
Classi�cation and Postprocessing of Documents

Using an Error-correcting Parser

H. Bunke, R. Liviero

Institut f�ur Informatik und angewandte Mathematik, University of Bern

Neubr�uckstr. 10, CH-3012 Bern, Switzerland

bunke@iam.unibe.ch

Abstract: In this paper an error-correcting parsing algorithm and its application

to a postprocessing task in the context of automatic check processing is described.

The proposed method has shown very good results in terms of recognition accuracy

and execution speed on both real and synthetic data.

1 Introduction

The recognition of machine printed characters has been intensively studied during

the past years and signi�cant progress has been made [1]. For example, there exist

commercial OCR systems that achieve a correct recognition rate of over 99% today

[2]. But depending on the particular application, such a high recognition rate may

be still insu�cient. In order to further improve recognition accuracy, contextual

postprocessing is often very useful. Di�erent contextual postprocessing methods

have been proposed in the literature. They are based, for example, on n-gram

statistics [3,4], or dictionary search [5,6]. A recent survey on contextual processing

has been given in [7]. For earlier overviews see [8,9].

In the present paper we propose the application of �nite state automata and error-

correcting parsing to solve a particular postprocessing problem occurring in the

context of automatic check reading. The proposed method is not only an aid to

recover from OCR errors but also to classify a document, i.e. a check, based on its

contents in the presence of OCR errors. In the next section we give a description of

the formal concepts underlying the proposed approach. The particular problem and

its solution will be described in Section 3. Experimental results will be presented in

Section 4. Finally, Section 5 concludes the paper.

1

2 Theoretical Foundations

In this section we give a brief review of error-correcting parsing, which serves as

theoretical foundation of the method described in Section 3. We will restrict our-

selves to regular languages as this is su�cient for the considered application. The

algorithm presented in this section is a restricted version of the parser introduced

in [10]. Similar algorithms have been described in [11,12]. The following de�nitions

are taken from [13].

We consider a �nite alphabet X = fx

1

; : : : ; x

n

g of symbols. The set of all words

over X, including the empty word �, is denoted by X

�

. A (deterministic) �nite

state automaton (fsa) over X is a 5-tuple A = (Q;X; �; q

0

; F) where Q is the �nite

set of states, q

0

2 Q is the initial state, F � Q is the set of �nal states, and

� : Q�X ! Q is the transition function. The transition function can be extended

to � : Q�X

�

! Q be de�ning �(q; �) = q for any q 2 F , and �(q; xa) = �(�(q; x); a)

for any x 2 X

�

and a 2 X. The language L(A) accepted by a fsa A is de�ned by

L(A) = fxjx 2 X

�

^ �(q

0

; x) 2 Fg. This means that L(A) consists of all words x

over X for which there exists a sequence of state transitions, de�ned by �, from q

0

to a �nal state. It is well known that the class of languages accepted by fsa's is

identical to the class of languages of Chomsky-type 3 [13]. These languages are also

called regular.

Before describing our error-correcting parsing algorithm, we need to introduce the

concept of string distance. The errors produced by OCR devices can be classi�ed into

three types, namely deletion, insertion, and substitution of a symbol. These three

types of errors are also called edit operations. In order to model the fact that certain

errors are more likely to occur than others, each edit operation s gets assigned a

cost c(s), which is a non-negative integer. Given a sequence S = s

1

; s

2

; : : : ; s

n

of n edit operations, its cost is de�ned as c(S) =

P

n

i=1

c(s

i

). Now for any two

words x and y over an alphabet X, the string distance d(x; y) is de�ned as the

minimum cost taken over all sequences of edit operations that transform x into y.

Formally, d(x; y) = minfc(S)jS is a sequence of edit operations transforming x into

yg. Algorithms for the actual computation of d(x; y) have been described in [14-16].

The task of a parser is to decide, for a given word x and language L, if x 2 L.

