
Symmetries of Polyhedra: Detection and Applications

X. Y. Jiang, H. Bunke

Institut f�ur Informatik und angewandte Mathematik

Universit�at Bern, L�anggassstrasse 51, 3012 Bern, Switzerland

Abstract

This paper deals with the detection of symmetries of polyhedra and its applications.

It consists of two parts. First, we review seven algorithms for symmetry detection of poly-

hedra. Since these algorithms supply symmetry information in quite di�erent forms, we

classify the three most common output forms of the symmetry detection algorithms and

discuss their relationships and the transformation from one form into another. For each

algorithm, the following �ve aspects are considered: the output form, the computational

complexity, the polyhedra class the algorithm can handle, the implementation, and the

suitability for solving the related polyhedral congruity problem. Then, we compare the

seven symmetry detection algorithms and give some recommendations as to which algo-

rithm to choose for particular applications. In the second part of this paper we discuss

some applications of symmetry information in robotics, geometric problem-solving, and

computer vision. The conclusions of this review are twofold. On the one hand, symmetries

can be very useful to resolve ambiguities or increase computational e�ciency in problem-

solving processes involving geometric objects. On the other hand, simple and e�cient

symmetry detection algorithms are available now. This makes the symmetry exploration

a practical issue for many applications.

CR Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Com-

plexity]: Nonnumerical Algorithms and Problems; I.3.5 [Computer Graphics]: Computational

Geometry and Object Modelling.

General Terms: Algorithms.

Additional Key Words: Polyhedral symmetry, graph theory, graph isomorphism, automaton

theory, algorithm comparison, applications.

1

1 Introduction

Symmetry plays an important role in the world and human beings' perception of the world.

In engineering, symmetry has been gaining increasing interest in the design of manufactured

parts since it can decrease the cost and increase the utility of the parts. With the advances

of computer technology, automatic methods for symmetry analysis have been developed in

the last decades. Today algorithms are known for the analysis of rotational and reectional

symmetries of two-dimensional shapes in digital images [23, 26, 27] and three-dimensional

objects in range (depth) images [37]. Computational geometry has brought out numerous

algorithms for determining the symmetries of many geometric entities, including �nite point

sets [2, 14], �nite sets of line segments [8], polygons [1, 6], and polyhedra. For a survey for

�nding symmetries of two-dimensional geometric objects, see [9].

In this paper we concentrate on the symmetries of polyhedra. Further we restrict our

consideration to rotational symmetry and neglect mirror symmetry. As the latter cannot be

realized by any physical movement, it has little relevance to application �elds like arti�cial

intelligence, robotics, computer vision, etc. In the present paper, we follow two goals, namely

the detection and applications of symmetries of polyhedra. There are a few known algorithms

for detecting polyhedral symmetry. However, they are quite scattered in the literature and it is

not easy to get access to all of them. One goal of this paper is thus to present an overview of the

algorithms for polyhedral symmetry detection. We will compare these algorithms with respect

to a number of factors and give some recommendations on choosing algorithms for particular

applications. The second part of this paper is devoted to the applications of symmetries. We

discuss some examples from robotics, geometric problem-solving, and computer vision that

demonstrate the usefulness of symmetries.

The rest of this paper is organized as follows. After the de�nition of the polyhedral sym-

metry detection problem in the next section we review seven algorithms for determining the

symmetries of polyhedra in Section 3. These algorithms supply symmetry information in quite

di�erent forms. Their relationships and the transformation from one form into another will be

discussed in Section 4, followed by some comparisons of the seven symmetry detection algo-

rithms in Section 5. Potential applications of symmetry information in a number of di�erent

areas will be desbribed in Section 6. Finally, some conclusions are presented.

2 Polyhedral symmetry detection problem

In our study, the symmetries of polyhedra are de�ned mainly from an algorithmic point of

view so that e�cient algorithms can be designed to �nd them. For a mathematical treatment

of polyhedral symmetry in terms of group theory, see for example [3, 25]. A polyhedron is

symmetric if there exists a three-dimensional (3D) rotation that doesn't change its shape. The

problem of polyhedral symmetry detection is not well de�ned in the sense that the output of a

symmetry detection algorithm may be speci�ed in a number of ways. As a matter of fact, the

algorithms reported in the literature generate quite di�erent outputs, depending on the nature

of the algorithm and the potential application in mind. In this section we specify the three

most common output forms of the symmetry detection algorithms found in the literature.

Before we can discuss the output form, however, we need a formal description of a polyhe-

dron. A polyhedron consisting of n vertices, m edges and h faces can be de�ned as a graph

G = (V;E; F) embedded on the surface of a 3D solid object with

V = fv

1

; v

2

; : : : ; v

n

g;

2

�

�

�

�

�

�

�

��

�

�

�

�

��

�

(a)

�

�

�

�

�

�

�

��

�

�

�

�

��

�

�

�

�

�

�

�

(b)

Figure 1: (a) A polyhedron with cavities in its faces. (b) A polyhedron with one hole.

E = fe

k

= (v

k1

; v

k2

) j k = 1; 2; : : : ; mg;

F = ff

k

= (v

k1

; v

k2

; : : : ; v

kl

k

) j k = 1; 2; : : : ; hg:

In this de�nition, V represents the set of vertices, E the set of undirected edges, and F the set of

oriented faces where each face is represented by the closed chain of its vertices. A chain of ver-

tices is oriented clockwise if we look at the corresponding face from outside of the polyhedron. In

our notation a chain of vertices is always cyclic, meaning (v

ki

; v

k;i+1

; : : : ; v

kl

k

; v

k1

; v

k2

; : : : ; v

k;i�1

) =

(v

k1

; v

k2

; : : : ; v

kl

k

), for i = 1; 2; : : : ; l

k

. Further we de�ne the set of directed edges E

�

by replacing

each undirected edge with two directed edges of each direction, i.e.,

E

�

= f(v

k1

; v

k2

); (v

k2

; v

k1

) j (v

k1

; v

k2

) 2 Eg

:

Dependent on the actual context, we will use either E or E

�

as the representation of the set of

edges.

In this paper we consider the class of polyhedra whose graph is connected, thus excluding

those polyhedra with cavities in their faces. An example of such a polyhedron is shown in

Fig. 1a). Further we distinguish between two classes of polyhedra, P

1

and P

2

. The class P

1

contains all polyhedra allowed in our study, i.e., all polyhedra the graph of which is connected,

while P

2

consists of those without holes. A polyhedron with one hole is shown in Fig. 1b). It

is in class P

1

but not in P

2

. For the discussions later, it is worth to mention that the graph of

a polyhedron from P

2

is planar while a polyhedron from P

1

� P

2

, say that in Fig. 1b), has a

nonplanar graph.

Given the formal description of a polyhedron, we specify three possible output forms of a

symmetry detection algorithm.

Output form 1: A rotational symmetry Sym(�

V

; R) consists of a topologic and a geometric

part. The topologic part is an automorphism of the embedded graph G, i.e., there exists a

bijective mapping �

V

: V ! V such that the following conditions are ful�lled,

(v

i

; v

j

) 2 E =) (�

V

(v

i

); �

V

(v

j

)) 2 E;

(v

k1

; v

k2

; : : : ; v

kl

k

) 2 F =) (�

V

(v

k1

); �

V

(v

k2

); : : : ; �

V

(v

kl

k

)) 2 F:

An additional geometric constraint requires that there exists a spatial rotation, represented by

3

�

�

�

�

�

\

\

\

\

\

\

\

\�

�

�

�

�

�

�

�

�

�

�

�

E

E

E

E

E

E

E

E

E

E

E

E

v

1

v

2

v

3

v

4

v

5

@

@

@

@

@

@

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

v

6

l

f

1

= (v

2

; v

3

; v

1

)

f

2

= (v

3

; v

4

; v

1

)

f

3

= (v

4

; v

5

; v

1

)

f

4

= (v

5

; v

2

; v

1

)

f

5

= (v

3

; v

2

; v

6

)

f

6

= (v

4

; v

3

; v

6

)

f

7

= (v

5

; v

4

; v

6

)

f

8

= (v

2

; v

5

; v

6

)

Figure 2: An octahedron and its single symmetry axis l.

R, a 3� 3 rotation matrix

1

, such that

v

k

2 V =) R � v

k

= �

V

(v

k

):

I.e., the location of the rotated version �

V

(v

k

) of any vertex v

k

must be identical to the location

obtained by applying the rotationR to v

k

. The output form 1 of a symmetry detection algorithm

consists of the set of all symmetries Sym(�

V

; R). In a similar way we may also de�ne a

bijective mapping �

E

�

: E

�

! E

�

or �

F

: F ! F , and �nd out all symmetries Sym(�

E

�

; R) or

Sym(�

F

; R). In this and the next section we will always use the octahedron drawn in Fig. 2 to

explain our ideas. It is constructed by stacking two di�erent pyramids together. For the sake

of the simplicity of description, the two pyramids are chosen in such a way that none of their

triangular faces is equilateral. For this octahedron the set of symmetries Sym(�

V

; R) contains

Sym(�

1

V

; R

1

) : �

1

V

=

v

1

v

2

v

3

v

4

v

5

v

6

v

1

v

2

v

3

v

4

v

5

v

6

!

