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Abstract

We consider logic programming languages in which it is possible to derive negative informa-

tion both through a direct and through an indirect derivation mechanism. The isolated direct

derivation steps are monotone and the indirect are based on the Closed World Assumption and

therefore nonmonotone. The semantics of the direct and indirect negative conclusions have

separately been studied extensively, as can be seen from the work on De�nite Logic Programs

with classical negation and the semantics of Normal Logic Programming.

However, by combining both direct and indirect inferences of negative conclusions in one

system, the semantics can no longer be monotone, because of the nonmonotone derivation

mechanism of the indirect derivations. On the other hand, it can no longer be the same

nonmonotone derivation mechanism that corresponds to the indirect derivations, since there

are additional mechanisms to derive falsity. We compare two approaches, one in which two

di�erent interpretations of negative conclusions are considered, the other in which negative

conclusions are interpreted uniformly.

1 Introduction

Knowledge representation languages that are to be of practical use require at least options for

drawing negative conclusions. It must be possible to derive such information via direct means,

but for practical reasons it must also be possible to derive negative information by the absence of

other information. In other words, it must be possible to prove negative statements and it must

be possible to infer a negative statement since the corresponding positive statement is believed to

be unprovable. One of the application areas in which both ways to use negations commonly occur

is the area of knowledge-based systems. For example, in implementation environments for the de-

velopment of expert systems, like AionDS [26] and Nexpert Object [14], negation is commonly

used not only in the body of rules, but also in the conclusions. In conclusions negation is allowed

to appear in the form of negative truth assignments to boolean variables. Next to using rules

with such negative conclusions it is also possible to derive negative information by the application

of the Closed World Assumption. Also in Desire [11], a speci�cation language for compositional

knowledge-based system, rules can have negative conclusions and negative statements in the bodies

of rules. In principle the negation is interpretated as a classical negation both in the body and in

the conclusion of the rule. In addition the Closed World Assumption can explicitly be expressed

by meta-knowledge in order to nonmonotonically derive negative information.

Although frequently used in various applications, it is not clear what the semantics of these nega-

tive conclusions is. If the requirements for direct and indirect derivation of negative conclusions are

considered separately, the issue is clear. The �rst corresponds to a monotone derivation mechanism

for falsity and the second to a nonmonotone mechanism. However, by combining both require-

ments in one system, the semantics can no longer be monotone, because of the nonmonotone

derivation mechanism of the second requirement. On the other hand, it can no longer be the same

nonmonotone derivation mechanism that corresponds to the second requirement, since there are

additional mechanisms to derive falsity. One approach is to continue considering the two di�erent
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interpretations, i.e., negative conclusions derived in a direct way are interpreted as proven to be

false, while the indirect negative conclusions are interpreted as believed to be unprovable. The other

approach is to look for one uniform interpretation. These two approaches can easily be formalised

as extensions of Normal Logic Programming. For the �rst approach a di�erent negation symbol is

associated with each of the interpretations. For the second approach one negation symbol su�ces.

One can then compare the approaches by embedding both extensions of Normal Logic Program-

ming into one well-understood nonmonotonic formalism.

There exist several extensions of logic programming in which both ways to draw negative conclu-

sions are possible. We mention the work of Gelfond and Lifschitz [4], Jonker [6, 7], Minker [13],

Pereira et al. [1, 17, 19] and Przymusinski [21, 24, 25]. Their work resulted in extensions of the

well-known anser-set, stable, stationary, supported and wellfounded semantics for the respective

extensions of logic programming.

In this paper two of these formalisms are studied; an extension with two negation symbols and an

extension with only one negation symbol. For the extension with two negation symbols we choose

Extended Logic Programming, for the other we choose Imex Logic Programming.

Extended Logic Programming extends Normal Logic Programming with an extra negation sym-

bol, called explicit negation. The explicit negation symbol corresponds to the direct inference of

negative conclusions. The other negation symbol is called implicit negation, it corresponds to the

indirect inference of negative information. The explicit negation is allowed to appear both in the

conclusions and in the bodies of rules. The two negations are connected through the so called

Coherence Principle of Pereira and Alferes [17]. This principle expresses that if a statement A

is explicitly false, then it is also implicitly false (but not necessarily the other way round). In

other words, if a negative conclusion can be derived by direct means, it is also indirectly derivable.

Furthermore, if a statement is true, then its explicit negation must be implicitly false. In symbols:

S implies not S (1)

where S is either an atomic symbol or an explicitly negated symbol, S is the complement of S

with respect to the explicit negation, and \not" is the symbol for implicit negation. For the syntax

and semantics we refer to Section 2, for more information and de�nitions of various declarative

semantics we refer to [4, 10, 18, 16, 22, 23, 27, 28] and [29].

Imex Logic Programming is the extension of Normal Logic Programming in which the existing

negation is allowed to appear both in the conclusions and in the bodies of rules. For the syntax

and semantics we refer to Section 2, for more information and de�nitions of various declarative

semantics we refer to [6, 7, 8, 9].

