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Abstract

In this paper, we propose a new approach to the problem of subgraph isomorphism

detection. The new method is designed for systems which di�erentiate between graphs

that are a priori known, so-called model graphs, and unknown graphs, so-called input

graphs. The problem to be solved is to �nd a subgraph isomorphism from an input

graph, which is given on-line, to any of the model graphs. The new method is based

on an intensive preprocessing step in which the model graphs are used to create a

decision tree. At run time, the input graph is then classi�ed by the decision tree and

all model graphs for which there exists a subgraph isomorphism from the input graph

are detected. If we neglect the time needed for preprocessing, the computational com-

plexity of the new subgraph isomorphism algorithm is only quadratic in the number

of input graph vertices. Furthermore, it is independent of the number of model graphs

and the number of edges in any of the graphs. However, the decision tree that is con-

structed in the preprocessing step may grow exponentially with the number of vertices

of the model graphs. Therefore, we present several pruning techniques which aim at

reducing the size of the decision tree. A computational complexity analysis of the

new method is given. Also, the advantages and disadvantages of the new algorithm

are studied in a number of practical experiments with randomly generated graphs.

Finally, the application of the algorithm in a graphic symbol recognition system is

briey discussed.

1 Introduction

Graph and subgraph isomorphism are concepts that have been intensively used in various

applications. The representational power of graphs and the need to compare di�erent

graphs with each other have led numerous researchers in the past twenty years to study

the problem of e�ciently computing graph and subgraph isomorphisms. As of today, it is

still an open question whether the general graph isomorphism problem can be solved by an

algorithm that is only polynomial in time and in space [GJ79]. All algorithms that have

been proposed in the literature so far have an exponential time complexity in the worst

case. Also, the problem of subgraph isomorphism detection is known to be NP-complete

[GJ79]. In the following, we will give a brief overview of graph and subgraph isomorphism

algorithms.

There are two basic approaches that past research has taken towards the problem

of graph isomorphism. The �rst approach is based on group-theoretic concepts and the

study of permutation groups. In [Bab81], it was shown that there exists a moderately
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exponential bound for the general graph isomorphism problem. Furthermore, by imposing

certain restrictions on the properties of the graphs, it was possible to derive algorithms

that have a polynomially bounded complexity. For example, Luks and Ho�man describe

a polynomially bounded method for the isomorphism detection of graphs with bounded

valence [Hof82]. For the special case of trivalent graph isomorphism, it was show in [Luk82]

that algorithms with a computational complexity of O(n

6

) exist. In [HW74] a method for

the computation of the isomorphism of planar graphs is proposed that has only a linear

time complexity. However, the major drawback of algorithms based on group-theoretic

concepts is the fact that there is usually a large overhead and consequently a large constant

factor associated with the theoretical complexity. The second approach to graph and

subgraph isomorphism is more practically oriented and aims directly at developing an

algorithmic procedure for isomorphism detection. Most of these algorithms are based on

a state-space search with backtracking. One of the �rst publications in this �eld is the

one by Corneil and Gotlieb [CG70]. A major improvement of the backtracking method

was then presented by Ullman, who introduced a re�nement method which reduces the

search space of the backtracking procedure remarkably [Ull76]. For an overview of the

publications on graph isomorphism see [Gat79, RC77]. More recent work is described in

[MLL92, FFG90] where the graph isomorphism problem was reduced to the problem of

clique detection by constructing an association graph for all the possible vertex mappings.

And most recently, a network based approach to graph matching has been proposed by

the authors [MB95b].

So far, we have only considered the problem of �nding a graph or subgraph isomor-

phism between two graphs at a time. However, in practical applications there is often a

database of graphs, so-called model graphs, and a single unknown input graph that must

be tested. If the number of graphs in the database is large then the sequential testing of

each model graph becomes computationally very costly. As a consequence, several systems

have been proposed in the past which combine graph or subgraph isomorphism algorithms

with indexing methods. The basic idea of indexing is to use speci�c and easily computable

features of an input graph in order to select a small set of model graphs out of a large

database. In [HS88], Horaud proposes to use the second immanantal polynomial of the

Laplacian matrix of a graph as an index into the database of graphs. However, this index

is only unique for graphs with less than 12 vertices and its computation requires O(n

4

)

steps, where n indicates the number of vertices in the graph. Another approach is taken

by Paris in [Par93] where it is proposed to calculate a structural index that is organized

in a hierarchical classi�cation network similar to the network-based graph matching de-

scribed in [MB95b]. Of high interest to the present paper are the indexing approaches

that are proposed in [Ike87, GB89, Spi93]. Instead of using an indexing mechanism as

a preprocessor to some conventional subgraph isomorphism algorithm, the database of

graphs is transformed into a decision tree. The decision tree is then used to directly and

simultaneously index and match the model graphs with the input graph. However, all of

the decision tree approaches that have been presented so far are strongly connected to

3D-object recognition and o�er no solution to the general graph isomorphism problem.

In this paper, we propose a new method for graph and subgraph isomorphism detection.

It has two important features. First, its run time is only quadratic in the number of vertices

in the input graph if we neglect the time needed for preprocessing. Secondly, the time

complexity is independent of the number of graphs in the database. The new method is
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based on the following idea. We generate the set of all permutations of the adjacency

matrix of a model graph and organize this set in a decision tree. Di�erent model graphs

can be combined into the same decision tree. The decision tree is built from the model

graphs in an o�-line preprocessing step. At run time, it is used to e�ciently determine if

there is a subgraph isomorphism from an unknown input graph to one of the model graphs.

The main advantage of the new method is that it is guarantueed to terminate in quadratic

time. However, the trade-o� for the e�cient run time is the size of the decision tree. It

contains, in the worst case, an exponential number of nodes. Nonetheless, we believe that

the proposed method is a new contribution to the �eld of subgraph isomorphism detection.

It is of particular interest in applications where the underlying graphs are rather small,

but where almost real time behavior is required.

The rest of this paper is organized as follows. In Section 2, the basic de�nitions and no-

tations are given. In Section 3, one of the standard algorithms for subgraph isomorphism

is briey described for comparison reasons. The basic idea and an overview of the new

algorithm is then presented in Section 4. A more detailed description of the procedures

and data structures of the new algorithm is given in Sections 5 and 6. The results of a

computational complexity analysis are described in Section 7. Because of the exponential

size, it is necessary to consider techniques for the reduction of the number of nodes in

the decision tree. These pruning techniques are presented in Section 8. The practical

performance of the new algorithm is studied in a number of experiments that are docu-

mented in Section 9. Section 10 is dedicated to the description of a prototype application

in document image analysis that incorporates the new algorithm. Finally, in Section 11, a

summary of the results and a discussion of future research directions conclude the paper.

2 De�nitions and Notations

In this section we give the basic de�nitions and notations that will be used throughout

the paper.

De�nition 2.1: A labeled graph G is a 6-tuple, G = (V;E; �; �; L

v

; L

e

), where

� V is the set of vertices,

� E � V � V is the set of edges,

� � : V ! L

v

is a function assigning labels to the vertices,

� � : E ! L

e

is a function assigning labels to the edges.

2

As usual, we assume that L

v

and L

e

are �nite sets of symbolic labels. Note that the above

de�nition corresponds to the case of directed graphs. Undirected graphs are obtained if

we require for each edge (v

1

; v

2

) an edge (v

2

; v

1

) in the opposite direction with the same

label.
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De�nition 2.2: Given a graph G = (V;E; �; �; L

v

; L

e

), a subgraph of G is a graph

S = (V

s

; E

s

; �

s

; �

s

; L

v

; L

e

) such that

1. V

s

� V

2. E

s

= E \ (V

s

� V

s

)

3. �

s

(v) =

(

�(v) if v 2 V

s

unde�ned otherwise

4. �

s

(e) =

(

�(e) if e 2 E

s

unde�ned otherwise

2

Let G = (V;E; �; �; L

v

; L

e

) be a graph with V = fv

1

; v

2

; : : : ; v

n

g. Then G can also be

represented by its adjacency matrix M = (m

ij

); i; j = 1; : : : ; n, where m

ii

= �(v

i

) and

m

ij

= �((v

i

; v

j

)) for i 6= j. Apparently, the adjacency matrix representation of a graph

doesn't take into account loops at a vertex. However, this isn't a real restriction as loops

can be represented by means of an extended set of vertex labels.

Clearly, the matrix M is not unique for a graph G. If M represents G, then any

permutation of M is also a valid representation of G.

De�nition 2.3: A n� n-matrix P = (p

ij

) is called a permutation matrix if

1. p

ij

2 f0; 1g for i; j = 1; : : : ; n

2.

P

n

i=1

p

ij

= 1 for j = 1; : : : ; n

3.

P

n

j=1

p

ij

= 1 for i = 1; : : : ; n

2

If a graph G is represented by an n�n adjacency matrixM and P is an n�n permutation

matrix, then the n� n matrix

M

0

= PMP

T

(1)

where P

T

denotes the transpose of P , is also an adjacency matrix of G. If p

ij

= 1 then

the j-th vertex in M becomes the i-th vertex in M

0

.

