
The Solution of Systems of Linear Equations

using the Conjugate Gradient Method

on the Parallel MUSIC-System

Jean-Guy Schneider, Edgar F.A. Lederer, Peter Schwab

Abstract

The solution of large sparse systems of linear equations is one of the most compu-

tationally intensive parts of �nite element simulations. In order to solve these systems

of linear equations, we have implemented a parallel conjugate gradient solver on the

SPMD-programmable MUSIC-system. We outline the conjugate gradient method,

give a formal speci�cation in Maple, and describe a data-parallel program. We illust-

rate how the number of processors inuences the speed of convergence due to di�erent

data distributions and the non-associativity of the oating point addition. We investi-

gate the speed of convergence of the conjugate gradient method for di�erent oating

point precisions (32, 44, 64, and 128 bit) and various �nite element models (linear

beams, human spine segments). The results show that it is more important to con-

centrate on appropriate numerical methods depending on the �nite element models

considered than on the oating point precision used. Finally, we give the results of

our speedup measurements.

Keywords: �nite element simulation, systems of linear equations, sparse matrix,

conjugate gradient method, MUSIC-system, Maple, oating point precision, parallel

summation.

CR Categories and Subject Descriptors: C.1.2 [Processor Architectures]:

Multiple Data Stream Architectures (Multiprocessors); G.1.0 [Numerical Analysis]:

General; G.1.3 [Numerical Analysis]: Numerical Linear Algebra; G.1.8 [Numerical

Analysis]: Partial Di�erential Equations; I.1.3 [Algebraic Manipulation]: Languages

and Systems.

Authors' address: Institute for Computer Science and Applied Mathematics

(IAM), University of Berne, L�anggassstrasse 51, CH-3012 Bern, Switzerland; e-mail:

fschneidr,lederer,pschwabg@iam.unibe.ch.

1 Introduction

For the modelling and simulation of the human spine in the context of the SPINET

project

�

, a �nite element program for the SPMD-programmable MUSIC-system has been

�

The SPINET research project was funded by the Swiss National Science Foundation, grant No.

SPP-IF 5003-034405.

1

CG Method on the MUSIC-System 2

developed. As basis, a �nite element program developed at the Institute of Aeronautics

and Applied Mechanics at the Warsaw University of Technology has been used. Some

parts of this sequential program were ported to the parallel MUSIC-system, while other

parts were redesigned and newly programmed. Using this program, it was also tested

whether the MUSIC-system is suitable for �nite element simulations in general, and spine

simulations in particular.

As the most computationally intensive parts of �nite element simulations, assembly as well

as solution of large sparse systems of linear equations have been identi�ed. Hence, it is

obvious to use parallel algorithms for solving these problems. Since the "Frontal Solver"

integrated in the Warsaw program is di�cult to parallelize, another method has been

chosen. The conjugate gradient method is used, since it exploits the fact that the systems

of linear equations of �nite element simulations are symmetric and positive de�nite. In

addition, it is suitable for the implementation on SPMD-programmable computer systems.

In this report we show, how a conjugate gradient solver has been speci�ed in Maple, a tool

for symbolic computation, and implemented on the MUSIC-system, a parallel computer

developed at the ETH Zurich. We illustrate the inuence of the number of processors on

the parallel computation of sums which in terms inuences the speed of convergence. We

also discuss the inuence of various oating point precisions in �nite element simulations

and give the results of our speedup measurements. We conclude with remarks about the

usability of the conjugate gradient method and the MUSIC-system for spine and other

�nite element simulations.

2 The Conjugate Gradient Method

We consider a system A � x = b of linear equations. Throughout this work, we will

assume that the matrix A is symmetric and positive de�nite. In contrast to the method

of Gauss [Sch88] or the "Frontal Solver" [Iro70, BH82], which is integrated in the program

of Warsaw, the conjugate gradient method is an iterative method. It is motivated by

the desire to accelerate the speed of convergence of so-called stationary iterative methods

[BBC

+

93] for the particular class of symmetric and positive de�nite systems of linear

equations. The idea of the method is to �nd the minimum of a particular function, which

corresponds to the solution of the system of linear equations. The method is outlined in

the following section; for detailed information refer to [SRS68, Sch88, BT89].

De�nitions

As a reminder, some de�nitions are listed, which will be used throughout this report.

{ An n � n matrix A is symmetric, if a

i;j

= a

j;i

(1 � i; j � n).

{ A real n � n matrix A is positive de�nite, if all vectors x 2 IR

n

; x 6= 0, satisfy

x �A � x > 0.

{ The diagonal matrix D of a n � n matrix A has the diagonal elements of A on its

diagonal; all other elements are equal to zero: d

i;i

= a

i;i

; d

i;j

= 0 8 i 6= j (1 � i; j �

CG Method on the MUSIC-System 3

n).

{ A real n � n matrix A is regular, if the determinant det(A) is di�erent from zero.

{ Two vectors x; y 2 IR

n

are A-conjugate, if x �A � y = 0.