For the well-understood nonmonotonic formalism with which Extended and Imex Logic Pro-

gramming will be compared we choose Przymusinski's Autoepistemic Logic with Minimal Beliefs

(AELB). AELB is a non-monotonic knowledge representation framework that augments Moore's

autoepistemic logic with an additional minimal belief operator B. AELB has turned out to be

very successful for the comparison of logic programming languages. In [24] and [25] Przymusinski

reports AELB as a uniform semantical framework that isomorphically contains the various seman-

tics for Normal, Extended, and Disjunctive Logic Programming. For an overview of the existing

relationships between Logic Programming and AELB or several other nonmonotonic formalisms

we refer to [2].

In Section 2 the formal syntax and an informal interpretation of Extended and Imex Logic Pro-

gramming are given.
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Section 3 contains a recapitulation of Przymusinski's Autoepistemic Logic of Minimal Belief.

In Section 4 we discuss the existing informal interpretations of the negations of Extended and Imex

Logic Programming.

In Section 5 the negations are formally interpreted by the embedding of Extended and Imex Logic

Programming into AELB. It contains the theorems that relate the declarative semantics of the

Logic Programs to the corresponding AELB-theories, and the theorems that relate Extended to

Imex Logic Programming.

In Section 6 the results of this paper are discussed.

2 Logic Programs

The �rst researchers to propose forms of Logic Programming with some kind of explicit or strong

negation symbol next to an implicit negation symbol are Gelfond and Lifschitz [4], Pearce and

Wagner [15], Przymusinski (see for example [23]), Pereira [17] and Jonker [6]. A lot of work has

been done on the declarative semantics of such programs, we mention the work of Gelfond and

Lifschitz [4], Jonker [6, 7, 8, 9], Minker [13], Pereira et al. [17, 19, 1] and Przymusinski [21, 24, 25].

Their work resulted in extensions of the well-known anser-set, stable, stationary, supported and

wellfounded semantics.

In this paper the alphabet of language K

E

consists of the atomic symbols A, A

0

, A

1

, : : : of K

B

,

the negation symbols \�", for explicit negation, \not" for implicit negation, and the symbols \ "

and \,". The informal interpretation of the implicit negation \not", that is under discussion in this

paper, is believed to be false. The symbol \ " is a unidirectional logical symbol that informally

means that if the right-hand side is true, then so is the left-hand side. The symbol \," is to be

read conjunctively. The informal interpretation of the explicit negation symbol \�", that is under

discussion in this paper, is proved to be false. For a formal de�nition of an interpretation of K

E

we refer the reader to the Appendix. The literals of K

E

are all expressions of the form A, notA,

�A and not�A, where A is an atom. An Extended Logic Programming rule is an expression of

the form:

S

0

 S

1

; : : : ; S

m

; notS

m+1

; : : : ; notS

n

where each S

i

(0 � i � n) is either an atom A or an explicitly negated atom �A. An Extended

Logic Program consists of a �nite set of Extended Logic Programming rules. We de�ne ELP to be

the class of all Extended Logic Programs.

The two negations are connected through the Coherence Principle of Pereira and Alferes [17], see

Equation 1.

Example 1 Consider the following Extended Logic Program:

A  not B

B  not A

�A  C

C  not D

The �rst two rules form an odd loop well-known in Normal Logic Programming. Based on these

two rules only it is impossible to decide whether A or B should be false and thus whether B or

A should be true. (Therefore, these two rules would have two stable models, one for each of the

possibilities.) The implicit negative statement notD will be true, since there is no rule with D as

its head. As a consequence, C is true. Since C is true, it is possible to explicitly derive �A. By

the Coherence Principle, notA will be true. Finally, B is true, since notA is true. �
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Imex Logic Programming has been developed as an extension of Normal Logic Programming in

which the only negation symbol is allowed to appear both on the left- and on the right-hand side

[6]. The imex negation symbol has the properties of the implicit negation of Normal Logic Pro-

gramming and some additional explicit properties, hence the name Imex negation.

The alphabet of K

I

is the same as that of K

E

, except for the negation symbols. K

I

has only one

negation symbol: \�". The informal interpretation of \�", that is under discussion in this paper,

is believed to be false. For a formal interpretation of the language K

I

we refer the reader to the

Appendix. The literals of K

I

are all expressions of the form A and �A, where A is an atom. An

Imex Logic Programming rule is an expression of the form:

S  A

1

; : : : ; A

m

;�A

m+1

; : : : ;�A

n

where each A

i

(1 � i � n) is an atom A and S is either an atom A or an imex negated atom �A.

An Imex Logic Program is a �nite set of Imex Logic Programming rules. We de�ne IMEX to be

the class of all Imex Logic Programs.

Example 2 Consider the following Imex Logic Program:

A  �B

B  �A

�A  C

C  �D

The informal reasoning according to this Imex program is similar to that of Example 1, with the

exception of the use of the Coherence Principle. Since imex negation has all properties of implicit

negation �D will be true, since there is no rule with D as its head. As a consequence, C is true.

Using the truth of C, it is possible to explicitly derive �A. In other words �A will be true. Finally,

B is true, since �A is true. �

In this paper a Logic Program is either an Extended or an Imex Logic Program. The literal on

the left-hand side of a program rule r is called the head (written hd(r)) and the sequence on the

right-hand side is called the body of the rule. We also allow countably many variables and function

symbols in the languages K

I

and K

E

. However, in the interpretations as de�ned in the Appendix,

we only consider ground formulas. The Herbrand base H

P

of Logic Program P is the collection of

all ground instances of atoms that occur somewhere in P .