; R

1

=

0

B

@

1 0 0

0 1 0

0 0 1

1

C

A

Sym(�

2

V

; R

2

) : �

2

V

=

v

1

v

2

v

3

v

4

v

5

v

6

v

1

v

3

v

4

v

5

v

2

v

6

!

; R

2

=

0

B

@

0 1 0

�1 0 0

0 0 1

1

C

A

Sym(�

3

V

; R

3

) : �

3

V

=

v

1

v

2

v

3

v

4

v

5

v

6

v

1

v

4

v

5

v

2

v

3

v

6

!

; R

3

=

0

B

@

�1 0 0

0 �1 0

0 0 1

1

C

A

1

A spatial rotation can be represented by a 3� 3 rotation matrix only when the rotation axis goes through

the origin of the coordinate system in which the object is de�ned. In general this condition is not satis�ed. For

a symmetric polyhedron, however, the axis of any symmetry rotation goes through the centroid of the vertex

set V . Accordingly, we �rst transform the coordinate system so that the new origin corresponds to the centroid

of V . This transformation leads to a simple representation of symmetry rotations by a 3� 3 rotation matrix.

4

Sym(�

4

V

; R

4

) : �

4

V

=

v

1

v

2

v

3

v

4

v

5

v

6

v

1

v

5

v

2

v

3

v

4

v

6

!

; R

4

=

0

B

@

0 �1 0

1 0 0

0 0 1

1

C

A

Here each bijective mapping �

i

V

is represented by a permutation, respectively. Note that

Sym(�

1

V

; R

1

) is the trivial identity symmetry.

Output form 2: We de�ne a relation e

V

� V � V ,

(v

i

; v

j

) 2 e

V

() 9Sym(�

V

; R)(�

V

(v

i

) = v

j

):

Clearly, e

V

is an equivalence relation. We can thus build the equivalence classes of e

V

. All

vertices of an equivalence class are equivalent in the sense that some symmetry rotation trans-

forms one into another. Two relations e

E

�

and e

F

can be de�ned for directed edges and faces in

a similar way. The output form 2 of a symmetry detection algorithm consists of all equivalence

classes of e

V

, e

E

�

, or e

F

. This de�nition may be extended to higher order relations e

k

V

� V

k

�V

k

by de�ning,

((v

i1

; : : : ; v

ik

); (v

j1

; : : : ; v

jk

)) 2 e

k

V

() 9Sym(�

V

; R)(�

V

(v

il

) = v

jl

; l = 1; 2; : : : ; k):

Similarly, e

E

�

and e

F

are extended to e

k

E

�

and e

k

F

. Then the output form 2 of a symmetry

detection algorithm could be all equivalence classes of e

k

V

, e

k

E

�

, or e

k

F

. It is even possible to

de�ne a mixed relation e

ijk

V E

�

F

so that a pair of two tuples of i vertices, j directed edges, and

k faces, respectively, are contained in the relation i� there exists a symmetry that transforms

each entity of the �rst tuple into the corresponding entity of the second tuple. A symmetry

detection algorithm could also generate all equivalence classes of e

ijk

V E

�

F

. As an example of this

output form, there are three equivalence classes of e

V

for the octahedron in Fig. 2,

equivalence class 1: fv

1

g;

equivalence class 2: fv

2

; v

3

; v

4

; v

5

g;

equivalence class 3: fv

6

g:

Output form 3: The rotation axis of a rotational symmetry is said to be r-fold if r is the largest

natural number such that a rotation of 360=r degrees around the axis brings the polyhedron

back onto itself. A symmetry axis is always related to a partition of the set V so that each

subset fv

i0

; v

i1

; � � � ; v

i;l�1

g of the partition has the property that a symmetry rotation of 360=r

degrees maps v

ik

to v

i;k+l=r

(modulus l). The output form 3 of a symmetry detection algorithm

is the set of all symmetry axes together with their corresponding fold number r and the partition

of V . For the octahedron in Fig. 2, the single symmetry axis l has the fold number four and

the set V is partitioned into four disjoint subsets

fv

1

g; fv

2

; v

3

; v

4

; v

5

g; and fv

6

g:

With respect to usefulness in practice, the three output forms are quite di�erent. However,

they are not independent of each other. In some cases it is possible to derive one output form

from another. The relationships and the transformations between the three output forms will

be discussed in detail in Section 4.

5

3 Symmetry detection algorithms

In this section we review seven symmetry detection algorithms known from the literature. From

the algorithmic point of view, they are based on graph-theoretic methods, the generate-and-test

paradigm, or principles from automata theory. For each algorithm, besides the description of

the algorithm itself, the following aspects will be discussed:

� the output form,

� the computational complexity,

� the polyhedra class the algorithm can handle,

� the implementation e�ort, and

� the suitability for determining the congruity of two polyehdra.

For actual use in practice, not only the output form, the computational complexity and the

polyhedra class of a symmetry detection algorithm are crucial, but also the implementation

e�ort is an important factor.

The congruity problem is to decide whether the polyhedra G

1

= (V

1

; E

1

; F

1

) and G

2

=

(V

2

; E

2

; F

2

) are identical. Similarly to symmetry, a congruity consists of a topologic and a

geometric part. The topologic part means an isomorphism between G

1

and G

2

, i.e., a bijective

mapping �

V

: V

1

! V

2

with the property

(v

i

; v

j

) 2 E

1

=) (�

V

(v

i

); �

V

(v

j

)) 2 E

2

;

(v

k1

; v

k2

; : : : ; v

kl

k

) 2 F

1

=) (�

V

(v

k1

); �

V

(v

k2

); : : : ; �

V

(v

kl

k

)) 2 F

2

:

The geometric constraint requires the existence of a spatial transformation R such that

v

k

2 V

1

=) R � v

k

= �

V

(v

k

) 2 V

2

:

Since the congruity problem and the symmetry detection problem have many aspects in com-

mon, it is interesting to see whether a symmetry detection algorithm can be readily modi�ed

to solve the congruity problem.

3.1 Graph-theoretic methods

Since a symmetry consists of an automorphism of the graph G (isomorphism of G onto itself)

and a three-dimensional rotation, it is not surprising that some of the symmetry detection

algorithms are extensions of graph isomorphism algorithms. In its general form the graph

isomorphism is a hard problem [13, 29]. No e�cient (polynomial) algorithm is known. It has

been conjectured that the graph isomorphism problem is NP-complete and thus no polynomial

algorithm can exist. For planar graphs, especially triply connected planar graphs, however, low-

order polynomial algorithms have been proposed. All symmetry detection algorithms based on

graph-theoretic concepts make use of these e�cient graph isomorphism algorithms.

3.1.1 The algorithm of Jiang & Bunke

In [19], Jiang and Bunke extended Weinberg's algorithm for determining isomorphisms of triply

connected planar graphs [34]. Weinberg's algorithm is based on a fundamental result in graph

theory which says that in a �nite connected graph it is always possible to construct a cyclic

directed path passing through each edge once and only once in each direction. Starting from

some directed edge (v

i

; v

j

), such a path P (v

i

v

j

) can be generated by the following rules:

6

1. When a new vertex is reached, take the right-most edge relative to the edge on which the

vertex is reached.

2. When an old (already visited) vertex is reached on a new (not yet traversed) edge, go

back in the opposite direction.

3. When an old vertex is reached on an old (already traversed) edge, leave the vertex on the

right-most edge that has not previously been traversed in that direction.