{ For every point of the n-dimensional space, the gradient rF of a function F : IR

n

!

IR de�nes the direction of steepest descent:

rF :=

�

@F

@x

1

;

@F

@x

2

; : : : ;

@F

@x

n

�

(1)

Problem

We consider n 2 IN , a real n � n symmetric and positive de�nite matrix A, a vector

b 2 IR

n

, and are interested in the solution of the system A � x = b of linear equations.

Cost function

A cost function F : IR

n

! IR is de�ned as

F (x) =

1

2

x

T

�A � x� b

T

� x: (2)

In [BT89] the following two propositions are proven:

1. There is exactly one minimum of F .

2. x

m

is the minimum of F , if and only if

rF (x

m

) = 0: (3)

Since

rF (x) = r

�

1

2

x

T

�A � x� b

T

� x

�

= A � x� b; (4)

the minimum x

m

of F is equal to A

�1

� b, which corresponds to the solution of the system

of linear equations.

General iteration form

Given any vector x

0

2 IR

n

, an iteration of the form

x(0) = x

0

x(t+1) = x(t) + (t)s(t) (t = 0; 1; 2; : : :)

(5)

is used to �nd the minimum of the function F , where t 2 IN is an index of the iteration,

s(t) 2 IR

n

a direction of update, and (t) 2 IR a scalar stepsize. (t) is chosen in a way

that F (x(t+1)) is minimized on x(t) + �s(t) (� 2 IR).

CG Method on the MUSIC-System 4

The distinguishing feature ot this method is the choice of the directions of update s(t);

they are chosen so that they are mutually A-conjugate:

s(t)

T

�A � s(r) = 0 (t; r 2 IN; t 6= r): (6)

In order to simplify the notation, g(t) is de�ned as

g(t) := rF (x(t)) = A � x(t)� b (7)

Some important consequences of conjugacy are the following [SRS68, BT89]:

1. The directions of update s(0); s(1); : : : ; s(t) are linearly independent.

2. The gradient vectors g(0); g(1); : : : ; g(t) are mutually orthogonal.

3. a) The vectors x(0); x(1); : : : ; x(t) satisfy F (x(k+1)) � F (x(k)) for k � t, and

b) there exists an m 2 f0; 1; : : : ; ng with F (x(m)) = 0.

Another feature of this method is the fact that after each iteration step, the dimension

of the space for the solution is reduced by one. Because of 3.b), the method terminates

after at most n iteration steps with g(m) = 0. Therefore, the conjugate gradient method

is called a deterministic method, in contrast to most other stationary iterative methods.

Recursive equations

It is possible to describe the conjugate gradient method by �ve recursive equations, which

are given without derivation.

The directions of update s(t) are generate by the following formula:

s(t) = �g(t) +

t�1

X

i=0

c

i

s(i) (c

i

2 IR; t = 0; 1; 2; : : :): (8)

Therefore, the �rst direction of update results in s(0) = �g(0).

Since all directions of update are mutually A-conjugate, the equation (8) is simpli�ed to

s(0) = �g(0)

s(t+1) = �g(t+1) + �(t+1)s(t) (t = 0; 1; 2; : : :)

(9)

with

�(t+1) =

g(t+1)

T

� g(t+1)

g(t)

T

� g(t)

(t = 0; 1; 2; : : :): (10)

Finally, (t) has to be speci�ed in order to minimize F (x(t+1)) on x(t) + �s(t) (� 2 IR).

This leads to

(t) = �

s(t)

T

� g(t)

s(t)

T

�A � s(t)

(t = 0; 1; 2; : : :): (11)

CG Method on the MUSIC-System 5

In order to calculate the minimum of F , the equations (5), (7), (9), (10), and (11) are

used. It is noteworthy that it is not necessary to explicitly calculate the function F .

Numerical behaviour

Due to numerical reasons, the gradient vectors g(t) in general are not exactly mutually

orthogonal. Basically, this discrepancy from the theory is not that important, since the

iterative process can continue after n iteration steps. In general, the iterative process is

stopped after l iteration steps, if the Euklidian norm of g(l) is smaller than a prede�ned

threshold. Particularly for the solution of large sparse systems of linear equations of

�nite element simulations, usually considerably less than n iterations steps are needed

[Sch91]. Due to our results listed in Section 6, the last statement strongly depends on the

numerical conditioning of the given problem, and less on the oating point precision of

the architecture used.

Preconditioning

In order to improve the speed of convergence, it is possible to precondition iterative me-

thods. To do so, the linear equation system A � x = b is multiplied by a regular matrix

P (preconditioning matrix), in order to get a new system P � A � x = P � b. With an

appropriate choice of P , it is possible to solve the system of linear equations faster and

avoid numerical instabilities [BBC

+

93].