3 Autoepistemic Logic of Minimal Belief

The language of AELB, �rst published in [21], is a propositional modal language K

B

with standard

connectives (^, _, �, :) and a modal operator B. The operator B represents belief. The formulas

in which B does not occur are called objective formulas. We de�ne the language K to be the

language K

B

but without the modal operator. Any theory T in the language K

B

is called an

autoepistemic theory. The intended meaning of BF is \F is believed", or, more precisely, \F

can be non-monotonically inferred", i.e., T j=

nm

F , where j=

nm

denotes a �xed non-monotonic

inference relation. In general, di�erent non-monotonic inference relations can be used. In [24]

Przymusinski used circumscription ([12]), represented by j=

min

. As axioms he assumed, for any

K

B

-formulas F and G, the conjunctive belief axiom:

B(F ^G) � BF ^ BG (2)

and the consistency axiom:

BF � :B:F (3)
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De�nition 3 [24] The set of consequences Cn

�

(T ) of a given theory T is de�ned as the set of

logical consequences, denoted by Cn, of the theory T augmented with the two axioms (2) and (3):

Cn

�

(T ) = Cn(T [ f(2); (3)g):

A derivability relation `

�

is de�ned by stating that a formula F is derivable from T i� it belongs

to T 's consequences: T `

�

F i� F 2 Cn

�

(T ).

De�nition 4 A theory T

�

is a static expansion of T i� it satis�es the following �xpoint equation:

T

�

= Cn

�

(T [ fBF : T

�

j=

min

Fg);

where F ranges over all formulas of K

B

.

We further de�ne

� T is consistent if T 6`

�

?.

� The set of all static expansions of T is denoted by E(T ). Note that if T

1

`

�

Cn

�

(T

2

) and

vice versa for two theories T

1

and T

2

, then E(T

1

) = E(T

2

).

� Cons

3

(T ) = fS 2 E(T ) j S is consistent g.

� Cons

2

(T ) = fS 2 Cons

3

(T ) j for all objective atoms A either B:A 2 S or BA 2 Sg.

� The least static expansion T

C

of T is called the static completion of T .

� The static semantics Stat(T ) of T is the set of all formulas that belong to the static comple-

tion T

C

of T .

� K

B

theories T

1

and T

2

are equivalent i� E(T

1

) = E(T

2

).

Note that according to De�nition 4 T `

�

F also implies that T `

�

BF .

4 Interpreting negations

Przymusinski showed how Circumscription, Moore's autoepistemic logic, the stable, the stationary,

and the wellfounded semantics of (Disjunctive) Logic Programs can be given an formal interpre-

tation by embedding them into AELB. Przymusinski also showed that the stable semantics of

Extended Logic Programs can be embedded into AELB using an embedding operator, denoted in

this paper by K

ELP

. Alferes and Pereira [2] continued this work on Extended Logic Programming

and showed thatK

ELP

also embeds the stationary and the wellfounded semantics of such programs

into AELB. By K

ELP

-embedding a semantics of Logic Programming into AELB we mean that the

models of the semantics with respect to a program P correspond in a one-to-one way to a speci�c

set of expansions of the AELB-theory K

ELP

(P ). For example, the stable semantics of Extended

Logic Programming are K

ELP

-embeddable into AELB, since the stable models of an Extended

Logic Program P correspond one-to-one with those consistent expansions of the AELB-theory

K

ELP

(P ) that contain for each atomic symbol A of P either BA or B:A.

One of the conclusions drawn in [2] is that the embedding of Extended Logic Programming into

AELB with respect to the stable, stationary and wellfounded models shows that explicit negation

stands for \proving falsity" whereas the meaning of the implicit negation is \believed to be not

proven". Indeed, these remarks correspond to the initial intention of having two di�erent kinds

of negations for the formalisation of the use of negations in practical knowledge representation.

On the other hand, it is not clear what the semantics of these negative conclusions is. If the re-

quirements for direct and indirect derivation of negative conclusions are considered separately, the

interpretations as given in [2] work very well indeed. However, by combining both requirements in

one system as is done in commonly used knowledge-representation languages, the semantics of the
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directly derived negative conclusions can no longer be monotone, because of it might have been

derived using the implicit negation which is interpreted in terms of belief.

Two small examples demonstrate this clearly in Extended Logic Programming. For the informal

interpretation of the negation symbols we take the reading of [2], that is \�A" means \A is

provably false" and \notB" means \it is believed that B is not proven". In other words, the

following Extended Logic Programming rule

�A  notB

can be read as: if it is believed that B is not proven, then A is proven false. We �nd this reading

unsatisfactory, since in this interpretation the provability of falsehood of a statement can depend

on the believed unproveness of an other statement or even on the belief that the same statement

is unproven (take A and B the same). One would expect that conclusions on the basis of only a

belief are themselves only beliefs. At least it is clear that the notion proven and the notion belief

are closely related in the sense that a belief can be used as a proof and a proof is a good reason for

belief. Therefore, it would be better if the �A is also interpreted in terms of belief. Why not as

\believe that A is false"? If we would continue this line of reasoning we might separate proofs that

do not make use of implicit negation (monotonic inferences) from those that do (nonmonotonic

inferences). In particular, we could also make the same distinction for the positive literals of the

program, see [7], Section 5.3. It would be worth while to investigate how this relates to the notion

of (maximal) deductive base of a nonmonotonic inference operation as discussed in [5]. However,

in this paper we will restrict ourselves to considering the interpretation of the negations.