Weinberg added a numbering scheme to the path generation process described above to obtain

a code C(v

i

v

j

). Each time a new vertex is reached, it is labeled with the next unused natural

number. For the octahedron in Fig. 2, some paths and their corresponding codes are

P (v

2

v

1

) = v

2

v

1

v

3

v

2

v

3

v

6

v

2

v

6

v

5

v

2

v

5

v

1

v

5

v

4

v

1

v

4

v

3

v

4

v

6

v

4

v

5

v

6

v

3

v

1

v

2

C(v

2

v

1

) = 1231341451525626364654321

P (v

3

v

1

) = v

3

v

1

v

4

v

3

v

4

v

6

v

3

v

6

v

2

v

3

v

2

v

1

v

2

v

5

v

1

v

5

v

4

v

5

v

6

v

5

v

2

v

6

v

4

v

1

v

3

C(v

3

v

1

) = C(v

2

v

1

)

P (v

2

v

6

) = v

2

v

6

v

5

v

2

v

5

v

1

v

2

v

1

v

3

v

2

v

3

v

6

v

3

v

4

v

6

v

4

v

5

v

4

v

1

v

4

v

3

v

1

v

5

v

6

v

2

C(v

2

v

6

) = C(v

2

v

1

)

P (v

1

v

2

) = v

1

v

2

v

5

v

1

v

5

v

4

v

1

v

4

v

3

v

1

v

3

v

2

v

3

v

6

v

2

v

6

v

5

v

6

v

4

v

6

v

3

v

4

v

5

v

2

v

1

C(v

1

v

2

) = C(v

2

v

1

)

P (v

2

v

3

) = v

2

v

3

v

6

v

2

v

6

v

5

v

2

v

5

v

1

v

2

v

1

v

3

v

1

v

4

v

3

v

4

v

6

v

4

v

5

v

4

v

1

v

5

v

6

v

3

v

2

C(v

2

v

3

) = C(v

2

v

1

)

Let G = (V;E; F) be the graph of a polyhedron and (v

i

; v

j

), (v

0

i

; v

0

j

) be two directed edges

of G. Based on the results in [34] it was proved in [19] that there exists an automorphism of G

(not necessarily being triply connected and planar) such that the vertices v

i

and v

j

are mapped

to v

0

i

and v

0

j

, respectively, i� C(v

i

v

j

) = C(v

0

i

v

0

j

). This leads to the following simple algorithm

for �nding all automorphisms of G:

1.

Choose arbitrarily a directed edge (v

i

; v

j

) of G and compute P (v

i

v

j

) and C(v

i

v

j

).

2.

For each directed edge (v

0

i

; v

0

j

) of G do step 2.1.

2.1.

If C(v

i

v

j

) = C(v

0

i

v

0

j

) then there exists an automorphism of G which maps each vertex in

P (v

i

v

j

) to the corresponding vertex in P (v

0

i

v

0

j

).

If we assume in the above example (v

2

; v

1

) to be the reference edge (v

i

; v

j

), then it is easy to

see that the octahedron has automorphisms that map (v

2

; v

1

) to (v

3

; v

1

), (v

2

; v

6

), (v

1

; v

2

), and

(v

2

; v

3

), respectively. Totally, there exist 24 such automorphisms.

After �nding all automorphisms it remains to check whether each automorphism satis�es the

geometric condition. This is done by computing the rotation R by the �rst three corresponding

vertices of P (v

i

v

j

) and P (v

0

i

v

0

j

) and verifying the geometric condition for all vertices. In [19] the

veri�cation has been incorporated into the path �nding and coding process. After the �rst three

vertices of P (v

0

i

v

0

j

) have been found, the rotation R is computed. Later on, as soon as a new

vertex is generated for P (v

0

i

v

0

j

), the geometric condition is tested immediately. In case of failure,

the path �nding process is stopped and the algorithm considers the next edge (v

0

i

; v

0

j

). Among

the 24 automorphisms of the octahedron, four satisfy the geometric condition, corresponding

to the paths P (v

2

v

1

), P (v

3

v

1

), P (v

4

v

1

), and P (v

5

v

1

). Thus, there are totally four symmetries,

as shown in Section 2.

7

The algorithm output is the set of all symmetries Sym(�

V

; R). The algorithm has a time

complexity of O(m

2

) and requires O(m) storage. It can handle polyhedra of class P

1

. This

algorithm can be easily implemented. As a matter of fact, the Pascal implementation reported

in [19] consists of only about 120 lines of code.

The modi�cation of this algorithm to solve the congruity problem is straightforward. Given

two polyhedra G

1

and G

2

, the following algorithm generates all isomorphisms between G

1

and

G

2

:

1.

Choose arbitrarily a directed edge (v

i

; v

j

) of G

1

and compute P (v

i

v

j

) and C(v

i

v

j

).

2.

For each directed edge (v

0

i

; v

0

j

) of G

2

do step 2.1.

2.1.

If C(v

i

v

j

) = C(v

0

i

v

0

j

) then there exists an isomorphism which maps each vertex in P (v

i

v

j

)

to the corresponding vertex in P (v

0

i

v

0

j

).

The geometric condition can be tested in the same way as for symmetry detection. The iso-

morphisms surviving the geometric test build the set of all congruity mappings that cause G

1

to coincide with G

2

.

3.1.2 The algorithm of Sugihara

The algorithm of Sugihara is an extension of the graph isomorphism algorithm of Hopcroft

and Tarjan [15]. For the description of the algorithm we need some de�nitions. A path of

directed edges (e

1

; e

2

; � � � ; e

n

) is said to be primary if e

i+1

is either to the immediate right

or to the immediate left of e

i

, i.e., there must not be any edge between e

i

and e

i+1

. Two

primary paths (e

1

; e

2

; � � � ; e

n

) and (e

0

1

; e

0

2

; � � � ; e

0

n

) are said to be corresponding if e

i

e

i+1

and

e

0

i

e

0

i+1

, i = 1; 2; : : : ; n� 1, have the same turn direction. Each directed edge e gets associated a

vector �(e) of four geometric features,

�(e) = (l(e); (e); �

L

(e); �

R

(e))

where l(e) is the length of e, (e) is the angle between the two faces on the left and right side of e,

and �

L

(e) (�

R

(e)) represents the angle between e and the edge immediately left (right) of e. Two

edges e

1

and e

0

1

are said to be indistinguishable if any primary path (e

1

; e

2

; � � � ; e

n

) starting from

e

1

and the corresponding path (e

0

1

; e

0

2

; � � � ; e

0

n

) starting from e

0

1

satisfy �(e

i

) = �(e

0

i

); 1 � i � n.

The algorithm for symmetry detection is based on a theorem which says that there exists a

symmetry mapping that maps e to e

0

i� e and e

0

are indistinguishable. Hence, two edges e and

e

0

are equivalent under symmetry i� they are indistinguishable.

The algorithm of Sugihara divides the set of directed edges E

�

into equivalence classes of e

E

�

.

Clearly, a necessary but not su�cient condition for two edges e and e

0

being indistinguishable

and thus belonging to the same equivalence class is �(e) = �(e

0

). Consequently, the symmetry

detection algorithm begins with an initial partition of E

�

into subsets satisfying the necessary

condition and partitions the subsets further into sets of mutually indistinguishable edges. In

more detail the algorithm can be described as follows:

1. Compute �(e) for all directed edges e 2 E

�

.

2. Divide E

�

into subsets B

1

; B

2

; � � � ; B

k

in such a way that e and e

0

belong to the same

subset i� �(e) = �(e

0

).

3. If there exists i; 1 � i � k, such that B

i

is a singleton, then conclude that the polyhedron

P is not symmetric and terminate the algorithm.

8

4. Partition each B

1

; B

2

; � � � ; B

k

further into sets consisting of mutually indistinguishable

edges. Let the resulting sets be B

0

1

; B

0

2

; � � � ; B

0

l

; l � k.

5. If B

0

1

is a singleton, then P is not symmetric. Otherwise P is symmetric and the sets B

0

i

correspond to the equivalence classes of e

E

�

.

Steps 3 to 5 need some explanation. Because a nontrivial symmetry always maps a directed edge

into another directed edge, an equivalence class of e

E

�

can never be a singleton. Accordingly, if

some set after the initial partition in step 2 is a singleton, the algorithm terminates immediately.

For the details of step 4 that partitions B

1

; B

2

; � � � ; B

k

into sets of mutually indistinguishable

edges, see [32]. Finally, the singleton test in step 5 is based on the same reasoning as for step

3.

For the octahedron in Fig. 2, the initial partition in step 2 produces the following six sets,

B

1

= f(v

1

; v

2

); (v

1

; v

3

); (v

1

; v

4

); (v

1

; v

5

)g;

B

2

= f(v

2

; v

1

); (v

3

; v

1

); (v

4

; v

1

); (v

5

; v

1

)g;

B

3

= f(v

2

; v

3

); (v

3

; v

4

); (v

4

; v

5

); (v

5

; v

2

)g;

B

4

= f(v

3

; v

2

); (v

4

; v

3

); (v

5

; v

4

); (v

2

; v

5

)g;

B

5

= f(v

6

; v

2

); (v

6

; v

3

); (v

6

; v

4

); (v

6

; v

5

)g;

B

6

= f(v

2

; v

6

); (v

3

; v

6

); (v

4

; v

6

); (v

5

; v

6

)g:

The �nal partition in step 4 doesn't change anything. So the six sets above are the equivalence

classes of e

E

�

.

The algorithm of Sugihara generates the equivalence classes of e

E

�

. The algorithm needs

O(mlogm) time and O(m) storage. Similar to the algorithm of Jiang & Bunke, it can handle

polyhedra of class P

1

. The implementation of this algorithm is relatively easy.