The fsa A of any language L = L(A) can be used as a parser in a straightforward

way by starting with the initial state and traversing the states of A according to �

and the actual input word x. After reading x we are in some state �(q

0

; x). Now if

�(q

0

; x) 2 F then we conclude x 2 L(A), otherwise x 62 L(A). In error-correcting

parsing, we are given a fsa A and a string x that does not necessarily belong to

L(A). If x 2 L(A) then the error correcting parser is supposed to report this fact.

Otherwise, if x 62 L(A), the error-correcting parser has to �nd string y such that

d(x; y) = minfd(x; z)jz 2 L(A)g and outputs d(x; y). In other words, it has to �nd

that element of L(A) that has the smallest edit distance to the input x.

The pseudo code of an error-correcting parsing algorithm for Chomsky-type 3 lan-

2

guages is given in Fig. 1. This algorithm constructs a list L(i) for each input symbol

x

i

. Additionally, there is an initial list L(0). Each list contains a number of elements

of the form (q; c) where q 2 Q and c is the cost of a sequence of edit operations.

More precisely, if (q; c) 2 L(i) then there exists a string y such that d(x

1

: : : x

i

; y) = c

and �(q

0

; y) = q. In other words, if L(i) contains (q; c) then we know that after read-

ing x

1

: : : x

i

state q can be reached if we apply a sequence of edit operations with

cost c to x

1

: : : x

i

. Furthermore, we know that there is no other such sequence of

edit operations with a smaller cost. This property implies that after L(n) has been

constructed, the cost c of the element (q; c) = min

c

0

f(q

0

; c

0

)jq

0

2 Fg is our desired

output. In the formulation of the algorithm given in Fig. 1, we assume constant

cost ins, del and subst for any insertion, deletion, and substitution, respectively.

These costs are global variables to the algorithm. However, the algorithm can be

easily extended to the case where each insertion, deletion, and substitution may

have assigned its individual cost.

The algorithm uses two functions. The function next(q) returns the set of successor

states of q 2 Q under any symbol. More precisely,

next(q) = fq

0

j�(q; a) = q

0

; a 2 Xg:

Let L(i) be a list and (q; c) a list element. Then add((q; c); L(i)) constructs a new

list L

0

(i) as speci�ed below

L

0

(i) =

8

>

<

>

:

L(i) [(q; c) if L(i) contains no list element (q; c

0

) for any c

0

(L(i)� (q; c

0

) [(q; c) if L(i) contains a list element (q; c

0

) with c < c

0

L(i) otherwise

Obviously, add((q; c); L(i)) keeps track of the minimum cost necessary to reach a

certain state after reading x

1

: : : x

i

. It can be easily concluded that the time and

space complexity of the error-correcting parsing algorithm are O(n �m), where n is

the length of the input word and M denotes the number of states of the fsa. The

correctness of the algorithm follows, as a special case, from the correctness of the

algorithm described in [10].

As an example, consider the alphabet X = f0; 1; : : : ; 9g, the input string x =

x

1

x

2

x

3

= 854, and the fsa shown in Fig. 2, where Q = fA;B;C;D;Eg, q

0

= A,

F = fB;Eg. The transition function is represented by the labeled arcs where 5-7

and 0-9 are abbreviations for 5,6,7 and 0; 1; : : : ; 9, respectively. The lists produced

by the algorithm are shown in Table 1. The elements of these lists have been

consecutively numbered, see column 2. Column 3 shows the list elements (q; c).

From the elements (E; 1) and (B; 2) in L(3) we conclude that the desired result is

equal to 1, i.e., minfd(x; z)jz 2 L(A)g = 1.

It is easy to augment the algorithm shown in Fig. 1 by pointers that allow to extract

the word y in the language that has the minimum edit distance to the input, i.e. the

word y with d(x; y) = minfd(x; z)jz 2 L(A)g. The pointers just indicate for each

list element (q; c) from which other element it has been generated by means of which

edit operation. The pointers that are generated in the example are shown in the

3

last column of Table 1. The notation DEL(i), INS(i) etc. means that the actual list

element has been generated from the list element with running number i by means of

a deletion, insertion etc. edit operation. If we trace back the pointers from element

(E; 1) in L(3) to (A; 0) in L(0) then we see that for any string y 2 f804; 554; 654; 754g

we have d(x; y) = 1. In conclusion, it needs at least one edit operation to transform

x = 854 into an element y = L(A), and there are four words in L(A), namely 804,

554, 654, and 754 that have an edit distance to x that is equal to 1.