De�nition 2.4: Let G

1

and G

2

be two graphs and M

1

and M

2

their corresponding

adjaceny matrices. G

1

and G

2

are isomorphic if there exists a permutation matrix P such

that

M

2

= PM

1

P

T

(2)

2

Notice that the matrix P can be understood as a bijective function f that maps the vertices

of G

1

to G

2

, and vice versa. That is, f(v

j

) = v

i

i� m

ij

= 1. We will call both P and f a
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graph isomorphism between G

1

and G

2

. Thus, the problem of �nding graph isomorphisms

between two graphs G

1

and G

2

is equivalent to �nding a permutation matrix P for which

(2) holds true.

De�nition 2.5: Given two graphs G

1

and G

2

, there is a subgraph isomorphism from G

1

to G

2

if there exists a subgraph S � G

2

such that G

1

and S are isomorphic. 2

De�nition 2.6: Let M = (m

ij

) be a n � n matrix. Then S

k;m

(M) denotes the k �m

matrix that is obtained from M by deleting rows k + 1; : : : ; n and columns m+ 1; : : : ; n,

where k;m � n. That is, S

k;m

(M) = (m

ij

); i = 1; : : : ; k and j = 1; : : : ;m. 2

Using the notation introduced in the last de�nition, not only the concept of graph isomor-

phism but also subgraph isomorphism can be described in terms of adjacency matrices.

Let G

1

and G

2

be graphs with adjacency matrices M

1

and M

2

of dimension m �m and

n�n respectively, where m � n. There is a subgraph isomorphism from G

1

to G

2

i� there

is a n� n permutation matrix P such that

M

1

= S

m;m

(PM

2

P

T

): (3)

Thus, the problem of �nding a subgraph isomorphism from G

1

to G

2

is equivalent to

�nding a permutation matrix P for which (3) holds. Notice that S

m;m

(PM

2

P

T

) =

S

m;n

(P )M

2

(S

m;n

(P ))

T

.

3 A Brief Review of Ullman's Algorithm

For comparison reasons, we briey review Ullman's method [Ull76]. It can be applied to

both graph and subgraph isomorphism detection. The method is based on backtracking

and a re�nement procedure. Out of all methods that have been mentioned in the in-

troduction, Ullman's method is considered one of the fastest algorithm for the subgraph

isomorphism problem.

The input to the algorithm consists of a model graph G = (V;E; �; �; L

v

; L

e

) and an

input graph G

I

= (V

I

; E

I

; �

I

; �

I

; L

v

; L

e

). Let M denote the n� n-adjacency matrix of G

and M

I

the m �m-adjacency matrix of G

I

. We intend to �nd all permutation matrices

P such that M

I

= S

m;m

(PM

I

P

T

). Note that S

i;n

(P ) is an i� n permutation matrix that

represents a partial matching from the �rst i vertices of G onto some vertices of G

I

. If

S

i;i

(M

I

) = S

i;n

(P )M(S

i;n

(P ))

T

then clearly S

i;n

(P ) represents a graph isomorphism from

the subgraph of G

I

that consists of the vertices 1 to i to some subgraph of G.

Ullman's algorithm is based on the idea of �nding all subgraph isomorphisms by grad-

ually setting the permutation matrix P row by row (see Fig. 1). From Def. 2.3 in the

previous section, we know that each row k in P contains exactly one non-zero entry p

ki

= 1,

while all other elements p

kj

of the row k with j 6= i are set to 0. The recursive proce-

dure Backtrack begins by setting the �rst element p

11

of the top row of P to 1 and all

other elements in the top row of P to 0. If S

1;n

(P ) is a partial matching that represent a
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Ullman(G = (V;E; �; �; L

v

; L

e

), G

I

= (V

I

; E

I

; �

I

; �

I

; L

v

; L

e

))

1. Let P = (p

ij

) be a n� n permutation matrix, n = jV j, m = jV

I

j and M and M

I

denote the adjacency matrices of G and G

I

, respectively.

2. call Backtrack(M;M

I

; P; 1)

3. procedure Backtrack(adjacency matrix M , adjacency matrix M

I

, permutation

matrix P , counter k)

(a) if k > m then P represents a subgraph isomorphism from G

I

to G. Output

P and return.

(b) for all i = 1 to n

i. set p

ki

= 1 and for all j 6= i set p

kj

= 0

ii. if S

k;k

(M

I

) = S

k;n

(P )M(S

k;n

(P ))

T

then

call Backtrack(M;M

I

; P; k + 1)

Figure 1: Algorithm Ullman.

subgraph isomorphism, then the procedure Backtrack is recursively called again and the

second row of P is tentatively set. This process is continued until either m rows of P have

been succesfully set and a subgraph isomorphism is found or the condition in step (3.b.ii)

is not satis�ed. In both cases, the procedure backtracks to the previous level and tries

another setting of p

ki

.

It is easy to see that this algorithm �nds all subgraph isomorphisms from G to G

I

and outputs all permutation matrices P which satisfy M

I

= S

m;n

(P )M(S

m;n

(P ))

T

(or

M

I

= S

m;m

(PMP

T

)). Furthermore, if G

I

and G are of equal size, i.e. m = n, the

algorithm �nds all graph isomorphisms between G

I

and G and outputs all permutation

matrices P which satisfyM

I

= PMP

T

. For the practical experiments that are documented

in Section 8, we implemented the backtracking procedure along with the re�nement steps

described by Ullman [Ull76]. The re�nement procedure is based on the idea of forward

checking whether the assignment p

ki

= 1 in step (3.b.i) is locally consistent with at least

one entry p

lj

= 1 for each row m � l > k in the future search process. If the re�nement

procedure reveals that setting p

ki

= 1, i.e. mapping vertex i of G

I

onto vertex k of G, will

not lead to a graph isomorphism, the search may directly continue with the next column

i+ 1 and the setting p

k(i+1)

= 1. Thus, it is possible to avoid unnecessary recursive calls.

It is important to note that the backtracking procedure can only be applied to two

graphs at a time. If more than one model graphs are involved, it has to be called for each

of them individually. Therefore, the complexity of the subgraph isomorphism detection

algorithm based on backtracking is linearly dependent on the number of model graphs.
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a a

a

1

2

3

a

1 2 3

1

2

3

a

a

a

1

adjacency matrix of ggraph g

a

1

= (a)

1

0
0

a

1

a

2

a

3

a

1

a0 0

1

a

2

= (1; a; 0)

0 1

0 1

row-column representation of the adjacency matrix for g

a

3

= (1; 0; a; 1; 0)

Figure 2: The row-column representation of an adjacency matrix.

4 Subgraph Isomorphism by Means of Decision Trees

The main problem of the algorithm described in the previous section lies in the fact that

all permutation matrices which represent a subgraph isomorphism are calculated and gen-

erated at run time. Furthermore, the algorithm may run into dead ends and backtracking

becomes necessary. In order to overcome these problems and to avoid backtracking at run

time, we now propose a decision tree based approach. We assume that there is a set of

model graphs that are known a priori, while the input graph becomes accessible at run

time only. For each model graph we compute all possible permutations of its adjacency

matrix and transform these adjacency matrices into a decision tree. At run time, the

matrix of the input graph is then used to �nd those adjacency matrices in the decision

tree, that are identical to it. The permutation matrices that correspond to these adjacency

matrices represent the graph or subgraph isomorphisms that we are looking for.

Let G = (V;E; �; �; L

v

; L

e

) be a model graph andM its corresponding n�n-adjacency

matrix. Furthermore, let A(G) denote the set of all permuted adjacency matrices of G,

A(G) = fM

P

jM

P

= PMP

T

where P is a n� n permutation matrixg (4)

The total number of permuted adjacency matrices is jA(G)j = n! as there are n! dif-

ferent permutation matrices of dimension n. We are now ready to restate the subgraph

isomorphism problem in terms of the set introduced above. For a model graph G with

corresponding n�n-adjacency matrixM and an input graph G

I

with an m�m-adjacency

matrix M

I

and m � n, determine whether there exists a matrix M

P

2 A(G) such that

M

I

= S

m;m

(M

P

). If such a matrix M

P

exists, the permutation matrix P correspond-

ing to M

P

describes a subgraph isomorphism from G

I

to G, i.e. M

I

= S

m;m

(M

P

) =

S

m;m

(PMP

T

). If G and G

I

are of equal size, the permutation matrix P represents a

graph isomorphism between G

I

and G, i.e. M

I

= PMP

T

.