Originally, Sugihara has developed his algorithm for determining the congruity of polyhedra.

In fact, the algorithm above is a modi�cation of the formulation in [32]. The original algorithm

for congruity determination is as follows:

1. Compute �(e) for all directed edges e 2 E

�

1

[E

�

2

.

2. Divide E

�

1

[E

�

2

into subsets B

1

; B

2

; � � � ; B

k

in such a way that e and e

0

belong to the same

subset i� �(e) = �(e

0

).

3. If there exists i; 1 � i � k, such that B

i

� E

�

1

or B

i

� E

�

2

, then conclude that the

polyhedra P

1

and P

2

are not congruent and terminate the algorithm.

4. Partition each B

1

; B

2

; � � � ; B

k

further into sets consisting of mutually indistinguishable

edges. Let the resulting sets be B

0

1

; B

0

2

; � � � ; B

0

l

; l � k.

5. P

1

and P

2

are congruent i� B

0

1

\ E

�

1

6= ; and B

0

1

\ E

�

2

6= ;.

In the �nal partition, e

1

; e

2

2 B

0

i

; e

1

2 E

�

1

; e

2

2 E

�

2

means the existence of a spatial transforma-

tion that maps e

1

of P

1

to e

2

of P

2

.

9

3.2 Generate-and-test paradigm

One of the most popular paradigms in algorithm design is that of generate-and-test. For

symmetry detection, this class of algorithms can be further divided into two categories, i.e.,

generation of symmetry axes and generation of spatial rotations. In this section we describe

three algorithms of this class, two from the �rst and one from the second category.

3.2.1 The algorithm of Waltzman

The algorithm of Waltzman [33] is based on the observation that any symmetry axis of a

polyhedronG = (V;E; F) without holes passes through at least two elements of the set V [E[F .

Here we want to emphasize that this is not true for polyhedra with holes, see Fig. 3 for an

example. Totally, there exist six possible combinations. The symmetry axis may pass through:

1. two faces,

2. a face and a vertex,

3. a face and an edge,

4. two vertices,

5. a vertex and an edge, or

6. two edges.

Thus, hypotheses of symmetry axes can be generated by exhaustively enumerating all the six

combinations. Essentially, Waltzman follows this approach. In his algorithm three procedures

were given to separately consider three di�erent cases: symmetry axes which pass through at

least one face (combinations 1-3), symmetry axes which pass through at least one vertex (4-5),

and symmetry axes which pass through two edges (6). In each procedure, constraints are tested

�rst to �lter out obviously impossible hypotheses. If a symmetry axis l passes through face f

of P , for instance, then f , considered as a polygon, must be symmetric. In addition, l must

be perpendicular to f and intersect f at its centroid. Another constraint for the existence of

a symmetry axis passing through two edges is that the number of edges of P is divisible by 2.

Each hypothesized symmetry axis surviving these tests is then veri�ed in a second stage to see

whether it is a true symmetry axis.

From each hypothesis it is possible to partition the set of vertices V into a number of

disjoint subsets, called cycles, such that, for each cycle fv

0

; v

1

; � � � ; v

l�1

g, if the hypothesis is a

true symmetry and the symmetry maps v

i

to v

j

, then it also maps v

i+k

to v

j+k

(modulus l) for

all k. Obviously, a necessary condition for the existence of a true symmetry is that each cycle

is locally symmetric with respect to the hypothesized symmetry axis. This local symmetry is

tested for each cycle and the overall symmetry of the polyhedron is determined by combining

the local symmetries. For the octahedron, only the hypothesis l as shown in Fig. 2 will be

successfully veri�ed.

The algorithm provides the set of all symmetry axes and their corresponding fold number

and partition. It has a time complexity of O(eh

2

) where e is the maximum number of edges

of any of the faces of the polyhedron. The storage requirement is linear. Apparently, the

algorithm can only handle polyhedra of class P

2

since the fundamental observation concerning

the symmetry axes assumes polyhedra without holes. Although the idea behind the algorithm

is simple, the algorithm itself is involved and lengthy. An actual implementation seems tedious.

10

�

�

�

�

�

�

�

��

�

�

�

�

��

�

�

�

�

�

�

�

l

Figure 3: A symmetric polyhedron whose symmetry axis l doesn't go through any vertex, edge,

or face.

The algorithm of Waltzman cannot be extended to solve the congruity problem. The reason

is that the hypotheses generation makes use of a property of symmetric polyhedra. Since two

congruent polyhedra may have no symmetry at all, this �rst stage will fail.

3.2.2 The optimal algorithms of Wolter et al.

Wolter et al. proved in [35] that the computational complexity of the symmetry detection

problem has a lower bound of O(n) for polyhedra of class P

2

and O(nlogn) for polyhedra of

class P

1

. For each polyhedra class they also constructed an optimal algorithm which reaches

the lower bound. Both algorithms generate in a �rst stage hypotheses of symmetry axes. Each

hypothesis is then veri�ed to see whether it is really a symmetry axis of the polyhedron.

For polyhedra whose graphs are planar, it is possible to �nd the symmetry group of the

graph in linear time by making use of a technique from the graph isomorphism algorithm of

Hopcroft and Wong [16]. It reduces a planar graph to either a ring, a skein (a graph consisting

of two vertices u and v, and k edges each of which being incident at both u and v), or one of

the graphs corresponding to the Platonic solids. It can be shown that these reductions never

destroy any of the symmetries of the original graph, although they may create new symmetries.

The symmetry group of the original graph can then be derived from the reduced graph. Since

the possible symmetry groups of a graph are fairly restricted and each symmetry group has

only a �nite number of possible symmetry axes, a �nite set of hypotheses of symmetry axes can

be generated from the symmetry group found by the linear time graph isomorphism algorithm.

A polyhedron can have symmetry axes only where its graph does, but not all symmetries of

the graph need be symmetries of the polyhedron. Therefore each symmetry axis hypothesis is

veri�ed in a similar way as in [33] to see whether it is a true symmetry axis of the polyhedron.

Since the linear time graph isomorphism algorithm of Hopcroft and Wong is useful only for

polyhedra with planar graphs, the symmetry detection algorithm above must be modi�ed in

order to �nd the symmetries of general polyhedra. Wolter et al. [35] used the graph of the

convex hull of the original nonplanar graph to hypothesize the symmetry axes. The veri�cation

step is identical to that described above.

The two optimal algorithms provide the set of all symmetry axes and their corresponding fold

number and partition. The version for polyhedra of class P

2

needs O(n) computation time and

that for general polyhedraO(nlogn) time. Because the linear time graph isomorphism algorithm

is very complicated, the two optimal algorithms are very involved and an implementation seems

11

di�cult. The authors stated \While the asymptotic behavior of the algorithms is good, the

3D cases share a rather large constant because they require a graph isomorphism test. Thus,

the full 3D symmetry algorithms are of primarily theoretical interest." The contribution of the

work reported in [35] lies certainly in the establishment of the lower bound for the symmetry

detection problem.

The two optimal algorithms cannot be extended to solve the congruity problem for similar

reasons as the algorithm of Waltzman.

3.2.3 The algorithm of Flynn

The key idea behind the the algorithm of Flynn [12] is that given a symmetry, the symmetry

rotation can be uniquely determined by two faces and their corresponding faces under the

symmetry. Therefore, we can select a reference pair of faces and compare that pair against

all other compatible pairs, each leading to a symmetry hypothesis with the related spatial

rotation. Each hypothesis is then veri�ed by checking whether for all other faces there exists

a corresponding face under the hypothesized symmetry rotation. A pseudo-code description of

this algorithm is as follows.

Select a reference face pair (f

i

; f

j

);

Loop: FOR each possible face pair (f

k

; f

l

) DO

IF COMPATIBLE((f

i

; f

j

), (f

k

; f

l

)) THEN

Compute rotation R that maps (f

i

; f

j

) to (f

k

; f

l

);

Add �

F

(f

i

)=f

k

and �

F

(f

j

)=f

l

to a possible new symmetry Sym(�

F

; R);

/� Verify the hypothesis ((f

i

; f

j

); (f

k

; f

l

)) with related R �/

FOR each f

a

2 F � ff

i

; f

j

g DO

IF 6 9f

b

(f

b

2 F ^ Rf

a

= f

b

) THEN

Goto loop to generate next hypothesis

ELSE

Add �

F

(f

a

) = f

b

to Sym(�

F

; R)

ENDIF

ENDFOR

/� The hypothesis has been successfully veri�ed �/

Output the new symmetry Sym(�

F

; R);

ENDIF

ENDFOR

In this formulation a predicate COMPATIBLE has been used. It takes two face pairs (f

i

; f

j

)

and (f

k

; f

l

) as arguments and returns TRUE if corresponding faces in the pairs, i.e., (f

i

; f

k

)

and (f

j

; f

l

), can be exactly aligned to each other (identical in size and form).