In order to precondition the conjugate gradient method, a regular and symmetric matrix

P = H

2

is used. This has the following inuences on the �ve recursive equations [BT89]:

s(0) = �H � g(0) (12)

s(t+1) = �H � g(t+1) + �(t+1) � s(t) (t = 0; 1; 2; : : :) (13)

�(t+1) =

g(t+1)

T

�H � g(t+1)

g(t)

T

�H � g(t)

(t = 0; 1; 2; : : :): (14)

The other equations remain unchanged. We see that it is not necessary to calculate the

matrix product P �A. For examples of preconditioning matrices, refer to [BBC

+

93, Bar89]

3 Implementation of the Algorithm

In order to implement a conjugate gradient solver, the following three step method has

been applied:

1. Speci�cation of the recursive equations with Maple, a tool for symbolic computation

[CGG

+

91].

2. Sequential implementation of the speci�cation of step (1) in the programming lan-

guage C [Amm91].

CG Method on the MUSIC-System 6

3. Porting of the sequential C program of step (2) to the MUSIC-system [B�au92] (refer

to Section 5).

After each step, the programs were checked with selected examples. In order to get further

references, all the example equation systems were also solved with Mathematica, another

tool for symbolic computation [Wol88].

For the Maple speci�cation of the equations listed in Section 2, prede�ned data struc-

tures for matrices and vectors have been used (refer to Figure 1). This procedure has the

advantage that it is possible to precisely state the given problem, without taking care of

implementation details. Since the speci�cation in Maple is also executable, it can be used

as a reference for the testing of further implementations.

4 Data Structures

According to many authors [Zie84, Bar89, Sch91], the matrices of the systems of linear

equations of �nite element simulations are not only symmetrical and positive de�nite, but

in general also sparse. Hence, it is obvious exploit this property, since it is possible to

(1) avoid unnecessary calculations, and (2) save space in the main memory. Otherwise

it would be impossible to solve systems of linear equations of a signi�cant size. In the

following, we call an element of a matrix or a vector an entry , if its value is not equal zero.

We investigated the sparseness for concrete �nite element models introduced in Section 6.1

and found out that the percentage of entries ranged from 25% for the small models to 4%

for the bigger models. Therefore, we implement matrices with a sparse data structure.

In contrary to the matrices, the vectors are usually not sparse, and therefore, we do not

use a sparse data structure.

In order to explain the data structures, we use the following 5 � 5 matrix A and a 5-

dimensional vector b as examples.

A =

0

B

B

B

B

B

@

10:0 4:0 3:0 0:0 0:0

4:0 5:0 0:0 �1:0 0:0

3:0 0:0 7:0 4:0 2:0

0:0 �1:0 4:0 6:0 0:0

0:0 0:0 2:0 0:0 8:0

1

C

C

C

C

C

A

b =

0

B

B

B

B

B

@

1:0

2:0

4:0

0:0

�7:0

1

C

C

C

C

C

A

The matrix A has 15 and the vector b 4 entries. Hence, the percentage of entries of A

equals 60%.

4.1 Matrices

The matrices of �nite element simulations are build up by so-called element sti�ness ma-

trices . Their structure depends on the �nite element model considered and therefore is

only known at run-time. Hence, it is necessary that the matrix can be build up dyna-

mically. In addition, the matrix data structure should support an easy distribution of

CG Method on the MUSIC-System 7

x(t) = x(t-1) + gamma(t-1) * s(t-1)

x := proc (t)

if (t = 0) then

eval (x0)

else

evalf (add (x(t-1), s(t-1), 1.0, Gamma (t-1)))

fi

end;

gamma (t) = (s(t) * g(t)) / (s(t) * A * s(t))

Gamma := proc (t)

evalf (- (dotprod (s(t), g(t))) /

dotprod (s(t), multiply (A, s(t))))

end;

s(t) = -g(t) + beta (t) * s(t-1)

s := proc (t)

if (t = 0) then

evalf (scalarmul (multiply (H, g(t)), -1.0))

else

evalf (add (multiply (H, g(t)), s(t-1), -1.0, Beta(t)))

fi

end;

g(t) = A * x(t) - b

g := proc (t)

evalf (add (multiply (A, x(t)), b, 1.0, -1.0))

end;

beta(t) = (g(t) * H * g(t)) / (g(t-1) * H * g(t-1))

Beta := proc (t)

if (t = 0) then

0

else

evalf (dotprod (g(t), multiply (H, g(t))) /

dotprod (g(t-1), multiply (H, g(t-1))))

fi

end;

Recursive Call of the Solver

PCGSolv := proc (t)

if (norm (g(t), 2) < Prec) then

eval (x(t))

else

PCGSolv (t+1)

fi

end;

Preconditioned Conjugate Gradient Solver

PCG := proc (A, b, Precision)

Prec := Precision;

H := PreConMatrix (A, b);

x0 := StartVector (H, b);

PCGSolv (0)

end;

Figure 1: Speci�cation in Maple.

CG Method on the MUSIC-System 8

the matrices to several processors and allow an e�cient implementation of matrix-vector

multiplications.