We propose to organize the set A(G) in a decision tree such that each matrix in A(G)

is classi�ed by the tree. The features that will be used for the classi�cation process are

the individual elements in the adjacency matrices. However, it is important to note that

the purpose of the decision tree will be to classify adjacency matrices of input graphs. In

case of subgraph isomorphism detection, these matrices will be smaller than the matrices

in A(G). Therefore, it is necessary to group the individual elements of the adjacency

matrices in A(G) into features such that the classi�cation on each level of the decision

tree is independent of the size of the adjacency matrix that is to be classi�ed. For this
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A

1 2 3

b 1 1

0 a 1

0 0 a

B

1 3 2

b 1 1

0 a 0

0 1 a

C

2 1 3

a 0 1

1 b 1

0 0 a

D

2 3 1

a 1 0

0 a 0

1 1 b

E

3 1 2

a 0 0

1 b 1

1 0 a

F

3 2 1

a 0 0

1 a 0

1 1 b

a

1 b

0

1

a0

1

a

1 a

1

1

1 1

a

b

1

1

a
00

Root

a0

1

0

1

0

0

a

1

00 a1

0

0 1

0

0

b 1

0

0

b

fBg fCg fEg fFgfDg

b

1

2

3

g

1

a

fAg

1

6

8 9

10 11 1312

4

5 7

2

3

Figure 3: Decision tree for the classi�cation of the adjacency matrices A : : : F of the graph

g

1

.

purpose, we introduce a new notation for an n� n adjacency matrix M = (m

ij

). We say

that the matrix consists of an array of so-called row-column elements a

i

, where each a

i

is

a vector of the form

a

i

= (m

1i

;m

2i

; : : : ;m

ii

;m

i(i�1)

; : : : ;m

i1

)

The matrix can then be written as

M = (a

1

; a

2

; : : : ; a

n

); i = 1; : : : ; n

Fig. 2 illustrates the structure of an adjacency matrix M with regard to its row-column

elements.

The decision tree is now built according to the row-column elements of each adjacency

matrix M

P

2 A(G). At the top of the decision tree there is a single root node. The direct

successor nodes of the root node constitute the �rst level of the decision tree. On the �rst

level, the classi�cation of the matrices in A(G) is done according to the �rst row-column

element a

1

of each matrix M

P

2 A(G). The element a

1

= (m

11

) represents the label of

the �rst vertex in each matrix in A(G), with m

11

2 L

v

(see Section 2). Consequently, each

matrix in A(G) is classi�ed according to its �rst vertex label. Each branch that leads to

a direct successor node of the root node is associated with a speci�c value for the row-

column element a

1

. Next, on the second level of the decision tree, the second row-column

element a

2

of each matrix is used for the classi�cation, and so on. In general, the matrices

that are represented by some node on the level k are divided into classes according to the
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0

1

a

b

(0; a; 1)

(1; a; 0)

(0; b; 1)

Indices: 1. 2. 3.

a 0

1

1

goto successor node 7

goto successor node 5

goto successor node 6

Figure 4: Dictionary and index for the decision tree node 3 in Fig. 3.

element a

k

. With each matrix M

P

that is represented by some node N on the level k, the

corresponding permutation matrix P is also given. As M

P

has been classi�ed up to the

k-th vertex, P describes a subgraph isomorphism for the subgraph with adjacency matrix

S

k;k

(M

P

) to G. At run time, P will describe a subgraph isomorphism for any input graph

that has been classi�ed into the node N . Finally, at the bottom of the decision tree, there

are the leaf nodes. Each leaf node represents a class of identical matrices M

P

2 A(G). For

each of these matrices, the corresponding permutation matrix is stored in the leaf node.

The number of these permutation matrices in each leaf node is equal to the number of

automorphisms of G. (An automorphism is an isomorphism of a graph to itself.)

In Fig. 3 a graph, g

1

, and its corresponding decision tree is shown. The nodes of

the decision tree are represented by shaded circles. Each directed branch from one node

to another has associated with it a row-column element. At the top of Fig. 3 the set

A(g

1

) of permuted adjacency matrices of g

1

is listed. It is easy to see that the number

of automorphisms of g

1

is one. Therefore, each leaf node in the decision tree represents

exactly one adjacency matrix.

An important requirement for a decision tree is that the classi�cation on each level

must be easily computable. Therefore, if a matrix M

P

is to be classi�ed according to

the k-th row-column element a

k

, the successor which is reached via an element a

k

i

with

a

k

i

= a

k

must be easily computable. For this purpose, all row-column elements that are

associated to the branches pointing from a node on level k to a node on level k + 1 are

collected in a dictionary of strings. This dictionary is organized as an index structure

with 2k � 1 indices. There are exactly 2k � 1 elements m

ij

in a row-column element a

k

and each of these elements is used as an index. Looking up an element in this dictionary

can be done in 2k � 1 steps. Thus �nding the successor node in the decision tree at level

k can be done in O(2k � 1) = O(k) steps. For an example, consider the node 3 in the

decision tree in Fig. 3. There are three branches leading from node 3 to nodes 5, 6, and 7,

respectively. The row-column elements associated with these branches are organized in a

dictionary that is given in Fig. 4. In this example, a three-level index structure is required

for the organization of the dictionary entries.

So far we have only discussed the structure of the decision tree with regard to a

single model graph. If there are several model graphs in a database then the most trivial

solution would be to build a decision tree individually for each model graph. However, it

is possible to represent several model graphs by the same decision tree. On each level, the
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Figure 5: Decision tree for the graph g

1

in Fig 3 and the graph g

2

.

classi�cation of the adjacency matrices for a model graph is done solely on the basis of

the current row-column element. No test on any level of the decision tree makes explicit

use of the model graph itself. Therefore, given a set of model graphs G

1

; G

2

; : : : G

L

,

the corresponding adjacency matrix sets A(G

1

); A(G

2

); : : : ; A(G

L

) can be classi�ed and

represented by the same decision tree. In Fig. 5 the decision tree for the graph g

1

of Fig.

3 and another graph, g

2

, is displayed. In order to classify each of the adjacency matrices

in A(g

2

) (given at the top of Fig. 5) only two nodes have to be added to the decision tree

that corresponds to the graph g

1

. As there are three automorphisms of g

2

, each of the

nodes 13 and 15 in Fig. 5 represents exactly three adjacency matrices.

At run time, the decision tree is directly used in order to classify the m�m adjacency

matrix M

I

of an unknown input graph G

I

. The matrix M

I

is classi�ed on the �rst level

according to its row-column element a

1

I

. If there is some branch i from the root node to a

successor node whose associated element a

1

i

matches a

1

I

, the algorithm continues with the

successor node on the second level and so on. If at some point no classi�cation is possible,

then the input graph G

I

is not isomorphic to any subgraph of the model graphs or any of

the model graphs in the database. If each row-column element of G

I

has been used in the

classi�cation process and some node N in the decision tree has been reached, then each

permutation matrix that is associated with N represents a subgraph isomorphism from

the input graph to one of the model graphs. If node N is a leaf node and the input graph

and the model graph are of equal size then each permutation matrix associated with N

10



compile tree(graph G = (V;E; �; �; L

v

; L

e

))

1. Create the root node Root of the decision tree if it does not yet exists.

2. For k=1 to n , where n = jV j

(a) Generate all subgraphs S

k

� G with k vertices.

(b) Call merge tree(Root; S

k

).

Figure 6: Algorithm compile tree.

describes a graph isomorphism between the input graph and one of the model graphs.

5 A More E�cient Representation of Decision Trees

The decision trees described in the last section are unnecessarily large. In this section we

introduce a more compact representation. It it is based on the observation that at level

k in the decision tree all subgraphs consisting of k vertices are represented, k = 1; : : : ; n.

Notice that each of these subgraphs S is represented k!=� times, where � denotes the

number of di�erent automorphisms of S. Clearly, all these representations are equivalent

to each other, and the information they contain is largely redundant. We now show how

this kind of redundancy can be avoided. As a result, a more compact representation of

decision trees is obtained.

Let N

1

and N

2

be nodes of the decision tree that both represent the same subgraph

S of a model graph G and let S be given by its adjacency matrix M

S

. Furthermore, let

M

1

and M

2

be the adjacency matrices represented by N

1

and N

2

, and P

1

and P

2

the

corresponding permutation matrices such that P

1

M

S

P

T

1

=M

1

and P

2

M

S

P

T

2

=M

2

. Then,

there exists a permutation matrix R such that

M

1

= RM

2

R

T

(5)

R can be simply obtained by

R = P

1

P

T

2

(6)

because substituting R in Equation (5) by P

1

P

T

2

and also substituting M

2

by P

2

M

S

P

T

2

yields P

1

P

T

2

(P

2

M

S

P

T

2

)(P

1

P

T

2

)

T

= P

1

M

S

P

T

1

= M

1

. Therefore, any adjacency matrix rep-

resented in the node N

2

can be transformed, by means of the matrix R, into a matrix that

is represented in N

1

. The most important conclusion from this observation is that for the

decision tree node N

2

it is not necessary to classify the represented matrices further and

create successor nodes of N

2

. Instead, it is su�cient to classify the matrices represented in

N

1

and simply refer or redirect the node N

2

to N

1

. For this purpose, we introduce a redi-

recting branch in the decision tree that originates at N

2

and ends in N

1

. Associated with

the redirecting branch is the permutation matrix R. In general, for a subgraph S � G,

we choose from the set of decision tree nodes that represent S an arbitrary node T and

insert redirecting branches from all the other nodes to T . Consequently, only one of the

11



merge tree(Node Root, Graph S )

1. Let S be given by its k � k adjacency matrix M .

Generate all permutation matrices P of dimension k and the corresponding set

A(S) of permuted adjacency matrices of S.

2. For each M

P

= (a

1

; : : : ; a

k

) 2 A(S) do

(a) N = Root.