3 Problem Description and Proposed Solution

The application area considered in this paper is the automatic reading of checks.

Over thirty di�erent types of checks, each having an individual layout format, are

commonly used for money transfer in Switzerland. An example is shown in Fig.

3. Although a large number of such checks are submitted daily, their processing at

banks and post o�ces is only partly automated. That is, only the so-called coding

line on a check is read by machine. The coding line is in the lower right part of a

check. Its location is prede�ned and is the same for all di�erent types, i.e. layout

formats, of checks. For a graphical illustration see Fig. 3.

The coding line of each check follows a prede�ned format. This format, however,

depends on the particular type of check. The de�nition of the format of the coding

line of the check in Fig. 3 is given in Table 2. The format de�nition of another type

of check is given in Table 3. The ultimate goal of automatically reading the coding

line on a check is not only to correctly recognize the sequence of characters on the

coding line, but also to infer the meaning of each character. That is, one wants to

assign an interpretation to each character in the sense of the de�nition shown in

Table 2 or 3. For example, when processing the check in Fig. 3, we intend to derive

a result similar to Table 4.

Apparently, if the type of a check were known, the inference of the meaning of each

character on the coding line would be more or less trivial because the format of the

coding line for a given type of check is precisely de�ned. In reality, however, the

type of a check is not known as only the coding line on a check - and nothing else -

is captured by the scanning device. Therefore, in order to infer the meaning of each

character on the coding line, we �rst have to determine the type of the actual check

using only the sequence of characters on the coding line. Solving this task is not

trivial as at least two subproblems are encountered. First, the formats of the coding

lines of di�erent types of checks may be similar to each other, and secondly, there

may be OCR errors resulting in the insertion, deletion, or substitution of characters

on the coding line.

An outline of the complete process of check processing is shown in Fig. 4. The

OCR module digitizes the coding line on a check, extracts the individual characters,

and feeds them into an OCR program. The postprocessing module compares the

4

sequence of characters output by the OCR module to the format de�nitions of the

coding lines and determines the type of check that �ts best. This process yields the

meaning of each character on the coding line (as shown in Table 4) as a by-product.

Our actual comparison procedure is an error-correcting parser [10] that is controlled

by a regular grammar, which describes the coding line formats of all di�erent types

of checks. In the present paper, we concentrate on the postprocessing module.

The legal symbols occurring on the coding line are from the alphabetX = f0; 1; : : : ; 9;

<;>;+; spaceg. The coding line of each type of check consists of a sequence of logical

units, where a logical unit is one of the following (see also Tables 2 and 3):

(1) a sequence of �xed length l � 1 of arbitrary symbols from a subset of X;

(2) one out of a �nite number of constant sequences of symbols;

(3) a range of integer values;

(4) a date;

(5) a parity digit.

Obviously each of the logical units from the above list can be represented by a fsa

in a straightforward way. For example, a sequence of length two of arbitrary digits

can be represented by the fsa shown in Fig. 5. The fsa in Fig. 2 represents the

range [500 : : : 809]. The set of dates in format MMDD is de�ned by the fsa in Fig.

6. Also sequences of numbers with parity digits can be easily represented by fsa.

Consequently, any coding line can be represented by concatenation a number of

fsa's, each de�ning one of the types (1) to (5) from the list above.

The fsa's that represent the coding lines of the di�erent types of checks in our system

have been generated from their de�nitions. Given these fsa's and the sequence

of symbols output by the OCR-module (see Fig. 4), the error-correcting parser

described in Section 2 can be applied. It determines the most similar type of check

for a given input coding line based on the minimum edit distance. Thus the actual

check can be classi�ed into one of the types de�ned a priori. Evaluating the pointers

set by the algorithm, the meaning of the characters on the actual coding line can be

determined (see Table 4).