The second example concerns the Coherence Principle, see Equation 1. The Coherence Example

expresses that if �A is true, then notA must be true as well. In other words, if the falsity of A

is provable, then A itself is believed to be unproven. This interpretation is not satisfactory in the

following example.

Example 5

�A  

A  notB

Interpreting this example, we see that A is provably false (since �A is unconditionally true).

Furthermore, notB must be true, since there is no rule with B on the left-hand side that could

prove B. Therefore, A is true as well. Since �A is true, notA must be true according to the

Coherence Principle. In other words, it is believed that A is unproven, whereas a proof for A exists

in the form of notB.

Even if provable is interpreted as nonmonotonically provable, then the problem is still there. Be-

cause then the notions belief and provable coincide.

Of course, this problem can be circumvented by dropping the Coherence Principle. However, in

[17], Pereira and Alferes give a highly convincing argumentation for the necessity of the Coherence

Principle. Basically, without the Coherence Principle, Extended Logic Programming does not re-

ally extend Normal Logic Programming, since every �A can then be interpreted as a new atomic

symbol A, see [7, 17, 20].

Since we rather do not want to change the interpretation of the implicit negation, we seek a solu-

tion to this problem in a slightly di�erent interpretation of the explicit negation symbol, namely

believed to be false instead of proving falsity. As can be noticed by this choice both negations have

the same interpretation. Therefore, they can be denoted by one symbol. This is in agreement

with common practice in knowledge-representation languages as employed in environments for the
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development of knowledge-based systems. The informal interpretation of imex negation is the same

as that of the implicit negation. In practice the belief that a statement A is false, or equivalently

that a statement �A is true, can be based on impossibility to derive A, but also on the derivability

of �A from other beliefs.

The property imex negation shares with explicit negation is that it is possible to make explicitly

negative statements, e.g.,

�A  

In order to �nd an alternative interpretation of the explicit negation symbol we embed Imex Logic

Programming into AELB using a mapping denoted by K

IMEX

. Here, K

IMEX

is an adaptation

for Imex Logic Programming of the K-translation, in this sense it is a continuation of the work of

Przymusinski, Alferes and Pereira. The basic ingredient of the translation of Imex Logic Programs

is the translation of an Imex negated statement �A into B:A.

5 Programs as AELB-theories

A logical language can semantically be interpreted by a mapping to a well-understood logic. Such a

mapping enables a deeper analysis of the semantics of such a logical language. If such a mapping is

made for two logical languages into the same well-understood logic, then the two logical languages

can be compared by comparing their images under the mapping. One of the interesting elements

in such a comparison is a notion of equivalence. In this paper, we map formulas (and thus also sets

of formulas) of K

E

and of K

I

onto formulas of AELB. We then test for speci�c sets of formulas

from K

E

and from K

I

their images for equivalence in AELB.

Przymusinski showed that the stable semantics of Extended Logic Programs can be embedded

into AELB by replacing notC by B:C, meaning \C is believed to be false". Alferes and Pereira

continued this work on Extended Logic Programming and showed that also Stab

3

(P ), i.e., the

stationary or three-valued stable semantics, and WF (P ), i.e., the wellfounded semantics of such

programs P can be embedded into AELB by the same replacement. For the embedding one also

needs to augment the original objective languages K, K

B

, K

E

and K

I

to the languages K

0

, K

0

B

,

K

0

E

and K

0

I

by adding new atomic symbols A for every atomic symbol A of K (respectively K

B

,

K

E

and K

I

). To extend the de�nition of the consequences of a K

0

B

theory we further assume for

every atomic symbol A the following explicit negation axioms:

A � B:A and A � B:A (4)

The intended meaning of A is \A is the explicit negation of A". The explicit negation axioms

correspond to the following Coherence Principle, see Equation 1, of Alferes and Pereira [17]:

A implies not A and

A implies not A

De�nition 6 The set of consequences Cn

�

(T ) of a K

0

B

theory T is de�ned as the set of logical

consequences of the theory T augmented with the three axioms (2), (3) and (4):

Cn

�

(T ) = Cn(T [ f(2); (3); (4)g):

The derivability relation `

�

is extended to K

0

B

by T `

�

F i� F 2 Cn

�

(T ).

We further de�ne

� If T is a theory of K

0

B

and E is a static expansion of T , then

E� K

B

= fF 2 E j F is a formula of K

B

g:
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� E(T )� K

B

= fE� K

B

j E 2 E(T )g.

� K

B

theory T

1

and K

0

B

theory T

2

are equivalent i� E(T

1

) = E(T

2

)� K

B

.

The embeddingK

IMEX

of Imex Logic Programming as needed for the comparison of imex negation

with the explicit and implicit negation of Extended Logic Programming is de�ned as follows.