(b) For i=1 to k do

i. If there is a successor node N

s

of N for which a

k

= a

N

s

then let N = N

s

else

generate a new node N

s

and make N

s

a direct successor of N . Insert

a

k

into the dictionary that is attached to N . Let N

s

represent the row-

column element a

k

and set N = N

s

.

3. Choose the node N on the level k + 1 which was created or found for the �rst

matrix M

1

in A(S) and set T = N . Let M

1

= P

1

MP

T

1

.

4. For each node N 6= T on the level k + 1 that represents S, insert a redirecting

branch to the node T . Let M

0

2 A(S) be an adjacency matrix classi�ed in N

and P

0

the corresponding permutation matrix such that M

0

= P

0

MP

0T

. Then,

associate the permutation matrix P

1

P

0T

to the redirecting branch from N to T

(see Equation 6).

Figure 7: Algorithm merge tree.

decision tree nodes representing S will be used for the further classi�cation of matrices of

the graph G.

We now describe a procedure for compiling a decision tree from a given model graph.

The basic idea of the compilation scheme is to create a decision tree for all subgraphs of

the model graph. In the procedure we gradually increase the size of the subgraphs that are

incorporated in the decision tree. As it was discussed above it is su�cient that for each

subgraph there is only one node in the decision tree that is used for further classi�cation.

In the compilation procedure compile tree given in Fig. 6, we start by creating a single

root node for the decision tree, provided that the decision tree is yet empty

1

. Next, we

successively generate the subgraphs of G starting with subgraphs of size one and ending

with the graph G itself. For each of these subgraphs S

k

where k denotes the number of

vertices, a procedure merge tree is called.

In the �rst step of the proceduremerge tree, given in Fig. 7, the set A(S) of all permuted

adjacency matrices is generated. These matrices are then classi�ed by the already existing

decision tree as far as possible. Note that the decision tree may at this point already

incorporate di�erent model graphs or subgraphs of model graphs. The classi�cation of a

1

A non-empty decision tree will be encountered when we compile a decision tree for a set of model

graphs.

12
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Figure 8: Compact decision tree for the classi�cation of the adjacency matrices fA; : : : ; Fg

and fA

0

; : : : ; F

0

g of the graphs g

1

and g

2

, respectively (see also Figs. 3 and 5).

matrix is performed in the steps (2.a) and (2.b) by consulting successively each of its row-

column elements. If for some node N on level k, there is no classi�cation of the current

matrix, i.e. there is no successor node with a row-column element that corresponds to

the row-column element a

k

of the current matrix, then a new node N

s

must be inserted

into the decision tree. The new node N

s

must be made a direct successor node of N .

Furthermore, the element a

k

must be inserted into the dictionary that is attached to N .

When all matrices in A(S) have been succesfully classi�ed, the redirecting branches are

inserted. By default, the node that is generated for the �rst matrix M

1

2 A(S) is taken as

the representative node T . In step (4), all other nodes that have been created for matrices

in A(S) are then redirected to T .

In Fig. 8, the decision tree for the graphs g

1

and g

2

resulting from the algorithm com-

pile tree is displayed. There are two redirecting branches in this decision tree (denoted

by dotted lines). Associated with both branches is the permutation matrix

�

0 1

1 0

�

. When

applied to the 2� 2 submatrices S

2;2

(A), S

2;2

(B) and S

2;2

(D) of g

1

, the matrices S

2;2

(C),

S

2;2

(E) and S

2;2

(F ) result. For the graph g

2

, the redirecting branch transforms the matri-

ces S

2;2

(A

0

), S

2;2

(D

0

) and S

2;2

(E

0

) into the matrices S

2;2

(C

0

), S

2;2

(F

0

) and S

2;2

(B

0

). Notice

that by introducing redirecting branches into the decision tree it is possible to save three

decision tree nodes.

So far, we have only discussed the compilation of decision trees for single model graphs.

However, the general structure of a decision tree is independent of the number of model

graphs that are classi�ed by the tree. Therefore, it is not necessary to build a new decision

tree for every new model graph. Instead the same decision tree can be extended and used

for any number of model graphs in the database. The only extension that is needed is to

call the algorithm compile tree for each model graph.

13



6 Decision Tree Traversal

The decision tree structure that was previously described can now be used to get a very

e�cient graph and subgraph isomorphism algorithm. Let G

1

; : : : ; G

L

be a set of model

graphs represented by a decision tree and G

I

an unknown input graph. We assume that

the input graph is represented by its adjacency matrix M

I

= (a

1

; a

2

; : : : ; a

m

) given in

row-column format. The algorithm decision-tree (see Fig. 9) now tries to �nd out whether

there exists a matrix M 2 A(G

i

) such that M

I

= S

m;m

(M) by classifying M

I

according to

its row-column elements. The algorithm starts at the root node of the decision tree and

�rst classi�esM

I

according to its �rst element a

1

. If this step is succesful, the classi�cation

is continued on the next level. In general, if the process is on level k and N is the current

node of the decision tree, then the successor node of N which represents a

k

must be found.

This is done by looking up the element a

k

in the dictionary of row-column elements that

is attached to N . If there is an element a

k

N

in the dictionary that matches a

k

perfectly,

the process follows the branch from N to the successor node N

s

that represents the row-

column element a

k

N

. If no such element can be found in the dictionary then M

I

cannot

be classi�ed by the decision tree and it follows that G

I

is not isomorphic to any subgraph

of the model graphs G

i

.

In step (2.d) of the algorithm it is checked whether the current node N

s

has an outgoing

redirecting branch. If this is the case then we follow this redirecting branch. Accordingly,

the matrix M

I

of the input graph must be permuted by applying the permutation matrix

R that is attached to the redirecting branch. Note, however, that if N is on level k then R

is a k � k permutation matrix because it was created at compilation time for a subgraph

of size k (see previous section). On the other hand, M

I

is an m�m-adjacency matrix of

the input graph G

I

with m � k. In order to apply R to M

I

, it is necessary to extend R

to an m �m matrix by adding m � k rows and m � k columns. The rows and columns

are to be copied from an m �m identity matrix. The extended matrix R is denoted by

R

0

. Using R

0

it is possible to adjust M

I

according to the redirecting branch by means

of the operation M

I

= R

0

M

I

R

0T

. The classi�cation process can then be continued. The

algorithm terminates either in step (2.b) when it is detected for the �rst time that there

is no subgraph isomorphism from the input graph to any of the model graphs, or in step

(3) when the last row-column element a

m

of M

I

has been processed and some node N

has been reached. In the latter case, the matrix M

I

is identical to all matrices M

i

of the

model G

i

that are represented in N . If N is not a leaf node then the set of permutation

matrices that are stored in N represents all subgraph isomorphisms from the graph G

I

to

G

i

. If, on the other hand, N is a leaf node and G

I

and G

i

are of equal size then the set

of permutation matrices in N represents all graph isomorphisms between G

I

and G

i

.

It is easy to see that the new algorithm for graph isomorphism traverses the decision

tree without the need for backtracking and therefore has a time complexity which is only

polynomial in the number of vertices of the input graph. Furthermore, the algorithm is

clearly independent of the number of model graphs that are represented in the decision tree.

In order to avoid any misunderstanding, it is important to note that the new algorithm

cannot be used for the detection of subgraph isomorphisms from the model graphs to the

input graph. This can be concluded from the fact that the algorithm uses the adjacency

matrix of the input graph in its original form and tries to classify each row-column element

sequentially. If the input graph contains an extraneous vertex, then the classi�cation of
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Decision Tree(Node Root, Graph G

I

)

1. Let G

I

be given by its adjacency matrix M

I

= (a

1

; : : : ; a

m

) and let m = jV j and

N = Root.

2. For k=1 to m do

(a) Look up the dictionary of row-column elements that is attached to node N

and �nd an entry a

k

N

such that a

k

N

= a

k

.

(b) If no such element in the dictionary is found, the graph G is not isomorphic

to any subgraph of the model graphs or any of the model graphs themselves

represented by the decision tree. Exit with failure.

(c) If an element a

k

N

= a

k

is found in the dictionary, then follow the branch

marked by a

k

N

to the node N

s

.

(d) If there is a redirecting branch from N

s

to some node N

0

then set M

I

=

R

0

M

I

R

0T

, where R

0

is the extended m �m permutation matrix associated

to the redirecting branch (see text). Set N = N

0

.

Else, N = N

s

.

3. For each matrix M

P

of a model G

i

(with corresponding n� n adjacency matrix

M

i

) that is represented by the node N

(a) If m < n then the associated permutation matrix P describes a subgraph

isomorphism from G

I

to G

i

, i.e. M

I

= S

m;m

(M

P

) = S

m;m

(PM

i

P

T

).

(b) If m = n then the associated permutation matrix P describes a graph iso-

morphism from the input G

I

to the graph G

i

, i.e. M

I

= PM

i

P

T

.

Figure 9: Algorithm decision tree.

the adjacency matrix may fail at any stage of the decision tree.