To ful�ll these various requirements, we use a di�erent data structure on the host and on

the parallel processors. Both data structures can be easily transformed into each other.

Matrix data structure on the host

On the host, all entries of a matrix are stored in rows, where each row consists of a

linked linear list. For every entry, the value and the corresponding column index is stored.

Additional information about the number of rows and the total number of entries is also

stored in the data structure.

The structure has the advantage, that no zeros are stored, and that it is easily possible to

insert or delete entries.

Matrix data structure on the parallel processors

The matrices are distributed onto the parallel processors in a way that each processor

a number of successive rows. Therefore, each processor has the information about the

number of rows and entries of the whole matrix, the number of locally stored rows, and

the row index of the �rst local row (Figure 2).

As on the host, for each entry the value and the corresponding column index is stored.

In the current implementation on the MUSIC-system, the column index uses 4 byte and

the value 8 byte of main memory. Due to a di�erent internal representation of a structure

consisting of a long and a double, the host computer allocates 16 byte, the parallel

processors only 12 byte. In order to communicate the entries of a matrix from the host to

the parallel processors in one continuous memory block, it is necessary that both processor

types use the same internal representation. Therefore, two successive entries of a row are

stored as a double entry, which has the same representation on both processor types, and

uses 24 byte.

Each row of the matrix consists of a continuous memory block of double entries. For a

distribution of a matrix in rows with prede�ned communication functions in one commu-

nication cycle [B�au92], all rows have to be stored in one continuous memory block, and the

number of double entries of each row has to be the same. Therefore, it is not possible to

completely use the memory space, since dummy entries (column index = �1, value = �1)

have to be added. Hence, the information about the maximal number of double entries

has to be stored on the host and on the parallel processors as well.

4.2 Vectors

The data structures for vectors do not di�er much on the host and on the parallel processors

(Figure 3). Both structures store the dimension of the vector and the total number of

entries. All elements, even the ones with a zero value, are stored in one continuous

memory block.

CG Method on the MUSIC-System 9

Processor 0: Number of Rows

5

Number of Entries

Local Number of Rows

15

Local First Row

Number of Double-Columns

3

0

2

Processor 1: Number of Rows

5

Number of Entries

Local Number of Rows

15

Local First Row

Number of Double-Columns

3

2 2

Column Value Next Column Next Value

2 -1.0

3

3

5

4.0

8.0

4

-1 -1

-1 0.0

0.02.0

6.0

0.0

1

1

1

2

2

3

4.0

5.0

7.0

4

3

4

-1

-1

5

0.0

0.0

2.0

10.0

4.0

3.0

3.0

-1.0

4.0

Column Value Next Column Next Value

Column Value Next Column Next Value

Column Value Next Column Next Value

Column Value Next Column Next Value

Column Value Next Column Next Value

Column Value Next Column Next Value

Column Value Next Column Next Value Column Value Next Column Next Value

Column Value Next Column Next Value

Figure 2: Matrix data structure for two parallel processors.

CG Method on the MUSIC-System 10

Dimension

5

Number of Entries

4

Start Index

0

Number of Elements

3

1.0 2.0 4.0

Dimension Number of Entries

45

1.0 2.0 4.0 0.0 -7.0

Host:

Dimension

5

Number of Entries

4

Start Index Number of Elements

3 2

0.0 -7.0

Processor 1:

Processor 0:

Figure 3: Vector data structure for the host and two parallel processors.

Vectors are distributed onto the parallel processors in a way that each processor has a

number of successive elements. Depending on their use, vectors can be distributed quite

di�erently, and it is not necessary to distribute them in the same way as the matrices. For

a matrix-vector multiplication, the vector has to be stored completely on every processor

(refer to Section 5.2). In order to distribute a vector, the index of the �rst local element

and the total number of local elements is stored.

5 Parallel Algorithm

As we can see from the Maple speci�cation (Figure 1), the algorithm uses the following

four operations of linear algebra:

1. addition of two vectors,

2. multiplication of a vector with a scalar,

3. dotproduct of two vectors,

4. matrix-vector multiplication.

CG Method on the MUSIC-System 11

The results of pro�lings of the sequential implementation showed that these four operations

are the most time consuming parts of the algorithm. Hence, it is obvious to parallelize

these operations in an e�cient way. The rest of the sequential algorithm can be used

more or less unchanged. As the speedup measurements show (results in Section 7), this

parallelization is quite e�cient.

The data parallel algorithm we obtained was formulated as hardware independently as

possible, in order to guarantee an easy porting onto other SPMD-programmable architec-

tures.

Details of the parallelization of the dotproduct of two vectors and the matrix-vector mul-

tiplication are described in the next two sections, respectivly. The other two operations

were parallelized analogously; therefore we will not discuss further details.

The program running on the host processor initializes the parallel processors, assembles

the matrix A and the vector b of the system of linear equations, distributes them onto the

processors, and reads the parallelly computed solution.