4 Experimental Results

The error-correcting parser described in Section 2 has been implemented in C un-

der MS-DOS and UNIX and runs on both personal computers and workstations.

As the printing quality of the characters on the coding lines of the checks under

consideration is generally quite good, the error rate of the OCR-module (see Fig.

5

4) can be expected fairly low. Consequently, we have de�ned an error threshold T

for our error-correcting parser. As soon as the cost c of a pair (q; c) in any of the

lists L(i) exceeds this threshold, i.e. c > T , the item (q; c) is not included in L(i).

Practically, this prevents any item which will not contribute to the �nal solution

from being considered, and thus speeds up the algorithm. Theoretically, it reduces

the time complexity of the parser from O(n �m) to O(n � T) (see Section 2). The

concrete value of T has been varied in our experiments as will be described below.

A number of experiments were done aiming at the classi�cation of a check into its

type based on the output of the OCR-module (see Fig. 4). The 14 most frequent

check types, i.e. 14 di�erent fsa's, were used in these experiments. As OCR-module,

a commercial product was used. Particularly, we were interested in error rate and

reliability depending on the error threshold T . Let N = N

1

+ N

2

+ N

3

where N

denotes the total number of checks, and N

1

, N

2

, N

3

are the number of rejected,

correctly, and incorrectly classi�ed checks, respectively. From these numbers, we

de�ne the rejection rate R = N

1

=N , the correct recognition rate C = N

2

=N , the

substitution error rate E = N

3

=N , and the reliability rate L = N

2

=(N � N

1

). We

will say that the word x has the distance i � 1 to the language L(A), d(x; L(A)) = i,

where A is a fsa, if (1) x 62 L(A), (2) there exists y 2 L(A) with d(x; y) = i, and (3)

there is no z 2 L(A) with d(x; z) < d(x; y). If x 2 L(A) then x has distance zero to

L(A).

In our �rst experiment, we used 2'455 coding lines that came from real checks. The

result of this experiment is shown in Table 5. There were 99,27% of all checks

correctly classi�ed with T = 0. This means that one or more OCR error occurred

in 0,73% of all checks such that a word x 2 L(A) was transformed into another

word x

0

62 L(A). As E = 0, no word x 2 L(A) was transformed into another

word x

0

2 L(A

0

), A

0

6= A. With T = 1, all distorted words x with distance 1 to

L(A) have been correctly classi�ed. The remaining words x

0

were rejected because

d(x

0

; L(A)) > 1 for any fsa A. Finally, setting T = 2, all words were correctly

classi�ed. For T = 2, the execution speed is over 100 documents per second on a

pc.

It can be concluded from the �rst experiment that the error-correcting parser pro-

posed in this paper is a very suitable tool for the classi�cation of checks in a real

world scenario. In order to reveal the limitations of the method, we did another

experiment with more di�cult data. That is, we arti�cially synthesized coding lines

with varying degrees of distortion. In the process of data generation, a correct

coding line x 2 L(A) was produced �rst. Then one edit operation (i.e., deletion,

insertion, or substitution) after the other was applied according to some prede�ned

probability until a word y with d(y; L(A)) = d was obtained, where d was the desired

edit distance, i.e. degree of distortion.