For the octahedron in Fig. 2, if we take (f

1

; f

5

) as the reference pair, the algorithm will gener-

ate four hypotheses: ((f

1

; f

5

); (f

1

; f

5

)), ((f

1

; f

5

); (f

2

; f

6

)), ((f

1

; f

5

); (f

3

; f

7

)), and ((f

1

; f

5

); (f

4

; f

8

)).

All the four hypotheses will be successfully veri�ed. Thus, the algorithm will output four sym-

metries:

Sym(�

1

F

; R

1

) : �

1

F

=

f

1

f

2

f

3

f

4

f

5

f

6

f

7

f

8

f

1

f

2

f

3

f

4

f

5

f

6

f

7

f

8

!

; R

1

=

0

B

@

1 0 0

0 1 0

0 0 1

1

C

A

12

Sym(�

2

F

; R

2

) : �

2

F

=

f

1

f

2

f

3

f

4

f

5

f

6

f

7

f

8

f

2

f

3

f

4

f

1

f

6

f

7

f

8

f

5

!

; R

2

=

0

B

@

0 1 0

�1 0 0

0 0 1

1

C

A

Sym(�

3

F

; R

3

) : �

3

F

=

f

1

f

2

f

3

f

4

f

5

f

6

f

7

f

8

f

3

f

4

f

1

f

2

f

7

f

8

f

5

f

6

!

; R

3

=

0

B

@

�1 0 0

0 �1 0

0 0 1

1

C

A

Sym(�

4

F

; R

4

) : �

4

F

=

f

1

f

2

f

3

f

4

f

5

f

6

f

7

f

8

f

4

f

1

f

2

f

3

f

8

f

5

f

6

f

7

!

; R

4

=

0

B

@

0 �1 0

1 0 0

0 0 1

1

C

A

The output of the algorithm is the set of all symmetries Sym(�

F

; R). The algorithm has a

computational complexity of O(h

4

). The storage requirement is linear. It can handle polyhedra

of class P

1

. An actual implementation of this algorithm is relatively easy.

The modi�cation of Flynn's algorithm to solve the congruity problem is straightforward.

We simply select the reference face pair (f

i

; f

j

) from one of the two polyhedra and compare

that pair against all face pairs (f

k

; f

l

) of the other polyhedron.

3.3 The polyhedral automaton approach

In their approach to recognizing polyhedra, Johansen et al. [22] represented a model polyhedron

P by an automaton. For the recognition, a partial polyhedron P

0

observed in the scene is coded

by a string. Then P

0

is identi�ed as an instance of P i� this string is accepted by the automaton.

As a byproduct of this approach, the symmetry of a polyhedron can be found by checking a

simple property of its automaton.

The model polyhedron P is represented by a sequence of faces S = f

i1

f

i2

� � �f

ik

where

f

ij

and f

i;j+1

are adjacent and each face of P occurs at least once in this sequence. For

the coding of S, all possible reference polygons that appear as faces in P are identi�ed and

the edges of each reference polygon are uniquely numbered. The octahedron in Fig. 2, for

example, has two reference polygons as shown in Fig. 4. In addition all possible transitions

from one face to another are also identi�ed and assigned a label. A transition (e

1

; �; e

2

; p)

means that the traversal goes from the current face f

ij

to a new face f

i;j+1

corresponding to the

reference polygon p by crossing an edge that is numbered e

1

for f

ij

and e

2

for f

i;j+1

, respectively.

Moreover, the two faces f

ij

and f

i;j+1

include an angle �. For the octahedron there exist six

transitions as shown in Fig. 4.

Given the coding alphabet consisting of the set of reference polygons A

p

and the set of

transitions A

t

, the face sequence S is actually coded by a string

S = pt

1

t

2

� � � t

k�1

where p 2 A

p

is the reference polygon related to the �rst face f

i1

and t

i

2 A

t

; i = 1; 2; � � � ; k�1,

corresponds to the transition from f

ij

to f

i;j+1

. As an example, the sequence S = f

1

f

2

f

6

f

5

f

1

is

one possible representation of the visible part of the octahedron. This sequence will be coded

by S = p

1

aedf .

A non-deterministic automaton can be constructed to accept all strings from A

p

A

t

� � �A

t

=

A

p

(A

t

)

�

. The automaton for the octahedron is shown in Fig. 5 where s

0

is a special start node

and each node s

i

; i � 1, represents the fact that the current face corresponds to the face f

i

of the model. Finally, the non-deterministic automaton can be converted into an equivalent

deterministic polyhedral automaton by means of the standard technique, i.e., the subset con-

struction. For the recognition, an unknown polyhedron P

0

is coded by a string S 2 A

p

(A

t

)

�

.

13

�

�

�

�L

L

L

L

B

B

B

B

B�

�

�

�

�

p

2

p

1

?

e = (1; ; 1; p

2

) :

�

�

�

�L

L

L

L

B

B

B

B

B�

�

�

�

�

p

2

p

1

6

f = (1; ; 1; p

1

) :

�

�

�

Q

Q

Q�

�

�

\

\

\

p

2

p

2

-

c = (3; �; 2; p

2

) :

�

�

�

Q

Q

Q�

�

�

\

\

\

p

2

p

2

�

d = (2; �; 3; p

2

) :

�

�

A

A

A

A�

�

�

�

@

@

p

1

p

1

-

a = (2; �; 3; p

1

) :

�

�

A

A

A

A�

�

�

�

@

@

p

1

p

1

�

b = (3; �; 2; p

1

) :

Transitions

C

C

C

C

C

C�

�

�

�

�

�

1

23

p

1

:

�

�

�

�

�B

B

B

B

B

1

32

p

2

:

Reference polygons

Figure 4: The coding alphabet for the octahedron.

P

0

is considered as an instance of a model polyhedron P i� S is accepted by the polyhedral

automaton of P . It can be easily veri�ed that S = p

1

aedf representing the visible part of the

octahedron is accepted by the polyhedral automaton of the octahedron shown in Fig. 5.

It was proved in [22] that a polyhedron is symmetric i� its polyhedral automaton does not

contain singleton states. For polyhedra with no symmetric faces, the states of the polyhe-

dral automaton represent the equivalence classes of e

F

. If there is some symmetric face, the

polyhedral automaton will not immediately generate the equivalence classes of e

F

. This kind

of equivalence classes, however, can be easily derived from the automaton states. While the

symmetry condition is very easy to test, the construction of the polyhedral automaton has

unfortunately an exponential complexity. Thus, the number of its states cannot be limited by

a polynomial function of the number of faces. The automaton method can handle polyhedra

of class P

1

and has a medium level of implementation complexity.

The automaton method can be extended to solve the congruity problem. Given two polyhe-

dra P and P

0

and their polyhedral automata A and A

0

, respectively, we can consider A and A

0

as attributed directed graphs. P and P

0

are congruent i� they have the same coding alphabet

14

j

s

1

j

s

2

j

s

3

j

s

4

j

s

5

j

s

6

j

s

7

j

s

8

j

s

0

�

�

�

�

�

�

�

�

�

��

p

2
�

�

�

�

�

�

�

�

�

��

p

1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

p

1

H

H

H

H

H

H

H

H

H

Hj

p

2
A

A

A

A

A

A

A

A

A

AU

p

1

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BN

p

1

-

d

�

c

-

c

�

d

6

c

?

d

6

d

?

c

�

�

�

�

��

f

�

�

�

�

�	

e

@

@

@

@

@I

f

@

@

@

@

@R

e

@

@

@

@

@I

e

@

@

@

@

@R

f

�

�

�

�

��

e

�

�

�

�

�	

f

-

b

�

a

-

a

�

b

6

a

?

b

6

b

?

a

�

p

2

-

p

2

Non-deterministic automaton

fs

1

; s

2

; s

3

; s

4

g

@

@�

��

a; b

fs

5

; s

6

; s

7

; s

8

g

@

@�

��

c; d

-

e

�

f

j

s

0

�

�

�

�

�

�

�

��

p

1

H

H

H

H

H

H

H

Hj

p

2

Deterministic polyhedral automaton

Figure 5: The non-deterministic and the deterministic polyhedral automaton of the octahedron.

15

Form 1: Sym(�

S

; R); S 2 fV;E

�

; Fg

Form 3: Axes

� -

Form 2: Equivalence classes

@

@R

�

�	

Figure 6: The relationships between the three forms of symmetry information.

and there exists a bijective mapping from the state set of A to that of A

0

so that the two at-

tributed graphs A and A

0

are isomorphic. Since graph isomorphism test is a di�cult problem,

this method for congruity determination is certainly less practical than the methods described

in Sections 3.1.1 and 3.1.2.