5.1 Dotproduct of vectors

The dotproduct of two n-dimensional vectors x and y is de�ned as

x � y :=

n

X

i=1

x

i

y

i

: (15)

In order to calculate this sum on m processors P

k

(1 � k � m) in parallel, we use the

following transformation:

s

k

=

l

k

X

i=f

k

x

i

y

i

(16)

x � y =

m

X

k=1

s

k

: (17)

f

k

is the index of the �rst and l

k

the index of the last local element of both vectors

stored on processor P

k

. Each processor P

k

calculates the partial sum s

k

of the locally

stored elements of the vectors, and broadcasts it to all other processors. Finally, on every

processor, the m partial sums are added, which leads to the result of the dotproduct on

every processor.

If the vectors are distributed evenly onto the processors, we can achieve a good parallel

e�ciency with this algorithm. Unfortunately, numerical problems can occur, which are

described in Section 6.2.

5.2 Matrix-vector multiplication

We consider the matrix-vector multiplication y = A � x. The ith element y

i

of y is de�ned

as

y

i

= A

i

� x =

n

X

k=1

a

i;k

x

k

: (18)

CG Method on the MUSIC-System 12

n is the dimension and A

i

is the ith row vector of the matrix A. In order to exploit the

sparseness of A, the equation (18) can be modi�ed to

y

i

=

n

i

X

k=1

a

i;c

i

(k)

x

c

i

(k)

; (19)

where n

i

is the number of entries and c

i

(k) the column index of the kth entry of the ith

row.

For every locally stored row A

i

of the matrix A, each processor P

k

computes the correspon-

ding element y

i

of the matrix-vector product. In order to do so, the matrix A is distributed

in rows onto the processors, and the vector x is stored completely on all processors. After

the computation, all locally computed elements are sent to all other processors.

If the rows of the matrix are distributed evenly, this parallel algorithm has a good parallel

e�ciency. In contrast to the dotproduct of two vectors, no further numerical problems

occur.

5.3 Data distribution

As mentioned in the last two sections, the rows of the matrices and the elements of the

vectors should be distributed evenly onto the parallel processors, in order to achieve a good

parallel e�ciency. On the MUSIC-system, there exist prede�ned communication functions

for the distribution of three-dimensional data blocks onto the parallel processors [B�au92].

In the current implementation, these functions are used to distribute the matrices in a way

that each processor gets a nearly equal number of successive rows. If there are signi�cant

di�erences in the number of entries per row, such a distribution is not optimal. Therefore,

more sophisticated distribution functions have to be used for further implementations.

6 Numerical Behaviour

In order to investigate the numerical behaviour of the implementation, calculations have

been made on the MUSIC system itself, on the MUSIC simulator musim, and on a DEC

Alpha station. The MUSIC simulator musim is a tool for developing and testing data

parallel MUSIC programs in a UNIX environment [Sco93]. Therefore, it was possible to

run the same program with a oating point precision of 44 bit (32 bit mantissa, 12 bit

exponent, 9 decimal digits) on the MUSIC hardware and with 64 bit (53 bit mantissa, 11

bit exponent, 15 decimal digits) on the simulator. For a DEC Alpha station, the sequential

program was slightly modi�ed to simulate the parallel computation of dotproducts accor-

ding to Section 5.1, in order to get the same numerical behaviour as the parallel program.

Therefore, it was also possible to run the calculations with a oating point precision of

128 bit (113 bit mantissa, 15 bit exponent, 33 decimal digits).

As test-examples, systems of linear equations of �nite element simulations, and as precon-

ditioning matrices H , the square of the inverse of the diagonal matrix D

�1

of A have been

used.

CG Method on the MUSIC-System 13

Number of iterations Number of elements of a linear beam

44 bit oating point 10 20 40 60 80 100

Number of Dimension of the system of linear equations

processors 324 609 1059 1554 2049 2484

3 122 166 428 453 { {

5 122 166 429 453 381 461

10 122 166 429 454 381 461

15 122 166 428 452 381 461

20 123 166 429 452 381 461

25 122 166 429 453 382 462

30 123 166 428 453 381 461

Table 1: Number of iterations of a �nite element simulation of a linear beam with a oating

point precision of 44 bit.

Number of iterations Number of elements of a linear beam

64 bit oating point 10 20 40 60 80 100

Number of Dimension of the system of linear equations

processors 324 609 1059 1554 2049 2484

3 113 159 408 431 { {

5 111 159 408 431 365 443

10 113 159 408 431 365 443

15 112 159 408 431 365 443

20 112 159 408 431 364 443

25 112 159 407 430 365 443

30 112 159 408 431 365 443

Table 2: Number of iterations of a �nite element simulation of a linear beam with a oating

point precision of 64 bit.

6.1 Speed of convergence

We investigated whether the number of iterations is indeed smaller than the dimension

of the system of linear equations as mentioned in [Sch91]. For that purpose, systems of

linear equations of �nite element simulations of a linear beam with 10, 20, 40, 60, 80,

and 100 �nite elements and a motion segment model of the human spine with 52 �nite

elements were used. The motion segment model consists of two vertebral bodies and an

intervertebral disc [MKD94]. The results of the corresponding simulations are shown in

Tables 1 to 3. Due to the lack of memory on the MUSIC system, it was not possible to

run the simulation for a beam with 80 and 100 �nite elements and the motion segment

model on less than 5 processors.