7 Complexity Analysis

The computational complexity analysis given in this section will be based on the following

quantities:

N =the number of model graphs in the database,

M=the maximum number of vertices in a model graph,

I =the number of vertices in the input graph,

l

v

=the number of vertex labels,

l

e

=the number of edge labels.
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7.1 Computational Complexity of the Conventional Algorithm

For comparison reasons, we �rst analyze the space and time complexity of the conventional,

backtracking based subgraph isomorphism method. The best case for this algorithm is

given when the vertices of the model graph are uniquely labeled such that on each level

of the recursion there is only one possible assignment of the current input graph vertex to

a model graph vertex. Thus, the time complexity is in the best case bounded by

(best case time complexity)

O(NIM)

(7)

The space complexity of the conventional algorithm is in the best case bounded by

(best case space complexity)

O(M

2

I)

(8)

The worst case for the conventional algorithm arises when the model graphs and the

input graph are unlabeled, undirected and highly connected. In this case, there are on each

level I possible assignments for the model graph vertices and each of these assignments

can be expanded. Therefore, the worst case time complexity of the conventional algorithm

is bounded by

(worst case time complexity)

O(I

M

M

2

N)

(9)

On the other hand, the space requirements in the worst case do not exceed the requirements

in the best case, because each model graph is treated individually and the space allocated

for each level in the search tree can be reused when backtracking occurs.

(worst case space complexity)

O(M

2

I)

(10)

7.2 Computational Complexity of the New Algorithm

Unlike the conventional algorithm for which no preprocessing steps are necessary, the new

algorithm involves intensive preprocessing, namely the compilation of the decision tree for

the model graphs. In the following, we �rst consider the computational complexity of the

preprocessing step and then we analyze the run time complexity of the new algorithm.

With regards to practical applications it is important to note that the decision tree

which is built in the preprocessing step must be present in the main memory at run

time. Therefore, the size of the decision tree is of great importance to any application

incorporating the new algorithm. A useful measure for the size of the decision tree is

the number of nodes. According to the compilation algorithm described in Section 5 the

decision tree for a model graph is built level by level. The nodes on the level k + 1 are

created by isolating all subgraphs of size k of the model graph and classifying each of these

subgraphs in the decision tree

2

. However, regardless of the number of permutations, there

is only one node for each subgraph of size k that is �nally used as an ancestor node to other

2

The root node is located on level 1. Subgraphs of size 1 are represented on then level 2 and so on.
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nodes in the decision tree. Therefore, the number of nodes on each level with successor

nodes is limited by O(

�

M

k

�

). Each of these nodes may be the parent node of numerous

successor nodes that represent di�erent row-column elements. Any row-column element

a

k+1

that is associated to a branch that originates in a node on level k + 1 consists of 2k

edge label entries and one vertex label entry. Consequently, there are at most O(l

2k

e

l

v

)

di�erent row-column elements, each being represented by a distinct node in the decision

tree. The total number of nodes on the level k + 2 following the level k + 1 is therefore

bounded by O(

�

M

k

�

l

2k

e

l

v

). The sum of the nodes over all the levels (without the root node)

is then bounded by

O(l

v

M�1

X

k=0

 

M

k

!

(l

2

e

)

k

) = O(l

v

(1 + l

2

e

)

M

) (11)

If there are several model graphs in the database, the decision tree becomes linearly

dependent on N , the size of the database:

(space complexity of decision tree)

O(Nl

v

(1 + l

2

e

)

M

)

(12)

This is the worst case upper bound for directed, labeled graphs. A special case, however,

are unlabeled, undirected graphs. For these graphs, which are notably the worst possible

case for the conventional algorithm, the size of the decision tree is bounded by the following

expression:

3

O(N3

M

) (13)

The theoretical run time performance of the new algorithm can be estimated by ana-

lyzing the algorithm decision-tree in Section 6. The adjacency matrix of the input graph

is classi�ed step by step by the decision tree. For a graph with M vertices, the adjacency

matrix contains M row-column elements a

1

; a

2

; : : : a

M

. The classi�cation of a matrix on

level k + 1 according to the row-column element a

k+1

requires that the row-column ele-

ment a

N

in any of the successor nodes of the current node, which matches a

k+1

perfectly,

is found. The element a

k+1

is an array consisting of 2k edge labels and one vertex label.

At construction time, the row-column elements represented in the successor nodes of the

current node have been organized in a dictionary. The dictionary is indexed such that a

k+1

can be classi�ed by performing exactly 2kl

e

+ l

v

comparisons. This computational e�ort

must be done on each level of the decision tree. Additionally, it may occur that on each

level of the decision tree a redirecting branch is encountered. Consequently, on each level

the vertices of the input graph must be reordered according to the permutation matrix

that is associated with the redirecting branch. Reordering the position of M vertices on

M levels requires M

2

computational steps. Therefore, the theoretical complexity of the

new subgraph isomorphism algorithm is bounded by

(best and worst case time complexity of decision tree traversal)

O(M(2Ml

e

+ l

v

) +M

2

) = O(M

2

l

e

+Ml

v

)

(14)

3

For unlabeled graphs the set of edge labels l

e

consists only of the null label and a uniform label, which

indicates the presence of an edge. Consequently, jl

e

j = 2 and jl

v

j = 1. Furthermore, the adjacency matrix

of an undirected graph is symmetric and there are at most O(l

k

e

l

v

) di�erent row-column elements on level

k.
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Notice that the above complexity analysis of the new algorithm with respect to subgraph

isomorphism detection also applys to graph isomorphism detection.

Again, a special case can be observed for unlabeled, undirected graphs, where the run

time performance is bounded by

O(M

2

) (15)

It is important to note that in both the general and the special case of unlabeled

graphs the computational complexity of the new algorithm is polynomially bounded. Fur-

thermore, the theoretical performance is completely independent of the connectivity of

the graphs and the number of model graphs that are represented by the decision tree.

Unlike the conventional, backtracking-based algorithm (and any other subgraph isomor-

phism algorithm that has been proposed in the literature up to this moment) the new

algorithm is guaranteed to �nd all graph and subgraph isomorphisms in quadratic time.

Naturally, for regular complete graphs, the listing of all subgraph isomorphism may take

exponential time, as their number is exponential. The new algorithm delivers in quadratic

time the number of subgraph isomorphisms and a pointer to the set of all permutation

matrices that represent subgraph isomorphisms. The main problem of the new approach,

however, is that the size of the decision tree grows exponentially with the size of the model

graphs. Therefore, in order to render the new algorithm applicable for practial tasks, it is

necessary to �nd ways of making the decision tree more compact.

8 Pruning the Decision Tree for Practical Applications

In Section 5, the compilation of a complete and functional decision tree for the classi�cation

of adjacency matrices was described. In the following, we will refer to decision trees that

are built according to this compilation as complete decision trees. The main advantage

of complete decision trees is that graph isomorphisms can be detected in quadratic time

and that subgraph isomorphisms from input graphs that are subgraphs of model graphs

can also be found in quadratic time. However, the disadvantage of a complete decision

tree is its exponential size. We will now propose two di�erent techniques in order to

reduce the size of the decision tree. The �rst method is based on the idea of pruning the

breadth of the complete decision tree. The properties of the new algorithm based on a

breadth-pruned decision tree are similar to those of the algorithm based on a complete

decision tree. However, the time complexity for graph isomorphism detection based on

a breadth-pruned decision tree is increased from O(M

2

) to O(M

3

). Also, the breadth-

pruned decision tree does no longer support subgraph isomorphism detection. The second

method aims at pruning the depth of the decision trees. Depth-pruned decision trees will

no longer guarantee a graph isomorphism detection in polynomial time. However, they

are very suitable for applications where the number of model graphs is large.

8.1 Breadth-Pruning the Decision Tree

The compilation of a decision tree for a model graph G consists in generating all permuta-

tions of the adjacency matrix of G and incorporating a classi�cation path in the decision

tree for each of these matrices. Consequently, at run time the adjacency matrix of the
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Figure 10: The decision tree of Fig. 8 (for the graph g

1

and g

2

) after breadth-pruning was

performed.

input matrix is taken in its original form and classi�ed directly by the decision tree. How-

ever, by allowing additional operations on the input matrix at run time, the number of

nodes in the decision tree can be reduced remarkably. In the following, we briey outline

two sets of transformations of this kind.

The �rst set of transformations simply requires that the vertices of the input graph

are ordered such that each vertex is connected to at least one other vertex that appears

earlier in the ordering. For the adjacency matrix of the input graph given as a vector of

row-column elements (a

1

; : : : ; a

m

), this means that each row-column element a

i

contains

at least two non-zero entries. It is straightforward to show that the adjacency matrix

of any connected graph can be transformed such that the above condition holds. This

problem is equivalent to �nding a spanning tree of a graph and thus it can be solved in

quadratic time[Eve79]. We can then reduce the number of permuted adjacency matrices

A(G) that must be classi�ed by the decision tree. Namely, all permutations of the model

matrix for which the above condition does not hold, may be discarded at compilation

time. For graphs with a low connectivity, the number of decision tree nodes that are

pruned by this technique can be very high. As the transformation of the input graph has

only quadratic time complexity, the graph isomorphism algorithm based on the pruned

decision tree has the same computational complexity as before. Also, both graph and

subgraph isomorphism detection are still supported by a decision tree that was subject to

this type of breadth-pruning technique.