In the second experiment, a set of 2'173 syntactically correct coding lines was gener-

ated �rst. Then each correct coding line x was transformed into a distorted version

y with d(x; y) = d = 1; 2; : : : ; 5. The results of this experiment, depending on d and

6

T , are shown in Tables 6, a) to e). As an example, we comment on the numbers

given in Table 6e). All other tables have a similar interpretation. For error threshold

T = 0, 0,28% of all distorted words y still belong to L(A), while 99,72% don't belong

to L(A

0

) for any fsa A

0

. As E = 0, no x 2 L(A) was transformed into y 2 L(A

0

)

with A 6= A

0

. For error threshold T = 1, more words are correctly classi�ed and

less are rejected. Rejection of y may be caused by the fact that d(y; L(A

0

)) > 1

for any fsa A

0

, or by a tie, i.e. by the existence of more than one fsa's A

0

with

d(y; L(A

0

)) = 1. The fact that E is greater than zero now is an indication that some

x 2 L(A) are transformed in y such that d(y; L(A

0

)) = 1 for some A

0

6= A. The

rates for T = 2, 3, 4 have a similar interpretation. Finally, for T = 5 we observe

that 87,62% of all words are correctly classi�ed. These words are characterized by

the fact that if x 2 L(A), then the distorted version y of x ful�lls d(y; L(A)) = 5

and d(y; L(A

0

)) > 5 for any other fsa A

0

. Furthermore 9,89% of all strings are re-

jected because of ties, i.e., if x 2 L(A), then for its distorted version y, we have

d(y; L(A)) = d(y; L(A

0

)) = 5 for at least one A

0

6= A. Moreover, 2,49% of all strings

are incorrectly classi�ed because the distorted version y of x 2 L(A) has a distance

d smaller than 5 to some other language L(A

0

); A

0

6= A. The identical numbers of

E for T = 4 and T = 5 are not a coincidence. If y is a distorted version of x with

i errors, then E for T = i� 1 and T = i must be necessarly the same. The reason

is that for T = i � 1, E is equal to the percentage of words that have a distance

greater than i to A and a distance less than i to some A

0

, A

0

6= A. Increasing the

error threshold from i� 1 to i doesn't result in any change of E because there is no

string with a distance greater than i to A. Note that for any T > 5, the entities C,

R, E, and L will be the same as for T = 5. Therefore, it is su�cient to give only

values up to T = 1; 2; 3; 4 and 5 in Tables 6, a, b, c, d, and e, respectively.

5 Summary, Discussion and Conclusions

A postprocessing module for automatic check processing was proposed in this paper.

It is based on an error correcting parser fo regular languages. The method has

been tested on a large number of real and syntesized data, and has shown very

good performance, in terms of classi�cation and error-correcting accurracy, and

computational e�ciency. In an experiment with over 2'000 real checks, a correct

classi�cation rate of 100% has been achieved with an appropriate error threshold

T = 2.

One additional strength of the method is that it can be easily adapted to new

types of coding lines. Earlier (commercial) postprocessing modules were mainly

\handcrafted", i.e. heuristically designed

1

. A serious drawback of this approach is

that the whole postprocessing module has to be redesigned from scratch if a new type

of check is to be taken into account, or an old one is rede�ned. By contrast, in the

1

According to various personal communications.

7

present system, all format de�nitions can be kept in a database and automatically

converted into their corresponding fsa

2

. Thus, any updates or modi�cations of the

coding line format de�nitions can be handled by our system at almost zero cost.

A theoretical alternative to the method proposed in this paper is not to represent a

coding line by means of a fsa, but by the �nite set of all its possible instances, i.e.

words, and to use an algorithm for string edit distance computation [14-16] instead

of the error-correcting parser. As the number of di�erent coding lines is �nite for

any type of check, this method is equivalent to the one proposed in this paper from

the theoretical point of view. In practice, however, it can be expected much slower

because of the large number of di�erent prototype strings that are to be tested.

Finally, we would like to mention that the parser described in Section 2 is not

restricted to the application described in Section 3. It is rather a general tool that

may have applications in many other OCR contextual postprocessing tasks.