The number of iterations for the linear beams is substantially smaller than the dimension

of the corresponding system of linear equations for oating point precisions of 44 and 64

CG Method on the MUSIC-System 14

motion segment model

Number of dimension n = 1020

processors 44 bit 64 bit 128 bit

5 28,467 18,421 8,733

10 28,668 18,465 8,778

15 28,490 18,439 8,754

20 28,730 18,537 8,736

25 28,494 18,521 8,743

30 28,701 18,547 8,738

Table 3: Number of iterations of a �nite element simulation of a motion segment of the

human spine.

bit. Moreover, a oating point precision of 44 bit required less than 10 per cent more

iterations than 64 bit.

The dimension n of the system of linear equations of the motion segment model is equal

to 1020. Therefore, it is astonishing, that more than 28; 000 iterations are needed with

a oating point precision of 44 bit, more than 18; 000 iterations with 64 bit, and even

more than 8; 000 iterations with 128 bit (Table 3). These high numbers of iterations can

be explained by investigating the material properties of the corresponding �nite element

model. The Young Modulus E [Zie84, Sch91] of the vertebral bodies, nucleus and annulus

di�er in a factor of �ve orders of magnitude. Therefore, the eigenvalues of the global

sti�ness matrix A are spread over a large interval, which leads to a badly conditioned

matrix [BT89]. In order to investigate the inuence of the Young Modulus on the speed

of convergence, the values of E for the nucleus and annulus were changed systematically,

while the value for the vertebral bodies was left unchanged at 0:12 � 10

5

(Table 4). As

we can see, signi�cantly less iterations are needed if the values of E do not di�er much.

The same result was obtained when the Young Modulus of nucleus and annulus was left

unchanged, but the Young Modulus of the vertebral bodies was modi�ed.

The results of Table 3 also show that an increase of the oating point precision reduces the

number of iterations much more in badly conditioned than in well conditioned equation

systems, but does not necessarily lead to a better numerical behaviour.

6.2 Summation e�ect

From the results of the last section it is seen that the number of iterations do not only

depend on the condition of the equation system, but also on the number of processors

used.

As described in Section 5.1, the dotproduct of two vectors is calculated in parallel. Depend-

ing on the number of processors, the corresponding sum is calculated in a di�erent way,

since the parentheses for the summation are set di�erently. Due to the fact that numerical

real arithmetic is commutative, but not associative, di�erent settings of parentheses can

lead to di�erent results. The following example shows this e�ect. The symbol � stands

CG Method on the MUSIC-System 15

Young Modulus E Young Modulus E of nucleus

of annulus 0:1 � 10

0

0:1 � 10

1

0:1 � 10

2

0:1 � 10

3

0:1 � 10

4

0:1 � 10

5

0:8 � 10

1

28,701 9,891 3,658 6,876 4,429 2,043

0:8 � 10

2

19,172 8,176 2,903 1,092 1,231 810

0:8 � 10

3

5,135 3,238 1,434 436 173 178

0:8 � 10

4

1,423 1,048 664 291 109 79

0:8 � 10

5

7,268 5,461 3,447 1,513 533 328

Table 4: Number of iterations of a �nite element simulation of a motion segment with

change of the Young Modulus E of nucleus and annulus on 30 processors and with 44 bit

oating point precision.

for the summation of two numerical real numbers. We calculate with a oating point

precision of 3 decimal digits.

A sum is calculated in parallel on two processors:

(2:01� 1:06� 4:04) � (6:16� 2:05� 1:38) = 7:11� 9:59 = 16:7 (20)

The summation on three processors leads to:

(2:01� 1:06) � (4:04� 6:16) � (2:05� 1:38) = 3:07� 10:2� 3:43 = 16:6 (21)

For the summation of two real numbers with a di�erent exponent, the mantissa of the

real number with the smaller exponent has to be adopted, and its least signi�cant digits

disappear. Therefore, 3:07� 10:2 equals 13:2, and not 13:27.

In order to avoid the e�ects of di�erent number of iterations for a di�erent number of

processors, the parallel summation was replaced by a sequential one on one processor. By

this means, the number of iterations becomes independent of the number of processors

used, but the e�ciency of the program is reduced considerably. Therefore, we are currently

developing an algorithm for parallel summation where the result does not not depend on

the number of processors.

Table 5 contains information about the inuence of this "summation e�ect" on the number

of iterations. The e�ect is much bigger for a oating point precision of 32 bit than for 44,

64, and 128 bit.

