of extensions to PICT in

order to get a real object-oriented programming language (like CLOS is an object-oriented

extension to Common Lisp [KdRB91]).

Acknowledgements

We thank all the members of the Software Composition Group for their support of this

work, especially Oscar Nierstrasz and Patrick Varone, and Benjamin Pierce and Manuel

Barrio for reviewing and many helpful comments.

References

[Aks89] Memeth Aksit. On the Desing of the Object-Oriented Language Sina. PhD

thesis, University of Twente, NL, 1989.

9

Similar to constraint genericity in Ei�el.

Modelling Objects in PICT 25

[Ber94] Lodewijk Bergmans. Composing Concurrent Objects. PhD thesis, University

of Twente, NL, June 1994.

[BF95] A. Burda and G. F�arber. Das grosse Buch zu DELPHI. Data Becker, 1995.

[BL94] Michel Beaudouin-Lafon. Object-oriented Languages: Basic principles and pro-

gramming techniques. Chapman & Hall, 1994.

[Bor91] Open Architecture Handbook. Borland International Inc., Scotts Valley, CA,

1991.

[BS95a] Manuel Barrio Solorzano. Estudio de Aspectos Dinamicos en Sistemas Orien-

tados al Objecto. PhD thesis, Universidad de Valladolid, September 1995.

[BS95b] S�ren Brandt and Ren�e W. Schmidt. The Design of a Meta-Level Architecture

for the BETA Language. In Proceedings of META '95: Workshop on Advances

in Metaobject Protocols and Reection at ECOOP '95, August 1995.

[Chi95] Shigru Chiba. A Metaobject Protocol for C++. In Proceedings of OOPSLA

'95, volume 30 of ACM SIGPLAN Notices, pages 285{299, October 1995.

[Coo89] William R. Cook. A Denotational Semantics of Inheritance. PhD thesis, De-

partment of Computer Science, Brown University, Providence, RI, May 1989.

[CP94] William Cook and Jens Palsberg. A denotaional semantics of inheritance and

its correctness. Information and Computation, 114(2):329{350, 1994.

[CW85] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction,

and Polymorphism. ACM Computing Surveys, 17(4):471{522, December 1985.

[Dyb87] R. Kent Dybvig. The SCHEME Programming Language. Prentice Hall, 1987.

[FWH92] Daniel P. Friedman, Mitchell Wand, and Christopher T. Hayens. Essentials of

Programming Languages. McGraw-Hill, 1992.

[GR89] Adele Goldberg and David Robson. Smalltalk-80: The Language. Addison-

Wesley, September 1989.

[Jon93] Cli� B. Jones. A Pi-Calculus Semantics for an Object-Based Design Notation.

In E. Best, editor, Proceedings of CONCUR'93, LNCS 715, pages 158{172.

Springer, 1993.

[KdRB91] Gregor Kiczales, Jim des Rivi�eres, and Daniel G. Bobrow. The Art of the

Metaobject Protocol. MIT Press, 1991.

[Lie86] Henry Lieberman. Using Prototypical Objects to Implement Shared Behaviour

in Object Oriented Systems. In Proceedings OOPSLA '86, volume 21 of ACM

SIGPLAN Notices, pages 214{223, November 1986.

[Men94] Tom Mens. A survey on formal models for OO. Technical Report vub-tinf-tr-

94-03, Department of Computer Science, Vrije Universiteit Brussel, Belgium,

1994.

26 Modelling Objects in PICT

[Mey88] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, 1988.

[Mey92] Bertrand Meyer. Ei�el: the Language. Prentice Hall, 1992.

[Mil89] Robin Milner. A calculus of mobile processes, part I+II. Technical Report ECS-

LFCS-89-85, Computer Science Department, University of Edinburgh, UK,

1989.

[Mil91] Robin Milner. The polyadic Pi-calculus: a tutorial. Technical Report ECS-

LFCS-91-180, Computer Science Department, University of Edinburgh, UK,

October 1991.

[MY93] Satoshi Matsuoka and Akinori Yonezawa. Analysis of inheritance anomaly

in object-oriented concurrent programming languages. In Gul Agha, Peter

Wegner, and Akinori Yonezawa, editors, Research Directions in Concurrent

Object-Oriented Programming, pages 107{150. MIT Press, 1993.

[ND95] Oscar Nierstrasz and Laurent Dami. Component-Oriented Software Technol-

ogy. In Oscar Nierstrasz and Dennis Tsichritzis, editors, Object-Oriented Soft-

ware Composition, pages 3{28. Prentice Hall, 1995.