References

[1] Pavlidis, T. and Mori, S. (eds.): Optical Character Recognition, Special Issue

of Proceedings of the IEEE, Vol. 80, No. 7, July 1992, 1027-1209

[2] Rice, S.V., Kanai, J. and Norther, T.A.: An evaluation of OCR accuracy, in

UNLV Inform. Sci. Research Inst., Annual Reprot, 1993, 9-39

[3] Riseman, E.M. and Hanson, A.R.: A contextual postprocessing system for error

correction using binary n-grams, IEEE Trans. on Computers, Vol. C-23, May

1974, 480-493

[4] Hull, J.J. and Srihari, S.N.: Experiments in text recognition with binary n-gram

and viterbi algorithms, IEEE Trans. PAMI, Vol. PAMI-4, Sept 1982, 520-530

[5] Downtown, A.C. and Tregido, R.W.S.: The use of a trie structured dictionary

as a contextual aid to recognition of handwritten british postal addresses, Proc.

1st ICDAR, Saint-Malo, France, 1991, 542-550

[6] Leroux, M., Salome, J.C. and Badard, J.: Recognition of cursive words in a

small lexicon, Proc. 1st ICDAR, Saint-Malo, France, 1991, 774-782

[7] Kukich, K.: Techniques for automatically correcting words in text, ACM Comp.

Surveys, Vol. 24, No. 4, 1992, 377-439

[8] Elliman, D.G. and Lancaster, I.T.: A review of segmentation and contextual

analysis techniques for text recognition, Pattern Recognition, Vol. 23, No. 3/4,

1990, 337-346

2

This feature is included in our present implementation.

8

[9] Srihari, S.N.(ed.): Computer Text Recognition and Error Correction, Tutorial,

IEEE Computer Society Press, Silver Spring, MD, 1985

[10] Aho, A.V. and Peterson, T.G.: A minimum distance error-correcting parser for

context-free languages, SIAM J. Computing 1, 1972, 305-312

[11] Wagner, A.: Order-n correction for regular languages, CACM, Vol. 17, No. 5,

1974, 265-268

[12] Myers, E. and Miller, W.: Approximate matching of regular expressions, Bul-

letin of Math. Biology, Vol. 51, No. 1, 1989, 5-37

[13] Hopcroft. J. and Ullman, J.: Introduction to Automata Theory, Languages and

Computation, Addison-Wesley, 1979

[14] Wagner, R.A. and Fischer, M.J.: String-to-string correction problem, Journal

of the ACM, Vol. 21, No. 1, 1974, 168-173

[15] Ukkonen, E.: Algorithms for approximate string matching, Inform. and Con-

trol, Vol. 64, 1985, 100-118

[16] Bunke, H.: A fast algorithm for �nding the nearest neighbor of a word in a

dictionary, Proc. 2nd ICDAR, Tonkuba City, 1993, 632-637

9

algorithm error-correcting parser

input: a fsa A = (Q;X; �; q

0

; F) and an input word x = x

1

: : : x

n

output: d = minfd(x; z)jz 2 L(A)g

method:

/*initialization*/

L(0) := f(q

0

; 0)g;

for i = 1 to n do L(i) = ;;

/*main loop*/

for i = 1 to n do f

repeat f

for all (q; c) 2 L(i) do f

add[(q; c+ ins); L(i+ 1)]; /*insertion of x

i+1

*/

for all q

0

2 next(q) do f

add[(q

0

; c+ del); L(i)]; /* deletion of symbol a from automaton*/

if �(q; x

i+1

) = q

0

then add[(q

0

; c); L(i+ 1)] /*match, i.e. a = x

i+1

*/

else add[(q

0

; c+ sub); L(i+ 1)]ggg /*substitution of a by x

i+1

*/

until no more elements can be added to L(i)g

d := min

c

f(q; c)j(q; c) 2 L(n); q 2 Fg

end error-correcting parser

Figure 1: The error-correcting parsing algorithm in pseudo-code

10

A

B

C

D

E

8 0

5-7

0-9

0-9

Figure 2: Example of �nite state automaton

Figure 3: Example of a check

check

of each type of check

de�nition of coding line format

character

meaning of each

type of check and

on coding line

of characters

sequence

OCR

module

postprocessing

module

Figure 4: Overview of check processing system

11

A

B C

0-9

0-9

Figure 5: A fsa representing all sequences of digits of length two

A

B

C

D

E

F

G

H

I

K

J

L

1

1

0,2

3

0-8

0

0,1

0

1,3,5,7,8

0

4,6,9

2

2

0-9

1,2

1,2

1-9

0

3

1

0

Figure 6: A fsa representing the set of dates in format MMDD.