7 Results

7.1 Speedup measurements

The systems of linear equations of the �nite element simulations of the linear beams

(Section 6.1) were used to investigate the speedup and the parallel e�ciency of the current

implementation on the MUSIC-system. Since the number of iterations depends on the

number of processors (refer to Section 6.2), the time for one iteration and not the time for

CG Method on the MUSIC-System 16

Linear beam with 10 elements

Number of dimension n = 324

processors 32 bit 44 bit 64 bit 128 bit

1 194 123 112 102

3 381 123 113 102

5 167 123 111 102

10 163 124 113 102

15 298 123 112 102

20 171 123 112 102

25 183 123 112 103

30 237 124 112 102

Table 5: Number of iterations of a linear beam with 10 elements.

the whole calculation was used as a measure for speedup and parallel e�ciency. Due to

memory restrictions on the parallel processors, it was not possible to run all calculations

on one processor only. Therefore, the speedup and parallel e�ciency were normalized to

1:00 for the smallest number of processors with enough memory. In order to be able to

compare speedup values for systems of linear equations of di�erent size, we also normalized

the speedup with respect to 5 processors. A summary of the results can be found in

Figure 4 and Table 6.

7.2 Floating point precision

Using a parallel program for �nite element simulations, we tested whether the MUSIC-

system is suitable for �nite element simulations in general, and spine simulations in par-

ticular. Since the solution of thereby occurring large sparse systems of linear equations is

one of the most computationally intensive parts, we concentrated on the parallel solution

of the systems of linear equations and not on the other aspects of parallel �nite element

simulations.

As can be seen from the results in Section 6, the numerical behaviour depends much

more on the conditioning of the given problem and the numerical method chosen, and

less on the oating point precision used. Therefore, it is more important to concentrate

on appropriate numerical methods and not on the oating point precision. Hence, we are

currently developing a parallel frontal solver.

8 Conclusions

For the solution of large sparse systems of linear equations of �nite element simulations,

a conjugate gradient solver has been implemented on the SPMD-programmable MUSIC-

system. As a �rst step, the conjugate gradient method was speci�ed in Maple. Since the

Maple speci�cation is also executable, it has been used as a reference for all further im-

plementations. With a pro�ling of a sequential implementation, the most time consuming

CG Method on the MUSIC-System 17

n P

min

P �(P) I(P) T (P) T

I

(P) s(P) s

5

(P) "(P)

1 1 123 32.92 0.268 1.00 0.27 1.00

5 5 122 8.80 0.072 3.72 1.00 0.74

10 10 122 5.30 0.043 6.23 1.68 0.62

324 1 15 15 122 4.15 0.034 7.88 2.12 0.53

20 20 123 3.63 0.030 8.93 2.40 0.45

25 25 122 3.27 0.027 9.93 2.67 0.40

30 30 123 3.11 0.025 10.72 2.88 0.36

2 1 166 46.21 0.278 1.00 0.47 1.00

5 2.5 166 21.56 0.130 2.14 1.00 0.86

10 5 166 12.36 0.075 3.70 1.73 0.74

609 2 15 7.5 166 9.37 0.056 4.96 2.32 0.66

20 10 166 7.90 0.048 5.79 2.71 0.58

25 12.5 166 7.07 0.043 6.47 3.05 0.52

30 15 166 6.44 0.038 7.32 3.42 0.49

2 1 428 221.77 0.518 1.00 0.48 1.00

5 2.5 429 101.30 0.236 2.19 1.00 0.88

10 5 429 56.65 0.132 3.92 1.79 0.78

1059 2 15 7.5 428 41.77 0.098 5.29 2.42 0.70

20 10 429 34.97 0.082 6.32 2.89 0.63

25 12.5 429 30.25 0.071 7.30 3.33 0.58

30 15 428 27.21 0.063 8.22 3.74 0.55

3 1 453 238.56 0.527 1.00 0.65 1.00

5 1.66 453 155.68 0.344 1.53 1.00 0.92

10 3.33 454 86.06 0.190 2.77 1.81 0.83

1554 3 15 5 452 62.86 0.139 3.79 2.48 0.76

20 6.66 452 51.71 0.114 4.63 3.03 0.69

25 8.33 453 44.95 0.099 5.32 3.48 0.64

30 10 453 40.59 0.089 5.92 3.87 0.59

5 1 381 171.29 0.450 1.00 1.00 1.00

10 2 381 94.14 0.247 1.82 1.82 0.91

2049 5 15 3 381 68.76 0.180 2.50 2.50 0.83

20 4 381 56.22 0.148 3.04 3.04 0.76

25 5 382 48.81 0.127 3.54 3.54 0.71

30 6 381 43.48 0.114 3.95 3.95 0.66

5 1 461 254.03 0.551 1.00 1.00 1.00

10 2 461 139.50 0.303 1.82 1.82 0.91

2484 5 15 3 461 101.51 0.220 2.50 2.50 0.83

20 4 461 82.48 0.179 3.08 3.08 0.77

25 5 462 71.76 0.155 3.55 3.55 0.71

30 6 461 63.42 0.137 4.02 4.02 0.67

Table 6: Summary of speedup measurements: n: dimension of system of linear equations;

P

min

: minimum number of processors used; P : number of processors; �(P) =

P

P

min

:

normalized number of processors; I(P): number of iterations; T (P): calculation time (in

seconds); T

I

(P) =

T (P)

I(P)

: time per iteration (in seconds); s(P) =

T

I

(P

min

)

T

I

(P)

: normalized

speedup; s

5

(P) =

s(P)

s(5)

=

T

I

(5)

T

I

(P)

: speedup normalized to 5 processors; "(P) =

s(P)

P

: parallel

e�ciency.