[NGT92] Oscar Nierstrasz, Simon Gibbs, and Dennis Tsichritzis. Component-Oriented

Software Development. Communications of the ACM, 35(9):160{165, Septem-

ber 1992.

[Nie92] Oscar Nierstrasz. Towards an Object Calculus. In Mario Tokoro, Oscar Nier-

strasz, and Peter Wegner, editors, Proceedings of ECOOP 1991 Workshop on

Object-based Concurrent Computing, LNCS 612, pages 1{20. Springer, 1992.

[NM95] Oscar Nierstrasz and Theo Dirk Meijler. Requirements for a Composition Lan-

guage. In Paolo Ciancarini, Oscar Nierstrasz, and Akinori Yonezawa, editors,

Object-Based Models and Languages for Concurrent Systems, LNCS 924, pages

147{161. Springer, 1995.

[Pae93] Andreas Paepcke, editor. Object-Oriented Programming: The CLOS Perspec-

tive. MIT Press, 1993.

[Pie95a] Benjamin C. Pierce. Pict User Manual. Computer Laboratory, University of

Cambridge, UK, May 1995.

[Pie95b] Benjamin C. Pierce. Programming in the Pi-Calculus: An experiment in con-

current language design. Technical report, Computer Laboratory, University

of Cambridge, UK, May 1995. Tutorial Notes for Pict Version 3.6a.

[PT95] Benjamin C. Pierce and David N. Turner. Concurrent Objects in a Process

Calculus. In Takayasu Ito and Akinori Yonezawa, editors, Theory and Practice

of Parallel Programming (TPPP), LNCS 907, pages 187{215. Springer, April

1995.

[Str94] Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994.

Modelling Objects in PICT 27

[Tur96] David N. Turner. The Polymorphic Pi-Calculus: Theory and Implementation.

PhD thesis, Department of Computer Science, University of Edinburgh, UK,

1996.

[US87] David Ungar and Randall B. Smith. SELF: The Power of Simplicity. In Pro-

ceedings OOPSLA'87, volume 22 of ACM SIGPLAN Notices, pages 227{242,

December 1987.

[Var96] Patrick Varone. Implementation of "Generic Synchronization Policies" in

PICT. Technical Report IAM-96-005, University of Bern, Institute of Com-

puter Science and Applied Mathematics, February 1996.

[Wal95] David J. Walker. Objects in the Pi-Calculus. Information and Computation,

116(2):253{271, 1995.

A Complete IntStack and IntTower classes

Stack = class f

�elds

stack: array[1..N] of integer;

top: integer;

methods

procedure Push (value: integer);

procedure Pop ();

function Top (): integer;

g

procedure Stack.Push (value: integer) f

top := top + 1;

stack[top] := value;

g

procedure Stack.Pop () f

top := top - 1;

g

function Stack.Top (): integer f

return stack[top];

g

Tower = class Stack f

methods

procedure Push (value: integer);

function CanPush (value: integer): boolean;

g

28 Modelling Objects in PICT

function Tower.CanPush (value: integer): boolean f

if top = 0

then return true;

else return value < Top ();

g

procedure Tower.Push (value: integer) f

if CanPush (value)

then Stack.Push (value);

else error.Write ("push impossible");

g

B Procedural stack class implementation in Scheme

This Scheme implementation can be found in [FWH92] on page 215.

(define make-stack

(let ((pushed 0))

(lambda ()

(let ((stk '()) (local-pushed 0))

(lambda (message)

(case message

((empty?) (lambda () (null? stk)))

((push!) (lambda (x)

(set! pushed (+ pushed 1))

(set! local-pushed (+ local-pushed 1))

(set! stk (cons x stk))))

((pop!) (lambda ()

(if (null? stk)

(error "Stack: Underflow")

(begin

(set! pushed (- pushed 1))

(set! local-pushed (- local-pushed 1))

(set! stk (cdr x stk))))))

((top) (lambda ()

(if (null? stk)

(error "Stack: Underflow")

(car stk))))

((local-pushed) (lambda () local-pushed))

((pushed) (lambda () pushed))

(else (error "Stack: Invalid message" message))))))))