12

list running number list element pointer

1 (A,0)

2 (B,1) DEL(1)

L(0) 3 (C,1) DEL(1)

4 (D,2) DEL(2), DEL(3)

5 (E,3) DEL(4)

6 (A,1) INS(1)

7 (B,1) SUB(1)

L(1) 8 (C,0) MATCH(1)

9 (D,1) MATCH(2), DEL(8)

10 (E,2) MATCH(4), DEL(9)

11 (A,2) INS(6)

12 (B,1) MATCH(6)

L(2) 13 (C,1) INS(8)

14 (D,1) MATCH(7), SUB(8)

15 (E,1) MATCH(9)

16 (A,3) INS(11)

17 (B,2) INS(12)

L(3) 18 (D,1) MATCH(12)

19 (E,1) MATCH(14)

20 (C,2) INS(13)

Table 1: Result of error-correcting parsing

position meaning possible value

1-2 check subcategorie one out of f01; 03; 11g

3-12 amount (same speci�ed on check) any sequence of digits

13 parity digit 1 parity check for position 1-12

14 delimiter >

15-40 reference number any sequence

41 parity digit 2 parity check for positions 15-40

42-43 delimiter + space

44-51 customer identi�cation any sequence of digits

52 parity digit 3 parity check for positions 44-51

53 delimiter >

Table 2: Format de�nition of coding line on the check in Fig. 3.

13

position meaning possible value

1-2 check subcategorie one out of f46; 47; 56; 57g

3 parity digit 1 parity check for positoin 1-2

4 delimiter >

5-24 reference number any sequence of digits

25-30 deadline date in format YYMMDD

31 parity digit 2 parity check for positions 5-30

32-33 delimiter + space

34-41 customer identi�cation any sequence of digits

42 parity digit 3 parity check for positions 34-41

43 delimiter >

Table 3: Format de�nition of coding line of another type of check.

type of information value

check subcategorie 01

amount 187.50 Fr.

reference number 20011282367002209310248139

customer identi�cation 01000064

Table 4: Result of automatic processing of Fig. 3.

T=0 T=1 T=2

C 99.27 99.67 100.00

R 0.73 0.33 0.00

E 0.00 0.00 0.00

L 100.00 100.00 100.00

Table 5: Result of the �rst experiment (R = rejection rate, E = error rate, L =

reliability)

14

T=0 T=1

C 24.25 99.26

R 75.61 0.60

E 0.14 0.14

L 99.43 99.86

a)

T=0 T=1 T=2

C 7.82 46.71 97.38

R 92.18 53.11 2.44

E 0.00 0.18 0.18

L 100.00 99.62 99.82

b)

T=0 T=1 T=2 T=3

C 3.22 24.11 64.80 94.75

R 96.78 75.66 34.51 4.56

E 0.00 0.23 0.69 0.69

L 100.00 99.06 98.95 99.28

c)

T=0 T=1 T=2 T=3 T=4

C 1.01 11.41 40.04 73.77 90.70

R 98.90 88.27 58.95 24.44 7.50

E 0.09 0.32 1.01 1.79 1.79

L 91.82 97.27 97.54 97.63 98.05

d)

T=0 T=1 T=2 T=3 T=4 T=5

C 0.28 4.74 21.54 50.85 77.45 87.62

R 99.72 95.12 77.63 47.17 20.06 9.89

E 0.00 0.14 0.83 1.98 2.49 2.49

L 100.00 97.13 96.29 96.25 96.89 97.24

e)

Table 6: Results of the second experiment:

a) edit distance d = 1

b) edit distance d = 2

c) edit distance d = 3

d) edit distance d = 4

e) edit distance d = 5

15