The second technique for pruning the breadth of a decision tree is based on the fol-

lowing observation. Let M

I

= (a

1

; : : : ; a

m

) be the adjacency matrix of an input graph

G

I

. Assume that M

I

is to be classi�ed by a decision tree that was built for a model

graph G. Furthermore, assume that M

I

has been classi�ed up to the level k + 1 and the

node N is the current node in decision tree. In the next step, the algorithm will try to

�nd a successor node of N according to the k + 1-th element of M

I

, a

k+1

. However, at
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this point, the decision tree traversal algorithm may be rewritten in the following man-

ner. Note that there are exactly (n � k)! di�erent permutation matrices of G

I

for which

the �rst k row-column elements (a

1

; : : : ; a

k

) are identical. Consequently, when M

I

has

been classi�ed up to the element a

k

, there are in fact n � k di�erent successor nodes,

each representing a permutation of M

I

for which the element a

k+1

is di�erent but the

elements a

1

; : : : ; a

k

are identical. Therefore, a modi�ed version of the graph isomorphism

algorithm may rotate the n � k last columns and rows of the input matrix M

I

and try

each of the n � k row-column elements a

k+1

in order to classify the matrix. Naturally,

in a complete decision tree, each of the row-column elements will allow a succesful clas-

si�cation. However, with the modi�ed version of the graph isomorphism algorithm it is

no longer necessary to incorporate all n� k successor, but it is su�cient to build a single

successor node. The modi�ed algorithm will still be able to classify the input matrix by

trying all n�k possible rotations of the last rows and columns of the input matrix. If this

pruning scheme is applied on each level of the decision tree, then the number of nodes in

the tree will be reduced by a factor of n, where n indicates the total number of vertices in

the represented model graph. Hence, in case of an unlabeled, undirected graph, the size

of the decision tree will be bounded by O(3

n

=n) (see Equation 13). The computational

complexity of the graph isomorphism algorithm on the other hand is increased by a factor

of n due to the permutations of the input matrix which must be performed on each level

of the decision tree. Thus, the run time complexity of the new algorithm for undirected,

unlabeled graphs on the basis of a pruned decision tree is bounded by O(n

3

) (see Equa-

tion 15). The construction of a decision tree which is pruned according to this technique

is based on a two step procedure. First, the complete decision tree is constructed, and

afterwards the maximal number of nodes is pruned according to the technique described

above. (Consequently, the applicability of breadth-pruned decision trees is limited by the

exponential size of the corresponding complete decision tree.) The main drawback of this

type of breadth-pruning technique, however, is that the resulting decision tree can only

be used for graph isomorphism and no longer for subgraph isomorphism detection. By

allowing only one possible successor for each matrix represented by a decision tree node,

some subgraphs of the represented model graph will no longer be present in the decision

tree. Consequently, at run time, they will not be detected by the modi�ed algorithm.

In Fig. 10, the decision tree for the graphs g

1

and g

2

of Fig. 8 is displayed after

both techniques for breadth-pruning have been applied. The �rst technique has no e�ect

because the graphs g

1

and g

2

are completely connected. The second technique, however,

reduces the size of the decision tree remarkably. Note that the left branch departing from

the root node is no longer necessary since all adjacency matrices can be classi�ed by the

right branch at the expense of reordering the vertices. Consequently, the decision tree for

the graphs g

1

and g

2

of Fig. 5 now contains only 6 nodes instead of 11.

For the remainder of this paper, we will generally assume that a breadth-pruned de-

cision tree was subject to both the �rst and the second pruning technique that were

presented in this section.
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8.2 Depth-Pruning the Decision Tree

In the previous sections we have shown that the new algorithm based on the decision

tree approach has very interesting properties. However, its main disadvantage is the

exponential growth of memory and, consequently, the limitation to graphs of moderate

size. In this section, we briey introduce a depth-pruning technique, which makes the new

algorithm also suitable for applications that deal with larger graphs.

A common observation in practical graph applications is that the branching factor of

a graph isomorphism search tree, such as it is used in Ullman's algorithm, is large at the

top of the tree and becomes gradually smaller for deeper levels of the search tree. This

is especially true for labeled graphs where only at the beginning of the search tree there

are several possible matchings, while at the lower part of the search tree no backtracking

is necessary anymore. In model based 3D-object recognition, for example, where graphs

represent 3D objects and graph isomorphism is used to recognize objects and establish

their position, the search for a graph isomorphism is often terminated after three or four

vertices of an object have been matched, because these vertices are su�cient to uniquely

determine the location of the object. Based on this observation, we propose to prune the

depth of a decision tree in the following manner.

Instead of compiling a complete decision tree for a model graph G of size n, we only

build a decision tree for all subgraphs S

k

of G of size k, where k < n. The depth of

the decision tree is therefore limited by k. At run time, the unknown input graph G

I

is classi�ed by the new algorithm described in Section 6. When a leaf node on the level

k of the decision tree is reached, a subgraph of size k of the input graph has been suc-

cesfully matched onto one or several subgraphs of the model graph. To get a complete

subgraph isomorphism, the search process must then continue with a conventional algo-

rithm. However, the search space of the conventional algorithm has been greatly reduced

as the the partial matching found by the decision tree can be used as an initialization of

the conventional search algorithm.

The most important aspect of the depth-pruned decision tree approach, however, is

its capability of indexing a model graph out of a set of models. Clearly, a pruned decision

tree may incorporate di�erent model graphs. At run time, an input graph that is classi�ed

with the algorithm decision tree on the basis of the depth-pruned decision tree will invoke

a single leaf node of the decision tree. Only model graphs that are represented by this leaf

node will be subject to being further tested, for example, by a conventional algorithm.

The depth-pruned decision tree is thus a very e�cient indexing method for large databases

of graphs.

9 Practical Experiments

In order to examine the e�ciency of the new algorithm in practice, we have performed

a number of experiments with randomly generated graphs. In Section 7 it was shown

that the complexity of the new algorithm is quadratic for both graph and subgraph iso-

morphism detection if the underlying decision tree is complete. For practical applications,

however, it will be necessary to prune the decision tree according to one or several pruning

techniques described in Section 8. Thus, all the experiments documented in this section
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Figure 11: Computation steps for a

growing number of vertices (�rst exper-

iment).

10.0 12.0 14.0 16.0 18.0 20.0
Number of vertices

0.00

0.02

0.04

0.06

0.08

T
im

e 
in

 s
ec

on
ds

Decision Tree
Conventional Algorithm

Figure 12: Computation time in sec-

onds for a growing number of vertices

(�rst experiment).
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Figure 13: Number of nodes in the de-

cision tree for a growing number of ver-

tices (�rst experiment).
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Figure 14: Disk space occupied by the

decision tree for a growing number of

vertices (�rst experiment).

were performed with respect to graph isomorphism detection and the underlying decision

trees were subject to either breadth-pruning or both breadth- and depth-pruning. For

each experiment, we generated one or more model graphs and used these model graphs

to create isomorphic input graphs. All of the graphs generated for the experiments in

this section were undirected and unlabeled. The new decision tree algorithm and the

conventional algorithm based on Ullman's re�nement procedure were both implemented

in C++ and run on a SUN Sparc10 Workstation. In order to compare the performance

of the algorithms a measure for the computational e�ort was needed. We de�ned that a

basic computation step is the comparison of one model graph vertex and its incident edges

to one input graph vertex and its incident edges. The performance was then measured

by counting the number of basic computation steps that were performed while searching

for all graph isomorphisms. Additionally, for each experiment, we measured the absolute

computation times of both algorithms. The sizes of the decision trees in terms of the

number of nodes and the required disk space are also given for each experiment.
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In the �rst experiment, we wanted to demonstrate the e�ciency but also the limits

of the new algorithm with regard to the size of the graphs that can be handled. For this

purpose, we randomly generated a sequence of model graphs with a growing number of

vertices. A copy of each model graph with randomly permuted vertices was used as input

graph. We started with a graph consisting of 10 vertices and 15 edges and ended up with a

graph consisting of 19 vertices and 28 edges. The number of computational steps that were

performed by the new algorithm and the conventional algorithm in order to �nd all graph

isomorphisms between model and input graph are plotted in Fig. 11. The corresponding

computation times are displayed in Fig. 12. Clearly, the new algorithm is much more

e�cient than the backtracking algorithm as predicted. Notice that the computation time

for a graph with 19 vertices and 28 edges was ten times longer with the conventional

algorithm than with the new algorithm. The cost of the run time e�ciency of the new

algorithm is, however, the size of the decision tree. In Fig. 13 the number of nodes

in the breadth-pruned and the complete decision tree for a growing number of vertices

in the model graphs is displayed. The growth of the complete decision tree is clearly

exponential. While there were only 945 nodes in a complete decision tree for a graph

with 10 vertices, there were already 47'050 nodes in a tree for a graph with 19 vertices.