De�nition 7 Let P be an Imex Logic Program in one of the languages K

I

or K

0

I

. Let A (A) be

an atom and let L

i

(0 � i � n) be literals. The operator K

IMEX

is de�ned inductively by:

K

IMEX

(L) :=

�

L if L = A or L = A

B:L if L = �A or L = �A

K

IMEX

(L

0

 L

1

; : : : ; L

n

) := K

IMEX

(L

n

) ^ : : :^K

IMEX

(L

1

) � K

IMEX

(L

0

)

K

IMEX

(P ) := fK

IMEX

(r) j r 2 Pg

The embedding K

ELP

of Extended Logic Programming as needed for the comparison of imex

negation with the explicit and implicit negation of Extended Logic Programming is de�ned as

follows.

De�nition 8 Let P be a Logic Program in one of the languages K

E

or K

0

E

. Let A (A) be an atom

and let L

i

(0 � i � n) be literals. The operator K

ELP

is de�ned inductively by:

K

ELP

(L) :=

8

>

>

<

>

>

:

A if L = A

B:A if L = notA

A if L = �A or L = A

B:A if L = not �A or L = notA

K

ELP

(L

0

 L

1

; : : : ; L

n

) := K

ELP

(L

n

) ^ : : :^K

ELP

(L

1

) � K

ELP

(L

0

)

K

ELP

(P ) := fK

ELP

(r) j r 2 Pg

In the translationK

IMEX

the imex negated statement �A is always translated to B:A. In contrast,

the transformation K

ELP

de�ned above translates an implicitly negated statement notA by B:A.

The interaction of explicit negation with the implicit negation is dealt with semantically by the

explicit negation axioms that were added to AELB. To circumvent problems arising from this

interaction, the well-known technique of translating �A by a new atomic symbol is incorporated

into K

ELP

. The appropriateness of K

ELP

is given by Przymusinski, Alferes and Pereira as they

proved the following theorem.

Theorem 9 [25, 2] Let P be an Extended Logic Program in the language K

E

, then

� Cons

2

(K

ELP

(P )) corresponds to Stab

2

(P ) [25].

� Cons

3

(K

ELP

(P )) corresponds to Stab

3

(P ) [2].

� Stat(K

ELP

(P )) corresponds to WF (P ) [2].

We continue by de�ning a (K

ELP

;K

IMEX

)-equivalence relation in terms of the equivalence notion

for AELB. Afterwards, we de�ne the translations from the Extended to the Imex Logic Programs

and back.

De�nition 10 Let P

1

(respectively P

2

) be a set of formulas from a language L

1

(cq. L

2

). Fur-

thermore, let m

1

(respectively m

2

) be a mapping from L

1

(cq. L

2

) in a logic L

3

, then P

1

and

P

2

are (m

1

;m

2

)-equivalent i� m

1

(P

1

) and m

2

(P

2

) are equivalent in L

3

. Let C

1

(respectively C

2

)

be a class of sets of formulas of L

1

(respectively L

2

), then C

1

and C

2

are (m

1

;m

2

)-equivalent i�

for every set of formulas P

1

in C

1

there is a set of formulas P

2

in C

2

such that P

1

and P

2

are

(m

1

;m

2

)-equivalent and vice versa.
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De�nition 11 Let P be an Extended Logic Program in the language K

E

and A an atom. We

de�ne the operator  that translates P into an Imex Logic Program in the language K

0

I

inductively

by

 (L) :=

8

>

>

<

>

>

:

A if L = A

� A if L = notA

A if L = �A

� A if L = not�A

 (L

0

 L

1

; : : : ; L

n

) :=  (L

0

)  (L

1

); : : : ;  (L

n

)

 (P ) := f (r) j r 2 Pg

Although the atomic symbols A and A are in general not negatively related in  (P ), this is not a

problem in this article since the Coherence Principle is present in AELB in the form of the explicit

negation axioms.

De�nition 12 Let P be an Imex Logic Program in the language K

I

. We de�ne the operator �

that translates P into an Extended Logic Program in the language K

E

inductively by

�(L) :=

�

A if L = A

notA if L = �A

�(L

0

 L

1

; : : : ; L

n

) :=

�

A �(L

1

); : : : ; �(L

n

) if L

0

= A, for some atom A

�A �(L

1

); : : : ; �(L

n

) if L

0

= �A, for some atom A

�(P ) := f�(r) j r 2 Pg

The rules with a negated atom �A as head are those with which the falsity of an atom can

explicitly be speci�ed. In Extended Logic Programming that means that �A must be translated

into �A instead of into notA. In the body of Imex Logic Programming rules such a di�erentiation

is impossible but also superuous. Further note that in �(P ) the \�" symbol does not occur in

the bodies of the rules. This essential in the proof of Theorem 14.

In [7] the rules f�A  A;�A  A j A 2 H

P

g that correspond to the Coherence Principle were

added to the translation  to ensure that the atomic symbols A and A are negatively related.

The corresponding translation is  

0

(P ) = f (r) j r 2 Pg [ f�A  A;�A  A j A 2 H

P

g. For

analogous reasons, the translation � was extended by the rules f�A  notA j A 2 H

P

g. So the

corresponding transformation �

0

is de�ned by �

0

(P ) = �(P ) [ f�A  notA j A 2 H

P

g. These

rules ensure that the two negations \�" and \not" of Extended Logic Programming are strongly

enough intertwined to compare it with the imex negation. The \�" symbol does not occur in the

bodies of the rules of �(P ). Furthermore, we are only interested in the AELB-literals of the form

BL. Therefore, these extensions are not needed in this paper, see the proof of Theorem 14. Using

the translations  

0

and �

0

, in [7] it has been proved that for every Extended Logic Program P

there is an Imex Logic Program P

0

such that the model-theoretical interpretations of P correspond

one to one to the interpretations of P

0

and vice versa. More speci�cally, Extended and Imex Logic

Programming are equivalent with respect to the stable, stationary, supported and wellfounded

Semantics. Furthermore, in [9] it has been proved that Extended and Imex Logic Programming

are equivalent with respect to appropriate extensions of Clark's Completion.