Modelling Objects in PICT 29

C Procedural stack classes with dynamic binding

{---- class IntStack --}

type IntStack =

Record

empty: ![!Bool],

push: ![Int,Sig],

pop: ![Sig],

top: ![!Int],

localPushed: ![!Int]

end

type IntStackImpl = IntStack

type IntStackIntermediate =

Record

empty: ![IntStackImpl,!Bool],

push: ![IntStackImpl,Int,Sig],

pop: ![IntStackImpl,Sig],

top: ![IntStackImpl,!Int],

localPushed: ![IntStackImpl,!Int]

end

type IntStackClass =

Record

pushed: ![!Int],

GetClassName: ![!String],

Create: ![!IntStack],

CreateIntermediate: ![!IntStackIntermediate]

end

val IntStackClass =

let

val MetaSelf = emptyRef [:IntStackClass:][] {- Self reference -}

val Pushed = ref[0] {- class variable -}

def pushed [] = Pushed.deref[] {- class method -}

def CreateIntermediate [] : IntStackIntermediate =

let

val LocalPushed = ref[0]

val Contents = ref[nil[]]

def empty [Self: IntStackImpl] = null[Contents.deref[]]

def push [Self: IntStackImpl, newval] =

LocalPushed.set[LocalPushed.deref[] + 1];

Pushed.set[Pushed.deref[] + 1];

Contents.set[cons [newval, Contents.deref[]]]

def pop [Self: IntStackImpl] =

if (Self.empty[]) then

raise[exitOnExn,"Pop on empty stack!"]

else

Pushed.set[Pushed.deref[] - 1];

LocalPushed.set[LocalPushed.deref[] - 1];

30 Modelling Objects in PICT

Contents.set[cdr[Contents.deref[]]]

end

def top [Self: IntStackImpl] =

if (Self.empty[]) then

raise[exitOnExn,"Top on empty stack!"]

else

car[Contents.deref[]]

end

def localPushed [Self: IntStackImpl] = LocalPushed.deref[]

in

record

empty = empty,

push = push,

pop = pop,

top = top,

localPushed = localPushed

end

end

def Create [] : IntStackImpl =

let

val Self = emptyRef [:IntStackImpl:][] {- Self reference -}

val IntermediateSelf = CreateIntermediate[]

val NewInstance =

record

empty = abs[] = IntermediateSelf.empty[Self.deref[]] end,

push = abs[v] = IntermediateSelf.push[Self.deref[],v] end,

pop = abs[] = IntermediateSelf.pop[Self.deref[]] end,

top = abs[] = IntermediateSelf.top[Self.deref[]] end,

localPushed = abs[] =

IntermediateSelf.localPushed[Self.deref[]] end

end

in

Self.set[NewInstance]; {- binding of Self -}

Self.deref[]

end

val NewMetaInstance =

record

pushed = pushed,

GetClassName = abs [] = "IntStackClass" end,

Create = Create,

CreateIntermediate = CreateIntermediate

end

in

MetaSelf.set[NewMetaInstance]; {- binding of Self -}

MetaSelf.deref[]

end

{---- class IntTower --}

type IntTower = IntStack

Modelling Objects in PICT 31

type IntTowerImpl = IntTower

type IntTowerIntermediate = IntStackIntermediate

with

push: ![IntTowerImpl,Int,Sig]

end

type IntTowerClass = IntStackClass

with

Create: ![!IntTower],

CreateIntermediate: ![!IntTowerIntermediate]

end

val IntTowerClass =

let

val MetaSelf = emptyRef [:IntTowerClass:][] {- Self reference -}

def CreateIntermediate [] =

let

val SuperIntermediate = IntStackClass.CreateIntermediate[]

def CanPush [Self: IntTowerImpl, v] =

if (Self.empty[]) then

true

else

if (Self.top[] >> v)

then true

else false

end

end

def push [Self: IntTowerImpl, newval] =

if (CanPush[Self,newval]) then

SuperIntermediate.push[Self,newval]

else

raise[exitOnExn,"Tower: Invalid Push!"]

end

in

SuperIntermediate

with

push = push

end

end

def Create[] : IntTowerImpl =

let

val Self = emptyRef [:IntTowerImpl:][] {- Self reference -}

val IntermediateSelf = CreateIntermediate[]

val NewInstance =

record

empty = abs[] = IntermediateSelf.empty[Self.deref[]] end,

push = abs[v] = IntermediateSelf.push[Self.deref[],v] end,

pop = abs[] = IntermediateSelf.pop[Self.deref[]] end,

top = abs[] = IntermediateSelf.top[Self.deref[]] end,

localPushed = abs[] =

32 Modelling Objects in PICT

IntermediateSelf.localPushed[Self.deref[]] end

end

in

Self.set[NewInstance];

Self.deref[]

end

val NewMetaInstance = IntStackClass

with

GetClassName = abs[] = "IntTowerClass" end,

Create = Create,

CreateIntermediate = CreateIntermediate

end

in

MetaSelf.set[NewMetaInstance];

MetaSelf.deref[]

end