The breadth-pruned decision tree, on the other hand, is much smaller. In Fig. 14 the

disk space that is occupied by the breadth-pruned decision tree is displayed. Notice that

for a graph with 19 vertices, the breadth-pruned decision tree required 1.2 Mbyte of disk

space. Consequently, the complete decision tree, which is 16 times larger in terms of nodes,

would require approximately 20 Mbyte of disk space. The compilation time for a decision

tree for a model graph with 10 vertices took only two second, while the compilation for a

model graph with 19 vertices took roughly 30 minutes on a Sparc10 Workstation. (The

compilation of a model graph consisting of 20 vertices did not �nish within 60 minutes

and was aborted after more than 200 Mbytes of main memory were taken up by the

program.) Although the results for the breadth-pruned decision tree indicate that graphs

with 19 vertices and 28 edges can be represented by decision trees of reasonable size, it is

important to remember that for the construction of the breadth-pruned decision tree, the

complete decision tree must be created �rst (see Section 8). Consequently, although the

breadth-pruned decision tree is reasonably small, the necessary previous construction of the

complete decision tree prevents the new method from being applied to graphs containing

more than 19 vertices. In Section 8, we showed that the computational complexity of the

new algorithm based on a breadth-pruned decision tree is cubic in the number of vertices

of the input graph, while for a complete decision tree the complexity is only quadratic.

However, in practice, the run time performances of the new algorithm based either on

breadth-pruned or on complete decision trees are almost identical. (This observation is

not illustrated here.)

In the second experiment, we were interested in the inuence of the database size on

the performance of the new algorithm. We �rst generated a single model graph consisting

of 11 vertices and 33 edges and then gradually added new model graphs of the same size

until there were 30 graphs in the database. With every new model that was added to

the exisiting database, a corresponding input graph was generated and the computational

e�ort for �nding all graph isomorphisms from the input graph to the model graphs in the

database was measured for both algorithms. The results of the second experiment are

document in Figs. 15 and 16. As was to be expected from the computational complexity
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Figure 15: Computation steps for a

growing number of model graphs (sec-

ond experiment).
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Figure 16: Time in seconds for a grow-

ing number of model graphs (second

experiment).
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Figure 17: Number of nodes in the

decision tree for a growing number of

model graphs (second experiment).
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Figure 18: Disk space occupied by the

decision for a growing number of model

graphs (second experiment).

analysis, the decision tree algorithm's performance was completely independent of the

number of models in the database. The conventional algorithm, on the other hand, had

to perform a graph isomorphism search for each model in the database individually and

was therefore linearly dependent on the size of the database. While the computation time

of the decision tree algorithm varied between 0.005 and 0.01 seconds, the conventional

algorithm required increasingly more time for a growing database. In the end, for 30 model

graphs, the conventional algorithm's computation time was approximately 0.3 seconds.

For practical applications, such as 3D-object recognition, where graphs are restricted in

size but the number of object models is large, this result is of great importance. From

the computational complexity analysis, we expect that the size of the decision tree is

linearly dependent on the number of model graphs. In practice, due to the fact that

common subgraphs of di�erent model graphs can be represented by the same decision tree

structures, the size of the decision tree is often only sublinearly dependent on the number

of model graphs. In Fig. 17 the size of the decision tree for a growing number of model
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Figure 19: Computation steps for a

growing number of edges (third exper-

iment).
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Figure 20: Computation time in sec-

onds for a growing number of edges

(third experiment).
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Figure 21: Number of nodes in the

decision tree for a growing number of

edges (third experiment).
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Figure 22: Disk space occupied by the

decision tree for a growing number of

edges (third experiment).

graphs is displayed. It can be observed that the growth rate of the decision tree becomes

indeed smaller with every new model graph that is added to the database. Although both

the pruned and the complete decision tree grow with the number of model graphs, the

complete decision tree is on the average four times as large as the pruned decision tree. In

Fig. 18 the disk space occupied by a breadth-pruned decision tree for a growing number

of model graphs is displayed. Note that a database consisting of 30 model graphs { each

of which contains 11 vertices and 33 edges { requires 5 Mbytes of disk space. Thus, we

conclude that a database containing 100 model graphs will occupy probably less than 15

Mbytes. Consequently, with the run time performance being independent of the number of

model graphs, the new algorithm is an interesting option for many practical applications.

Apart from the inuence of the size of the graphs and the size of the database, the

complexity of the graph isomorphism problem is also strongly dependent on the number
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Figure 23: Computation steps in de-

pendence of the vertex order (fourth

experiment).
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Figure 24: Time in seconds in depen-

dence of the vertex order (fourth exper-

iment).

of edges in a graph. In a complete graph, for example, where each vertex is connected to

all other vertices, the number of automorphisms is exponential in the number of vertices.

Thus, any algorithm attempting to list all graph isomorphisms from one complete graph

to another isomorphic complete graph will take exponential time. In order to compare the

performance of the new and the conventional algorithm for varying degrees of connectivity

of the model graph, we performed a third experiment. In this third experiment, the number

of vertices in the model graph was constantly kept at 11 while the number of edges was

varied between 11 and 44. Notice that an undirected graph with 11 vertices can contain

55 edges at most. However, for such complete or nearly complete graphs, the enumeration

of all graph isomorphisms is an exponential problem and of little interest in practice.

Therefore, the number of edges for this experiment was restricted to 44. There was exactly

one model graph in the database. The performance of both algorithms with respect to

the number of computational steps and the computation time are displayed in Figs. 19

and 20, respectively. Again, the experimental results con�rm the theoretical complexity

analysis, i.e., the performance of the decision tree method is completely independent of

the number of edges in the model graph, while the conventional approach requires more

computation steps and time when the number of edges grows

4

. On the other hand, the

size of the decision tree is strongly dependent on the the number of edges in a graph. The

size of the tree in terms of nodes is displayed in Fig. 21 while the required disk space

of the pruned decision tree is given in Fig. 22. In Fig. 21 we observe that the size of

the complete (and also the pruned) decision tree reaches its maximum when there are

approximately 30 edges present in the graph (consisting of 11 vertices). For more than

30 edges in the graph, the size of the tree decreases again. This behavior has not been

explained in the computational complexity analysis. The reason for the growth in the

beginning and the subsequent decrease of the decision tree's size lies in the inuence of

the number of automorphisms. Note that there is a correlation between the number of

automorphism of a graph and the average number of successor nodes of a decision tree

node. Consequently, if the number of automorphisms in a graph is large, the number of

4

Notice, however, that the computation time of the decision tree varied slightly due to the fact that

at the end of each run, the number of detected graph isomorphisms was individually counted by the new

algorithm.
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successor nodes of the decision tree nodes is large, too. On the other hand, the number of

leaf nodes for a graph G is limited by jA(G)j=�, where � is the number of automorphisms

of G. While jA(G)j is constant for all graphs of a given size, � is dependent on the edges

and labels in the graph. Therefore, if the number of edges and consequently � is increased,

the total number of leaf nodes in the decision tree decreases. The combination of these

two e�ects results in the curve shown in Fig. 21.

In the fourth experiment documented in Fig. 23 and 24 we investigated the robustness

of the new algorithm towards di�erent orderings of the vertices of the model and the input

graphs. It is known that the performance of conventional graph isomorphism methods

based on backtracking is strongly dependent on the ordering of the model graph vertices.

If, for example, the vertices are ordered such that backtracking occurs at an early stage in

the search process, the computational performance will be better than on an ordering which

imposes late backtracking. For the fourth experiment, we therefore generated randomly a

model graph consisting of 11 vertices and 33 edges. A copy of the model graph was used

as input graph. Next, both model and input graph vertices were randomly permuted and

after each permutation the conventional and the new algorithm were used to calculated all

graph isomorphisms between the model and the input graph. There are 11! = 39

0

916

0

000

possible permutations of 11 vertices. In Fig. 23 and 24 only the results of 50 permutations

are plotted. But it can be clearly seen that the performance of the new algorithm is fairly

independent of the ordering of the vertices, while the conventional algorithm's performance

varies remarkably from one permutation to the next.

So far, we have studied the behavior of the new algorithm on the basis of breadth-

pruned decision trees. Though these decision trees guarantuee graph isomorphism in cubic

time, they are only applicable for graphs with maximally 19 vertices. Consequently, for

larger graphs, it will be necessary to prune the depth of the decision trees as described

in Section 8.2. In the �fth experiment, we �rst examined how depth pruning can be

used to reduce the size of a decision tree. For a model and an input graph consisting of 19

unlabeled vertices and 28 edges, we created decision trees with varying depth, starting with

depth 7 and ending with the complete decision tree of depth 19. For each of these decision

trees, an identical copy of the model graph was used as input graph and its adjacency

matrix was classi�ed according to the algorithm decision tree described in Section 6 and

the modi�cation for depth-pruned decision trees described in Section 8.2. In Figs. 25 and

26 the computation steps and the computation time are displayed for the �fth experiment.

Naturally, the performance of the conventional algorithm was constant in this experiment.