4 Relationships between the output forms

In Section 2 we have classi�ed three possible output forms of a symmetry detection algorithm.

The seven algorithms described in the last section provide symmetry information in one of the

three forms. With respect to the usefulness, the three output forms are fairly di�erent. It seems

that symmetry mappings Sym(�

S

; R) and equivalence classes of e

S

; S 2 fV;E

�

; Fg, are the

most useful representation of symmetries for practical usage. In this section we investigate the

relationships between the three forms of symmetry information. Such an investigation allows us

to determine the usefulness of a symmetry detection algorithm for a given application. Assume

that the algorithm provides symmetry information in form X and the application needs it in

form Y . Then, for this particular application, the algorithm makes only sense if Y can be

directly derived from X.

In this section we will show that the three forms of symmetry information are not indepen-

dent. Their relationships are shown in Fig. 6, where X ! Y means that X can be transformed

into Y . These transformations will be discussed in the following subsections.

4.1 Equivalence of form 1 and form 3

Given all symmetry mappings Sym(�

V

; R), the symmetry axes as well as their corresponding

fold number and partition can be easily computed. Consider one symmetry given by �(v

i

) =

v

k

; v

i

6= v

k

and �(v

j

) = v

l

; v

j

6= v

l

, its symmetry axis must lie in a plane that is perpendicular to

the straight line segment v

i

v

k

and passes through the middle point of v

i

v

k

. The same observation

is true for the pair (f

j

; f

l

). The intersection of the two planes must be the symmetry axis.

The transformation from form 3 to form 1 is easy. Given a r-fold symmetry axis l and

its corresponding partition, there are r symmetry mappings. For each vertex v

ik

in a subset

fv

i0

; v

i1

; � � � ; v

i;l�1

g of the partition, these symmetry mappings map it to v

i;k+j�l=r

(modulus l),

1 � j � r, respectively. Considering all symmetry axes gives the set of all symmetry mappings.

4.2 Transformation between form 2 and other forms

Due to the equivalence of form 1 and 3, we consider here only the transformation between form

1 and 2. Given the symmetry mappings Sym(�

S

; R); S 2 fV;E

�

; Fg, the equivalence relations

16

e

k

S

are uniquely de�ned. Thus, their corresponding equivalence classes can also be inferred. An

algorithm for actually doing the transformation from form 1 to form 2 will be given in Section

4.3.

The inverse transformation from form 2 into form 1 is not possible. That is, we cannot

directly reconstruct the symmetry mappings from the equivalence classes. Certainly, we could

apply some algorithmX that �nds out the symmetry mappings from the initial representation of

the polyhedron. In this case, however, X itself is a symmetry detection algorithm. If symmetry

mappings are actually needed, we can use the algorithm X directly without involving the

symmetry detection algorithm that generates the equivalence classes at all.

4.3 Construction of equivalence classes

In practice, equivalence classes are a very useful representation of symmetries. Thus, construc-

tion of equivalence classes from the other two output forms is an important task. Due to their

equivalence, however, we will only consider the case with the symmetry mappings.

In [19] Jiang and Bunke proposed an algorithm for the construction of equivalence classes

of e

V

from the mapping Sym(�

V

; R). The modi�cation for e

k

E

�

or e

k

F

is straightforward.

The construction task is to generate all equivalence classes of e

V

from the set L of all symme-

try mappings Sym(�

V

; R). The construction algorithm in [19] scans L once and incrementally

register e

V

by each mapping in L. For each equivalence class

fv

j1

; v

j2

; � � � ; v

jk

g; j1 < j2 < � � � < jk;

it records the equivalence relationships

(v

j1

; v

ji

) 2 e

V

; i = 2; 3; � � � ; k:

This proceeds as follows. We use an array rec[1::n] which is initialized with zeros. The ith

element of rec represents v

i

. From each symmetry mapping �

V

we get a new set of pairs

(v

i

; v

j

) 2 e

V

; i < j. For each of them, the array entry j is updated by

IF (rec[j] = 0) OR (i < rec[j]) THEN rec[j] := i

After all symmetry mappings have been processed, the array rec will look like

rec[l] =

(

0; if v

l

= v

j1

j1; if v

l

= v

ji

; i = 2; 3; : : : ; k

Thus, one scanning of rec will produce all equivalence classes of e

V

.

The octahedron in Fig. 2 has four symmetry mappings as shown in Section 2. To illustrate

how the construction algorithm works for this polyhedron, we show in the �rst table of Fig.

7 the content of array rec after the processing of each symmetry mapping. The �nal content

of rec reveals four equivalence classes: fv

1

g, fv

2

; v

3

; v

4

; v

5

g, and fv

6

g. The modi�cation of the

construction algorithm above to handle e

E

�

or e

F

is straightforward and is thus not given here.

As an example for these two relations, let's consider the four symmetry mappings Sym(�

F

; R)

for the octahedron shown in Section 3.2.3. The behavior of the algorithm for this relation

is shown in the second table of Fig. 7. Finally, two eqivalence classes ff

1

; f

2

; f

3

; f

4

g and

ff

5

; f

6

; f

7

; f

8

g will be found.

The extension of the construction algorithm to the general case e

k

V

; k � 1, is straightforward.

For a full formulation of the general version, see [20].

17

Mapping Set of new pairs (v

i

; v

j

) 2 e

V

; i < j Array rec

initial (0,0,0,0,0,0)

�

1

V

; (0,0,0,0,0,0)

�

2

V

f(v

2

; v

3

); (v

3

; v

4

); (v

4

; v

5

)g (0,0,2,3,4,0)

�

3

V

f(v

2

; v

4

); (v

3

; v

5

)g (0,0,2,2,3,0)

�

4

V

f(v

2

; v

5

)g (0,0,2,2,2,0)

Mapping Set of new pairs (f

i

; f

j

) 2 e

F

; i < j Array rec

initial (0,0,0,0,0,0,0,0)

�

1

F

; (0,0,0,0,0,0,0,0)

�

2

F

f(f

1

; f

2

); (f

2

; f

3

); (f

3

; f

4

); (f

5

; f

6

); (f

6

; f

7

); (f

7

; f

8

)g (0,1,2,3,0,5,6,7)

�

3

F

f(f

1

; f

3

); (f

2

; f

4

); (f

5

; f

7

); (f

6

; f

8

)g (0,1,1,2,0,5,5,6)

�

4

F

f(f

1

; f

4

); (f

5

; f

8

)g (0,1,1,1,0,5,5,5)

Figure 7: The behavior of the equivalence class construction algorithm for the octahedron.

5 Comparison of symmetry detection algorithms

In the previous sections we have briey described seven symmetry detection algorithms found

in the literature

2

. For each algorithm the following �ve aspects have been considered: the

output form, the computational complexity, the polyhedra class the algorithm can handle,

the implementation complexity, and the suitability for solving the related congruity problem.

Since the algorithms supply symmetry information in di�erent forms we have classi�ed three

possible output forms of a symmetry detection algorithm and discussed their relationships.

In this section we compare the seven symmetry detection algorithms and try to give some

recommendations as to which algorithm to choose for a particular application.

The seven algorithms are summarized in Table 1. The �rst four features in the table,

i.e., columns two to �ve, play an important role in selecting an appropriate algorithm for a

particular application. A high execution speed is always desired. However, the O-notation for

the computational complexity should be considered with caution because it describes merely

the asymptotic behavior of an algorithm and neglects constant factors and additive constants.

The algorithms WWV1 and WWV2, for instance, are both optimal in the sense that their

asymptotic complexity reaches the lower bound of the symmetry detection problem. Since they

have a very large constant, however, they are likely to be more time-consuming for relatively

small n values than other algorithms with a higher asymptotic complexity. The output form of

a symmetry detection algorithm is another important decision factor for algorithm selection.

It makes only sense to use an algorithm if it supplies symmetry information in the desired

form directly, or if the desired form can be easily derived. Among the three output forms,

the symmetry mapping Sym(�

S

; R); S 2 fV;E

�

; Fg, and the equivalence classes are the most

useful symmetry representations for a variety of applications. The symmetry mappings and

the symmetry axes representations are equivalent. Equivalence classes of the relation e

k

S

can

be easily constructed from the other two representations. Which polyhedra class a symmetry

detection algorithm can handle also determines its usefulness. In most cases the more general

polyhedra class P

1

is desired. Finally, the implementation complexity of an algorithm should

2

An earlier version of the algorithm of Jiang & Bunke and Flynn's algorithm, reported in [18] and [11],

respectively, has not been discussed in this paper.