Theorem 13 Let P be an Extended Logic Program in the language K

E

, then

K

ELP

(P ) = K

IMEX

( (P )):

Proof by the induction of De�nition 11. Let A be an objective atom. For simplicity, we abbreviate

9



K

IMEX

to K.

K( (L)) =

8

>

>

<

>

>

:

K(A) = A = K

ELP

(L) if L = A

K(�A) = B:A = K

ELP

(L) if L = notA

K(A) = A = K

ELP

(L) if L = �A

K(�A) = B:A = K

ELP

(L) if L = not�A

K( (L

0

 L

1

; : : : ; L

n

)) = K( (L

n

)) ^ : : :^K( (L

1

)) � K( (L

0

)) =

K

ELP

(L

n

) ^ : : :^K

ELP

(L

1

) � K

ELP

(L

0

) =

K

ELP

(L

0

 L

1

; : : : ; L

n

)

K( (P )) = fK( (r)) j r 2 Pg = fK

ELP

(r) j r 2 Pg = K

ELP

(P )

�

Theorem 14 Let P be an Imex Logic Program in the language K

I

, then the theories K

IMEX

(P )

and K

ELP

(�(P )) are equivalent.

Proof We de�ne nlp(P ) = fr 2 P j hd(r) is an atomg and neg(P ) = fr 2 P j r =2 nlp(P )g. We

�rst show by the induction of De�nition 12 that K

IMEX

(nlp(P )) = K

ELP

(�(nlp(P ))):

K

ELP

(�(L)) =

�

K

ELP

(A) = A = K

IMEX

(L) if L = A

K

ELP

(notA) = B:A = K

IMEX

(L) if L = �A

K

ELP

(�(A L

1

; : : : ; L

n

)) = K

ELP

(A �(L

1

); : : : ; �(L

n

))

= K

IMEX

(A L

1

; : : : ; L

n

)

K

ELP

(�(nlp(P ))) = fK

ELP

(�(r)) j r 2 nlp(P )g

= fK

IMEX

(r) j r 2 nlp(P )g

= K

IMEX

(nlp(P ))

We still have to check the rules �A L

1

; : : : ; L

n

in neg(P ). For these rules we have

�(�A L

1

; : : : ; L

n

) = �A �(L

1

); : : : ; �(L

n

)

and

K

ELP

(�A �(L

1

); : : : ; �(L

n

)) = K

IMEX

(L

n

) ^ : : :^K

IMEX

(L

1

) � A:

Whereas

K

IMEX

(�A L

1

; : : : ; L

n

) = K

IMEX

(L

n

) ^ : : :^K

IMEX

(L

1

) � B:A:

In other words, K

IMEX

(P ) di�ers slightly from K

ELP

(�(P )). Further note that K

IMEX

(P ) is a

theory in K

B

whileK

ELP

(�(P )) is a theory in K

0

B

. Therefore, we can only compare the expansions

of both theories if we restrict each expansion E of K

ELP

(�(P )) to the formulas of K

B

. That is,

every A is ignored. We have proved the theorem if for every formulaF of K

B

such that K

IMEX

(P )

`

�

F if and only ifK

ELP

(�(P )) `

�

F . Since the Coherence Principle is incorporated as the explicit

negation axiom in AELB, we already have that A � B:A. Therefore, we have K

IMEX

(P ) `

�

F

implies K

ELP

(�(P )) `

�

F . The other direction is trivially true, since in �(P ) the \�" symbol

only occurs on the left-hand side of the rules. That is, any e�ect statements of the form �A can

have on other statements is through the Coherence Principle. Translated into AELB, we see that

�A can only inuence other statements through the explicit negation axiom. �

Corollary 15 The classes ELP and IMEX are (K

ELP

;K

IMEX

)-equivalent.

This corollary follows directly from the Theorems 13 and 14.

The following corollary holds for three reasons. Firstly, we have the formal connection between

the semantics of Extended Logic Programming and AELB that hold under the K

ELP

mapping

as reected by Theorem 9. Secondly, from [7] we know that ELP and IMEX are semantically

equivalent with respect to the stable, stationary and wellfounded semantics. These two steps

realise a one-to-one correspondence between the various semantics of an Imex Logic Program P

and the speci�c types of expansions of the AELB-theory K

ELP

(�(P )). Thirdly, from Theorems 13

and 14 it follows that this correspondence is induced by K

IMEX

.

10



Corollary 16 Let P be an Imex Logic Program in the language K

I

, then

� Cons

2

(K

IMEX

(P )) corresponds to Stab

2

(P ).

� Cons

3

(K

IMEX

(P )) corresponds to Stab

3

(P ).

� Stat(K

IMEX

(P )) corresponds to WF (P ).