The performance of the new algorithm, however, was strongly dependent on the depth

of the underlying decision tree. For example, for a decision tree with depth six, the new

algorithm required 0.6 seconds and over 45'000 computation steps compared to 0.005

seconds and 780 computation steps when a decision tree of depth 19 was used. Due to the

large number of isomorphic subgraphs of size 6 in a graph with 19 vertices, the decision

tree that was pruned at depth 6 could not limit the search space. However, the e�ciency

of the new algorithm increased rapidly with the growing depth of the underlying decision

tree. Particularly, for a decision tree of depth 11, the new algorithm was already as e�cient

as for a tree of depth 19. Therefore, we conclude that for graphs with 19 vertices, it is

su�cient to construct decision trees with depth 11. In Fig. 27, the size of the decision tree

in terms of nodes is displayed. For comparison reasons, the size of the complete decision

tree is also displayed. Note that by pruning the decision trees at depth 11 it is possible to
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Figure 25: Computation steps in sec-

onds in dependence of the depth of the

decision tree (�fth experiment).
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Figure 26: Detection time in seconds in

dependence of the depth of the decision

tree (�fth experiment).
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Figure 27: Size of the decision tree for

a growing compilation depth (�fth ex-

periment).
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Figure 28: Disk space occupied by the

decision tree for a growing compilation

depth (�fth experiment).

save more than half of the total number of nodes. Analogously, a decision tree of depth 11

occupies only 1.5 Mbyte of disk space compared to 3 Mbyte for a decision tree of full size

(see Fig. 28). Consequently, the depth-pruning technique renders an e�cient algorithm

applicable for graphs with more than 19 vertices.

In the theoretical complexity analysis and in practice, it was demonstrated that the

new algorithm's run time performance is independent of the number of model graphs

for both complete and breadth-pruned decision trees (see second experiment). In the

case of depth-pruned decision trees, however, the new algorithm is no longer independent

of the database size. However, depth-pruned decision trees represent a powerful means

for indexing a database of model graphs. Particularly, the model graphs may consist of

more than 19 vertices due to the fact that depth-pruning is applied. Furthermore, if the

vertices are labeled, even decision trees with small depth become very e�cient in indexing a

database of models. In order to demonstrate this e�ect, we performed a sixth experiment.
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Figure 29: Detection time in seconds

for a growing number of models (sixth

experiment).
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Figure 30: Average number of models

that are indexed by the decision tree

for a growing number of models (sixth

experiment).
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Figure 31: Size of the decision tree

when only depth-pruning and when

both depth- and breadth-pruning are

applied (sixth experiment).

0.0 10.0 20.0 30.0
Number of models

0.0

1000.0

2000.0

3000.0

S
iz

e 
of

 d
ec

is
io

n 
tr

ee
 in

 K
by

te
s

Decision tree

Figure 32: Disk space occupied by

the decision tree when both depth and

breadth-pruning are applied (sixth ex-

periment).

We randomly generated model graphs consisting of 20 vertices with 5 di�erent labels and

30 edges. Initially, the database of model graphs was set to contain a single model. We

then gradually increased the number of model graphs until there were 30 model graphs

in the database. The database of graphs was represented by a decision tree that was

built to the 6th level, i.e. all subgraphs of the models with six vertices were compiled

into the decision tree. Each model graph was then used as input graph and its adjacency

matrix was classi�ed by the depth-pruned decision tree. When a leaf node was reached

in the tree traversal algorithm, all the model graphs represented by this leaf node were

then further tested by the conventional algorithm. However, the conventional algorithm

did not perform a complete search from scratch, but was initialized with the subgraph

isomorphisms that were represented in the encountered leaf node. In Fig. 29 the time

in seconds for the detection of all graph isomorphisms between the input graphs and

the model graphs is plotted. For comparison reasons, we also applied the conventional
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algorithm on its own and the network based algorithm that was developed by the authors

and has proven to be e�cient for labeled graph matching [MB95b]. Note that both the

conventional algorithm and the network based algorithm required more time than the new

algorithm based on the depth-pruned decision tree. The reason for the behavior of the

new algorithm is illustrated in Fig. 30 where the number of indexed model graphs for each

size of the database is given. Note that even for 30 models in the database, the average

number of models that are indexed was never larger than 2. In the �rst experiment it was

demonstrated that the new algorithm can currently handle graphs with up to 19 vertices

when breath pruning is applied. Based on the size of a decision tree for a single graph

of this size, we can expect that a complete decision tree for a graph with 20 vertices

would contain approximately 150'000 nodes. Thus, it would not be possible to compile

the model graphs in the sixth experiment. By depth-pruning the decision tree, however,

even databases of graphs with 20 vertices become managable for the new algorithm. In

Fig. 31 the number of nodes in the depth-pruned decision tree for the model graphs of

the �fth experiment is shown. Notice that the size of the decision tree was even further

reduced by applying not only depth pruning but also breadth pruning. The disk space

in kilobytes that was occupied by the depth- and breadth-pruned decision tree is given in

Fig. 32.

We conclude that both breadth- and depth-pruning are valuable techniques, which

render the new algorithm applicable for practical applications. The breadth-pruning tech-

nique reduces the number of nodes on each level of the decision tree but preserves the basic

quality of the decision tree for polynomial graph isomorphism detection (not, however, for

subgraph isomorphism detection). On the other hand, the depth-pruning technique only

creates decision trees up to a certain depth. A depth-pruned decision tree no longer guar-

antuees polynomial graph isomorphism. However, its main advantage lies in the e�cient

indexing of the database of model graphs.

10 A Practical Application Based on the New Algorithm

In order to demonstrate the applicability of the decision tree based algorithm, we inte-

grated the new algorithm into a system for the interpretation of line drawings. The system

has been previously described by the authors in [MB95a]. The main purpose of the system

is to interpret technical line drawings by locating prede�ned symbols. The drawings and

symbols are required to consist of straight line segments. Internally, both symbols and

drawings are represented by labeled graphs such that each line segment corresponds to

a vertex in the graph and each intersection of line segments corresponds to an edge of

the graph. The edges are labeled with the angle between two line segments. In Fig. 33

the symbols that are known to the system are displayed. Note that the largest symbol is

symbol 3 which contains 24 di�erent line segments.

The symbols in Fig. 33 were all compiled into a decision tree. The decision tree was

breadth-pruned and also depth-pruned with depth six, i.e., only subgraphs of size six

were compiled into the decision tree. The decision tree for the whole database of symbols

occupied disk space of 1.242 megabyte (8.4 megabyte if no breadth-pruning was applied).

Note that in the experiments with randomly generated graphs (Figs. 29 to 32) the depth-

pruned decision tree representing 24 model graphs each consisting of 20 vertices and 30
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Figure 33: The database of symbols.

Symbols 1 2 3 4 5 ave. speedup

Decision seconds : 0.09 0.11 0.1 0.14 0.59 0.206 16

tree steps : 1901 2362 3148 2972 4752 3027 -

Conv. seconds : 2.74 2.89 4.46 3.15 3.66 3.38 1

Algorithm steps : 22659 26420 117749 29558 49744 49226 -

Figure 34: Detection time and computation steps of the new and the traditional algorithm

for �ve symbols.

edges, occupied approximately 2.2 megabyte of disk space.

We performed a number of experiments by using the symbols as line drawings and mea-

suring the time necessary in order to detect all graph isomorphisms from the line drawing

to the symbols in the database. For comparison reasons, we ran the same experiments

also with the conventional algorithm. In Fig. 34 the time in seconds and the number of

computational steps for both the new algorithm and the conventional algorithm are given.

The last column of the table in Fig. 34 indicates that the application of the new algorithm

resulted in an average speedup factor of 16 when compared to the conventional algorithm.

11 Summary and Conclusions

We have presented a new algorithm for the problem of graph and subgraph isomorphism

detection that is based on the decision tree paradigm. In the computational complexity

analysis, it was shown that the new algorithm has a worst case run time complexity that

is only quadratic in the size of the graphs that are to be compared. Furthermore, the

algorithm is completely independent of the number of model graphs that are represented

by the decision tree. On the other hand, the complexity analysis also revealed that the

size of the decision tree grows exponentially with the size of the represented graphs.

31



In order to make the new method also applicable for larger graphs, we proposed two dif-

ferent pruning techniques. The combination of both the breadth- and the depth-pruning

technique results in the creation of very compact decision trees. Although the depth-

pruned decision trees do no longer guarantuee graph isomorphism in polynomial time,

they are very suitable for applications where large databases of graphs are involved. Par-

ticularly, the depth-pruned decision trees can be used to e�ciently index models in the

database.

The results of the theoretical analysis and the inuence of the pruning techniques have

been studied in a number of practical experiments with randomly generated graphs. The

advantage of the new algorithm in terms of computational performance was demonstrated

in these experiments for graphs with up to 19 vertices and databases containing up to 30

model graphs.

Despite the exponential complexity, we believe that there are potential applications of

the new graph matching algorithm. It is particularly of interest if the underlying graphs are

rather small but computation time is critical. We also believe that the general approach

of using decision trees for graph matching is worth further research. Topics of future

research may include the adaption of the method to the general subgraph isomorphism

and to the error-tolerant subgraph isomorphism problem. Another interesting aspect will

be a possible mapping of decision tree structures to neural networks as indicated in [Set90].

By such a mapping it would be possible to parallelize the decision tree and thus arrive at

linear time complexity for the subgraph isomorphism detection based on the decision tree

approach.
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