18

Algorithm Complexity Output Class Implementation Congruity

Jiang & Bunke (JB) O(m

2

) Sym(�

V

; R) P

1

easy yes

Sugihara (SU) O(mlogm) EC of e

E

�

P

1

easy yes

Waltzman (WA) O(eh

2

) Axes P

2

medium no

Wolter et al. (WWV1) O(n) Axes P

2

di�cult no

Wolter et al. (WWV2) O(nlogn) Axes P

1

di�cult no

Flynn (FL) O(h

4

) Sym(�

F

; R) P

1

easy yes

Johansen et al. (JJC) Exponential EC of e

F

P

1

medium yes

Table 1: Summary of the seven symmetry detection algorithms.

not be ignored.

According to the criteria formulated above, the algorithms WWV1, WWV2, and JJC are

less suitable for practical applications. The two optimal algorithms of Wolter et al., as stated

by the authors themselves, are of primarily theoretical interest. They illustrate that the lower

bound of the symmetry detection problem, O(n) for the polyhedra class P

2

and O(nlogn) for

P

1

, can actually be reached. An extremly di�cult implementation hinders the two algorithms

from practical usage. The algorithm JJC has the drawback of exponential computational

complexity.

Among the other four algorithms, the algorithms JB and SU seem to be superior. The algo-

rithm SU has an optimal computational complexity and its actual implementation is relatively

easy. A potential problem with this algorithm is that it provides the equivalence classes of

the relation e

E

�

. This excludes its usage, for instance, in those situations where the symmetry

mappings are needed. The algorithm JB has the advantage of implementation ease and gener-

ality of its output. It has a quadratic complexity in the worst case. As stated in [19], however,

the average case occurring in practical applications can be expected to be substantially better.

With respect to the computational complexity and the output form, the algorithm WA is

comparable to JB. An actual implementation of WA, however, seems tedious. A more serious

handicap of this algorithm is that it cannot �nd symmetries of polyhedra with holes. The

algorithm FL is comparable with JB with respect to all criteria except that of computational

complexity. In this sense the algorithm JB is more preferable.

Four of the seven symmetry detection algorithms can be modi�ed to solve the related

congruity problem. Also for this problem the algorithm JB and SU are the best choice for

practical usage. Both have a low computational complexity and an easy implementation. The

two other algorithms FL and JJC have a much higher computational complexity. In particular,

JJC requires an isomorphism test for two attributed graphs. The di�culty of this problem is

well-known.

To conclude this section, simple and e�cient symmetry detection algorithms like JB and

SU are now available, making the actual use of symmetry information in many applications

possible. Also for the congruity problem practical algorithms are known.

6 Applications of symmetries

Symmetry means some similarity or redundancy in the structure of a polyhedron. This redun-

dancy leads often to equivalent subtasks in a problem-solving process, and thus to ine�ciency.

In the last years an increasing interest in the use of symmetry information could be observed

19

aiming at removing this redundancy in a variety of problems. In this section we discuss some

applications of symmetries in robotics, geometric problem-solving, and computer vision.

6.1 Robotics

The motivation behind the development of the optimal algorithms of Wolter et al. was the

need for detecting symmetry in the context of a robotics application, where a set of images

of polyhedra were synthesized for the training of a vision system [36]. If a polyhedron has

symmetries, certain sets of viewpoints will produce identical-appearing images. They only

incerase the computational burden for the training and don't make any essential contribution

to the training. Here knowledge of the symmetries of the polyhedra can be used to eliminate

redundant orientations.

High-level robotic assembly planning is concerned with how bodies �t together and how

spatial relationships among bodies are established over time. In assembly planning one potential

problem arises from the symmetries of the assembly components. A component of cubic shape,

for example, contains eight equivalent vertices, twelve equivalent edges, and six equivalent faces.

Without a proper treatment of symmetry a complete speci�cation of any type of contact with

such a component would be tedious. In [24, 28] symmetries have been exploited to overcome this

problem. The assembly planning problem was formulated as a constraint satisfaction problem

(CSP) over �nite and in�nite domains in [24]. It is known that �nding a consistent solution of a

general CSP is an NP-complete problem. The authors used clues deduced from the symmetries

of the assembly components to reduce the combinatorics by minimizing the variable domains,

thus making the assembly planning process computationally more tractable.

6.2 Geometric problem-solving

Waltzman [33] considered a geometric problem of the following type: We are given a set of

three-dimensional polyhedral pieces and told that they all �t together to form a solid cube

(with no empty space inside) of given dimensions. The problem is to determine how all the

pieces �t together. The solution to this problem is thus the spatial location and orientation of

each piece relative to the cubic container so that the container is completely �lled by the pieces.

In essential the problem is solved by a search. The basic problem state at any given time consists

of the location and orientation of all the pieces placed so far, as well as the shape, location, and

orientation of the containers remaining to be �lled. (Note that there may be more than one

container to be �lled since the placement of any piece may divide a single container into two or

more containers.) Each solution step places a piece at a particular location and orientation in

space. If there are symmetries in the pieces or the containers, the symmetry information can be

used to reduce the search space. The problem formulation above represents a general problem

class and contains many special instances. The container, for example, may be a means of

transportation (e.g., ship, plane, or truck) or of storage (e.g., shelve or bin). Related to this are

problems of laying out o�ce space or factory oor where the container is the total oor space

that we want to work with and the objects are wall partitions, desks, o�ce equipment, and so

on. As test for his experimental system for solving this kind of problems, Waltzman considered

two non-trivial three-dimensional jigsaw puzzles. In one puzzle, the problem-solving process

would perform 27,648 state computations if no symmetry information was used. But by taking

advantage of the symmetries of the pieces and the containers, the system was able to solve the

puzzle in roughly 10 state computations. In another puzzle of much greater complexity, the

search space contained about 3:3 � 10

29

states. By making use of symmetry information the

20

�

�

�

�

Q

Q

Q

Q

Q

Q

D

D

D

D

D

D

D

D

D

c

c

c

c

c

c

�

�

�

�

�

f

1

f

2

f

3

f

4

(a)

�

�

�

�

�

�

�

�@

@

@

@

@

@

@

@

g

1

g

3

g

2

g

4

(b)

Figure 8: (a) The model octahedron. In this perspective f

1

, f

2

, f

3

and f

4

are visible, and f

5

, f

6

,

f

7

and f

8

are invisible. In our notation, the face f

i+4

; i = 1; 2; 3; 4 is parallel to f

i

, respectively.

(a) A scene.

system solved the puzzle in roughly 200 state computations.

6.3 Computer vision

One of the central research topics in computer vision is that of model-based three-dimensional

object recognition [4, 5, 7, 30, 31]. The goal of an object recognition system is to identify the

objects present in an input scene and to determine the pose of each object, i.e., the transfor-

mation that brings the features of an object model in its own inherent coordinate system into

agreement with the corresponding features in the world coordinate system of the scene.

Given a set of scene features S = fs

1

; s

2

; � � � ; s

n

g extracted from an input image and a set

of model features M = fm

1

; m

2

; � � � ; m

l

g being, for instance, vertices, edges, or faces of the

objects, the recognition task is to �nd a matching

f(s

1

; m

i1

); (s

2

; m

i2

); � � � ; (s

n

; m

in

)g

that gives the corresponding model feature of each scene feature

3

and the related pose. Usually,

topologic and geometric constraints are exploited to �nd consistent matchings.

Matching of a scene description to a symmetric model always leads to a number of equivalent

solutions. As an illustrative example, let's consider the regular octahedron (in the following

simply octahedron) in Fig. 8, which is one of the �ve Platonic solids. If we have detected four

surface patches g

1

, g

2

, g

3

, and g

4

in the scene and match them to the faces of the octahedron,

24 di�erent matchings will result. Three of them are:

f(g

1

; f

1

); (g

2

; f

2

); (g

3

; f

3

); (g

4

; f

4

)g;

f(g

1

; f

1

); (g

2

; f

4

); (g

3

; f

6

); (g

4

; f

7

)g;

f(g

1

; f

5

); (g

2

; f

6

); (g

3

; f

4

); (g

4

; f

3

)g:

Obviously, all the 24 matchings are equivalent and �nding any of them entirely solves the

recognition task.

3

Here it is assumed that all scene features stem from the same model. In real applications extraneous scene

features resulting from an inperfect feature extraction and multiple objects must be taken into account.

21

An object recognition system should be aware of the symmetries of the models. Otherweise,

it will �nd a number of equivalent matchings of equal goodness and resolution of this inher-

ent ambiguity is not possible. Recently, researchers have begun to explicitly make use of the

symmetries of models [11, 12, 17]. In [21] a framework of symmetry exploration for a number

of popular object recognition paradigms, including interpretation tree search, hypothesize-and-

test, invariant feature indexing of interpretation tables, pose clustering, and evidence based

techniques, has been proposed. Generally, object recognition can pro�t from symmetry infor-

mation in two ways. An object recognition system can use it to avoid the search for equivalent

solutions, thus resulting in more e�ciency. Alternatively, symmetry information can guide the

ambiguity resolution process after the matchings have been found by �nding out one represen-

tative and throwing away all other equivalent matchings.