6 Discussion

In this paper we studied the interpretations of negations in knowledge representation languages

that meet two criteria. The �rst is that negations can be derived in a direct manner; in a logic

programming language this corresponds to the possibility of having negations in the heads of rules.

The second criterion is that a nonmonotone derivation mechanism is used to draw negative con-

clusions; in a logic programming language this corresponds to deriving negative information using

some form of CLosed World Assumption. Languages that meet only one of these criteria, like Def-

inite Logic Programming with classical negation and Normal Logic Programming are well studied

and it is known how to interpret their negations. For the �rst criteria the negative conclusions are

drawn monotonically, based on the fact that negative statements are allowed in the heads of the

rules. For the second several nonmonotonic semantics exist.

However, by combining both direct and indirect inferences of negative conclusions in one complex

system, the semantics can no longer be monotone, because of the nonmonotone derivation mech-

anism of the indirect derivations. On the other hand, it can no longer be the same nonmonotone

derivation mechanism that corresponds to the indirect derivations, since there are additional mech-

anisms to derive falsity. Actually, in derivations in the complex system the direct and the indirect

derivations are integrated.

We showed that both Extended and Imex Logic Programming and their semantics provide a logical

foundation for the way negations are commonly used in knowledge representation languages. Ex-

tended Logic Programming distinguishes in its syntax two di�erent negation symbols, one of which

corresponds to the direct derivation of negative information, the other to the indirect derivation.

Imex Logic Programming uses one negation symbol and provides all negative conclusion with a

uniform semantics.

The intended meanings of the explicit and implicit negations of Extended Logic Programming,

namely \proving falsity" and \believed to be not proven", can be formalised by an interpreta-

tion mapping into AELB, see [2]. In this paper it was shown that the intended meaning of imex

negation, namely \believed to be false" can also be formalised by an interpretation mapping into

AELB. For both interpretation mappings the stable, stationary and wellfounded semantics of the

programs correspond to speci�c types of expansions of the AELB-theories. Furthermore, we proved

that for every Extended Logic Program P there is an Imex Logic Program P

0

(and vice versa)

such that the embeddings of P and P

0

into AELB are equivalent AELB-theories.
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A Interpreting K

E

and K

I

A.1 Syntax

We add the propositional constants c, t, u and f to K

E

and K

I

and the propositional connectives

^ and _,  .

We assume the reader to be familiar with the notions \term" and \ground term", \ground atom"

and \ground instance of an atom". The basic formulas of L are the atoms plus the propositional

constants c, t, u and f. The set FORM

E

(FORM

I

) of formulas, denoted by F , G, F

1

, G

1

, F

2

,

G

2

, : : :, of K

E

(K

I

) is generated as follows:

13



1. If F is a basic formula of K

E

, then F , notF , �F and not�F are in FORM

E

. Similarly, if

F is a basic formula of K

I

, then F and �F are in FORM

I

.

2. If F and G are elements of FORM

E

(FORM

I

), then F ^ G, F _ G and F  G are in

FORM

E

(FORM

I

).

For informal interpretations of the negation symbols of K

E

and K

I

, we refer to Section 2. We

assume, without loss of generality, that a Logic Program is a possibly in�nite set of ground rules.

In [3] Gelfond and Lifschitz made the same simplifying assumption. The set Lit(L) is the set of

all literals of a language L. Similarly, Lit(P ) is the set of all literals of the language underlying

the program P .

A.2 Semantics

In this section we de�ne the notions interpretation, valuation and model. We de�ne two orderings

on the set of truth-values FOUR and extend these two orderings to interpretations. The truth-

values used in this paper are f, for false, u, for unde�ned, t, for true, and c, for contradictory. The

set of propositional constants ff; u; t; cg is closely related to FOUR: f corresponds to f, u to u,

t to t and c to c. We use two di�erent transitive orderings of the truth values as a lattice: the

lattice 4

t

de�ned by f <

t

u <

t

t and f <

t

c <

t

t (truth-ordering) and the semi-lattice 4

k

de�ned

by u <

k

f <

k

c and u <

k

t <

k

c (knowledge-ordering). We assume the reader to be familiar with

the notions \least upper bound" and \greatest lower bound" with respect to an ordering. These

notion are abbreviated by lub and glb. For <

t

, we use lub

t

and glb

t

. The reason we use four

truth-values instead of three is that inconsistent programs can occur:

Example 17 Consider the imex program P :

A  

�A  

Informally, the rules of P express that both A and �A are true, since both rules have an empty

body. The truth of �A implies the falsity of A, so that A is both true and false. In the same way

the truth of A implies the falsity of �A, so that �A is also both true and false. Therefore, A is

contradictory and the value c will be assigned to it.

In the following we �nd it convenient to work with the set of literals that are true in an inter-

pretation. We show that there exists a one-to-one correspondence between this set of literals and

the interpretation itself. Since we assume that P is a possibly in�nite set of ground rules it is

su�cient to de�ne interpretations of K

E

and of K

I

as functions from the ground formulas of K

E

(respectively K

I

) to FOUR. We assume that ��F denotes F and ��F denotes F , but not�F

does in general not denote F .