CG Method on the MUSIC-System 18

Figure 4: Speedup normalized to 5 processors of the conjugate gradient solver on the

MUSIC-system.

parts of a conjugate gradient solver were determined. These parts were parallelized for

the implementation on the MUSIC-system.

According to theory, the conjugate gradient method should �nd the solution of an n-

dimensional system of linear equations after at most n iterations. In practice, the number

of iterations is supposed to be even much smaller. Therefore, we investigated whether the

number of iterations of our conjugate gradient solver is indeed smaller than the dimension

of the system of linear equations for oating point precisions of 32, 44, 64, and 128 bit. For

that purpose, systems of linear equations of �nite element simulations of linear beams and

the human spine were used. We found that for the linear beams, the number of iterations

in fact is much smaller than the dimension of the corresponding system of equations. The

systems of equations for �nite element models with strongly unequal materials (di�erences

of 3 orders of magnitude or more), as for example spine models, result in much more

iteration steps than the corresponding dimension. The results also show that the number

of iterations depends more on the numerical conditioning of the given problem and less

on the oating point precision of the architecture used.

Using parallel algorithms, it is possible that numerical e�ects occur which normally do

not occur in sequential algorithms. Due to the fact that numerical real arithmetic is not

CG Method on the MUSIC-System 19

associative, we found that the result of a parallel computation of a sum may strongly de-

pend on the number of processors used. This "summation e�ect" inuences the numerical

behaviour of our conjugate gradient solver and can result in signi�cant di�erences in the

number of iterations of the same �nite element simulation, especially if smaller oating

point precisions are used.

The human spine mainly consists of vertebral bodies and intervertebral discs with strongly

unequal material properties. This results in numerically not well conditioned systems of

linear equations. Although we have obtained a good speedup of our implementation, the

number of iterations is too large. Therefore, the conjugate gradient method is not suitable

for this kind of �nite element simulations. Hence, we are currently working on the more

di�cult parallel frontal solver.

Acknowledgments

We thank Peter Kropf for having organized the SPINET project, Marek Matyjewski for

helping us with the Warsaw program, and Karl Guggisberg for reviewing.

References

[Amm91] L. Ammeraal. C for Programmers: A Complete Tutorial based on the ANSI

Standard. Wiley, second edition, 1991.

[B�au92] B. B�aumle. The MUSIC-Tutorial. Technical report, ETH Z�urich, Institut f�ur

Elektronik, Gloriastrasse 35, CH-8092 Z�urich, 1992.

[Bar89] P. Bartelt. Finite Element Procedures on Vector/tightly coupled Parallel Com-

puters. PhD thesis, ETH Z�urich, 1989.

[BBC

+

93] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijk-

houi, R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution

of Linear Systems: Building Blocks for Iterative Methods. SIAM, 1993.

[BH82] G. Beer and W. Haas. A Partitioned Frontal Solver for Finite Element Analy-

sis. Journal of Numerical Methods in Engineering, 18:1623{1654, 1982.

[BT89] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation. Pren-

tice Hall, 1989.

[CGG

+

91] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, and S.M.

Watt. Maple V Language Reference Manual. Springer, 1991.

[Iro70] B.M. Irons. A Frontal Solution Program for Finite Element Analysis. Journal

for Numerical Methods in Engineering, 2:5{32, 1970.

[MKD94] M. Matyjewski, P.G. Kropf, and M. Dietrich. Finite element method simulation

of ow induced deformations in the intervertebral disc. In Proceedings of the

1st ISSSL conference, Bruxelles, 1994.

CG Method on the MUSIC-System 20

[Sch88] H.R. Schwarz. Numerische Mathematik. B.G. Teubner, zweite Auage, 1988.

[Sch91] H.R. Schwarz. Methode der Finiten Elemente. Teubner, 1991.

[Sco93] W. Scott. MUSIM: The MUSIC-Simulator. Technical report, ETH Z�urich,

Institut f�ur Elektronik, Gloriastrasse 35, CH-8092 Z�urich, 1993.

[SRS68] H.R. Schwarz, H. Rutishauser, and E. Stiefel. Numerik symmetrischer Matri-

zen. B.G. Teubner, 1968.

[Wol88] S. Wolfram. Mathematica. Addison-Wesley, 1988.

[Zie84] O.C. Zienkiewicz. Methode der Finiten Elemente. Hanser, dritte Auage, 1984.