De�nition 18 (Interpretation of K

E

) An interpretation I of language K

E

is a function from

the subset FORM

E

of ground formulas of K

E

to the set FOUR such that for every ground formula

F of K

E

:

1. If F is a literal L of K

E

, then

� I(notL) = t i� I(L) = f.

� I(notL) = u i� I(L) = u.

� I(notL) = c i� I(L) = c.

� For all y

1

2 ff; u; t; cg � FORM

E

and y

2

2 FOUR: I(y

1

) = I(y

2

) i� y

1

corresponds to

y

2

.

2. If the formula F has the form F

1

^ F

2

, then I(F ) = glb

t

(I(F

1

); I(F

2

))

14



3. If the formula F has the form F

1

_ F

2

, then I(F ) = lub

t

(I(F

1

); I(F

2

))

4. If the formula F has the form F

1

 F

2

, then

I(F ) =

8

<

:

t i� I(F

2

) �

t

I(F

1

)

f i� I(F

2

) 6�

t

I(F

1

) and I(F

1

) 6= c and I(F

2

) 6= c

c otherwise

De�nition 19 (Interpretation of K

I

) An interpretation I of language K

I

is a function from

the subset FORM

I

of ground formulas of K

I

to the set FOUR such that for every ground formula

F of K

I

:

1. If F is a literal L of K

I

, then

� I(�L) = t i� I(L) = f.

� I(�L) = u i� I(L) = u.

� I(�L) = c i� I(L) = c.

� For all y

1

2 ff; u; t; cg � FORM

E

and y

2

2 FOUR: I(y

1

) = I(y

2

) i� y

1

corresponds to

y

2

.

2. If the formula F has the form F

1

^ F

2

, then I(F ) = glb

t

(I(F

1

); I(F

2

))

3. If the formula F has the form F

1

_ F

2

, then I(F ) = lub

t

(I(F

1

); I(F

2

))

4. If the formula F has the form F

1

 F

2

, then

I(F ) =

8

<

:

t i� I(F

2

) �

t

I(F

1

)

f i� I(F

2

) 6�

t

I(F

1

) and I(F

1

) 6= c and I(F

2

) 6= c

c otherwise

We say interpretation I of language L is consistent i� there is no literal L of L such that I(L) = c.

I is two-valued if I is consistent and for every literal L of L we have I(L) 6= u.

In the de�nition of interpretation of K

E

the negation symbol \�" is treated di�erently (no restric-

tion is placed on the interpretation of �A) from the negation symbol \not". In fact, A and �A

are still totally unrelated. Therefore, we extend the de�nition of an interpretation of K

E

by:

De�nition 20 (Coherence) [17] Let I be an interpretation of K

E

then I is a coherent interpre-

tation of K

E

if for all literals C of L that are of the form A or �A: If I(C) 2 ft; cg then I(�C) = f

or I(�C) = c.

Lemma 21 If I is a coherent interpretation of K

E

, then I(not�C  C) = t for all literals C of

the form A or �A.

Proof Let C be a literal of the form A or �A and consider the four cases:

� I(C) = c. Since I is coherent, we have I(C) = c implies that I(�C) 2 ff; cg. By de�nition of in-

terpretation we have I(�C) 2 ff; cg implies that I(not�C) 2 ft; cg and thus I(not�C  C) = t.

� I(C) = t Since I is coherent, I(C) = t implies that I(�C) 2 ff; cg. By de�nition of in-

terpretation we have I(�C) 2 ff; cg implies that I(not�C) 2 ft; cg. Unless I(not�C) = c,

I(not�C  C) = t. Suppose I(not�C) = c, then, because I is an interpretation, I(�C) = c.

Since I is coherent, I(C) 2 ff; cg, which contradicts the assumption that I(C) = t.

� I(C) = u) 2 I. By de�nition of interpretation we have that I(C) =2 ff; t; cg. Suppose

I(not�C  C) 6= t. By de�nition of interpretation this means that I(not�C) 2 ff; cg and

thus that I(�C) 2 ft; cg. Since I is coherent, I(�C) 2 ft; cg implies I(��C) 2 ff; cg and thus

I(C) 2 ff; cg. By de�nition of interpretation I(C) 2 ff; cg contradicts I(C) = u.

� I(C) = f. For all y such that I(not�C) = y, we have f �

t

y and thus I(not�C  C) = t. �
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De�nition 22 (Model) Let I be a consistent interpretation of ground language K

E

or K

I

, let F

be a ground formula of the same language and let S be a set of ground formulas of the language.

Then

a. I is a model for F if I(F ) = t.

b. I is a model for S if I is a model for each formula of S.

I is a coherent model for S of K

E

i� I is a model for S and I is a coherent and consistent

interpretation of K

E

.

Example 23 The inuence of coherence can be seen by considering the set S consisting of the

formulas:

A

1

 A

2

�A

2

 not�A

2

There exists a model I of S such that I(A

2

) = t and I(�A

2

) = t, which makes I not coherent. In

this model I(A

1

) = t as well. In a coherent model A

2

and �A

2

cannot both be true. Although

the coherence principle relates C and �C, the coherence principle does not imply that for every

coherent interpretation I

0

: I

0

(C) = t i� I

0

(�C) = f for every C. There exists, for example, a

model I

1

for S such that I

1

(A

2

) = f and I

1

(�A

2

) = u. In this model we also have I

1

(A

1

) = f. �
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