A large-scale test of symmetry exploration in an object recognition system based on invariant

feature indexing in interpretation tables [10] has been reported in [12]. In this experiment the

model database consisted of 70 objects, ranging from the Platonic solids and variants over block-

like polyhedra to chair-like objects. The 70 models yielded 48,146 possible face triples for the

interpretation table, 37,681 of those being redundant. Hence, symmetry information discarded

78% of the entries in the interpretation table. The saving in recognition time was tested on

�ve synthetic range images of each of the 70 models, i.e., totally 350 scenes. A total of 665,658

hypotheses for object recognition were retrieved from the interpretation table when they were

constructed using symmetry information, while 3,454,122 hypotheses were retrieved without

symmetry processing. Therefore, the use of symmetry information yielded an 81% reduction in

the computational burden associated with hypothesis retrieval from the same model database.

This experiment showed that the use of symmetry information not only drastically reduces the

storage need for the model representations, but also signi�cantly decreases the computation

time.

7 Conclusion

Symmetries of objects have been found useful in �elds like robotics, geometric problem-solving,

and computer vision. The actual use of symmetries, however, is crucially dependent on the

availability of simple and e�cient symmetry detection algorithms. In this paper, we have

reviewed seven algorithms for extracting symmetries of polyhedra and compared them with

respect to the computational complexity, the implementation, the suitability of the algorithm

output for practical use, and the polyhedra class that the algorithm can handle.

In our study we have restricted the class of polyhedra to those without cavities in their

faces whose graphs are planar. This restriction is due to the fact that most of the symmetry

detection algorithms assume a connected polyhedron graph. An exception is the algorithm

of Flynn. Also, the earlier version of the algorithm of Jiang & Bunke in [18] that was not

considered in this study can handle disconnected polyhedron graphs. A future research work

is thus to extend the symmetry detection algorithms to the most general case. This would

de�nitely enlarge the usefulness of these algorithms in many applications.

Polyhedra correspond to the lowest level in a hierarchy of object representations with in-

creasing complexity. More complex geometric objects are, for instance, quadric-surfaced objects

that are very popular in research on three-dimensional object recognition. Another extension

of symmetry detection algorithms is to accommodate this kind of curved objects. Currently,

this aspect has been almost entirely ignored. Only Flynn [11] claims that his algorithm can

handle some quadrics.

22

References

[1] S. G. Akl and G. T. Toussaint, \An improved algorithm to check for polygon similarity",

Information Processing Letters, Vol. 7, 127{128, 1978.

[2] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl, \Congruence, similarity, and symmetries

of geometric objects", Discrete & Computational Geometry, Vol. 3, 237{256, 1988.

[3] M. A. Armstrong, Groups and Symmetry, Springer-Verlag, New York, 1988.

[4] P. J. Besl and R. C. Jain, \Three dimensional object recognition", ACM Computing

Surveys, Vol. 17, No. 1, 75{145, 1985.

[5] J. P. Brady, N. Namdhakumar, and J. K. Aggarwal, \Recent progress in object recognition

from range data", Image and Vision Computing, Vol. 7, No. 4, 295{307, 1989.

[6] A. Bykat, \On polygon similarity", Information Processing Letters, Vol. 9, 23{25, 1979.

[7] R. T. Chin and C. R. Dyer, \Model based recogntion in robot vision", ACM Computing

Surveys, Vol. 18, No. 1, 67{108, 1986.

[8] P. Eades and H. C. Ng, \An algorithm for detecting symmetries in line drawings", Ars

Combinatoria, Vol. 23A, 95{104, 1987.

[9] P. Eades, \Symmetry �nding algorithms", In: Computational Morphology (G. T. Tous-

saint, Ed.), North-Holland, 41{51, 1988.

[10] P. J. Flynn and A. K. Jain, \3D object recognition using invariant feature indexing of inter-

pretation tables", Computer Vision, Graphics, and Image Analysis: Image Understanding,

Vol. 55, No. 2, 119{129, 1992.

[11] P. J. Flynn, \Saliencies and symmetries: Towards 3D object recognition from large model

databases", Proc. of CVPR'92, 322{327, 1992.

[12] P. J. Flynn, \3-D object recognition with symmetric models: Symmetry extraction and

encoding", IEEE Trans. on PAMI, Vol. 16, No. 8, 814{818, 1994.

[13] G. Gati, \Further annotated bibiography on the isomorphism disease", Journal of Graph

Theory, Vol. 3, 95{109, 1979.

[14] P. T. Highnam, \Optimal algorithms for �nding the symmetries of a planar points set",

Information Processing Letters, Vol. 22, 219{222, 1986.

[15] J. E. Hopcroft and R. E. Tarjan, \A V logV algorithm for isomorphism of triconnected

planar graphs", Journal of Computer and System Sciences, Vol. 7, 323{331, 1973.

[16] J. E. Hopcroft and J. K. Wong, \Linear time algorithm for isomorphism of planar graphs",

Proc. of 6th Annual ACM Symposion on Theory of Computing, 172{184, 1974.

[17] X. Y. Jiang and H. Bunke, \Determination of the symmetries of polyhedra and an ap-

plication to object recognition", In: Computational geometry { Methods, algorithms and

applications (H. Bieri, H. Noltemeier, Eds.), Lecture Notes in Computer Science 553,

Springer-Verlag, 113{121, 1991.

23

[18] X. Y. Jiang and H. Bunke, \Determining symmetry of polyhedra", In: Visual form: Anal-

ysis and recognition (C. Arcelli, L. P. Cordella, G. Sanniti di Baja, Eds.), Proc. of Int.

Workshop on Visual Form, Capri, 1991, Plenum Press, New York, 303{312, 1992.

[19] X. Y. Jiang and H. Bunke, "A simple and e�cient algorithm for determining the symme-

tries of polyhedra", Computer Vision, Graphics, and Image Analysis: Graphical Models

and Image Processing, Vol. 54, No. 1, 91{95, 1992.

[20] X. Y. Jiang and H. Bunke, "Polyhedral symmetry: Detection algorithms and application

to 3-D object recognition", Proc. of Swiss Vision'93, 169{177, 1993.

[21] X. Y. Jiang and H. Bunke, A framework of symmetry exploration in 3D object recognition,

Proc. of IAPR Int. Workshop on Structural and Syntactic Pattern Recognition, Nahariya,

Israel, 1994. (to appear)

[22] P. Johansen, N. Jones, and J. Clausen, \A method for detecting structure in polyhedra",

Pattern Recognition Letters, Vol. 2, 217{225, 1984.

[23] J.-C. Lin, S.-L. Chou, and W.-H. Tsai, \Detection of rotationally symmetric shape orienta-

tions by fold-invariant shape-speci�c points", Pattern Recognition, Vol. 25, No. 5, 473{482,

1992.

[24] Y. Liu and R. J. Popplestone, \Symmetry constraint inference in assembly planning {

Automatic assembly con�guration speci�cation", Proc. of AAAI-90, 1038{1044, 1990.

[25] G. E. Martin, Transform Geometry: An Introduction to Symmetry, Springer-Verlag, New

York, 1982.

[26] T. Masuda, K. Yamamoto, and H. Yamada, \Detection of partial symmetry using cor-

relation with rotated-reected images", Pattern Recognition, Vol. 26, No. 8, 1245{1253,

1993.

[27] S.-C. Pei and C.-N. Lin, \Normalization of rotationally symmetric shapes for pattern

recognition", Pattern Recognition, Vol. 25, No. 9, 913{920, 1992.

[28] R. J. Popplestone, Y. Liu, and R. Weiss, \A group theoretic approach to assembly plan-

ning", AI magazine, Vol. 11, No. 1, 82{97, 1990.

[29] R. C. Read and D. G. Corneil, \The graph isomorphism disease", Journal of Graph Theory,

Vol. 1, 339{363, 1977.

[30] G. Stockman, \Object recognition", In: Analysis and Interpretation of Range Images (R.

C. Jain, A. K. Jain, Eds.), Springer-Verlag, 225{253, 1990.

[31] P. Suetens, P. Fua, and A. J. Hanson, \Comptational strategies for object recognition",

ACM Computing Surveys, Vol. 24, No. 1, 5{61, 1992.

[32] K. Sugihara, \An nlogn algorithm for detecting the congruity of polyhedra", Journal of

Computer and System Sciences, Vol. 29, 36{47, 1984.

[33] R. Waltzman, Geometric problem solving by machine visualization, CS-TR-2291, Univer-

sity of Maryland, 1989.

24

[34] L. Weinberg, \A simple and e�cient algorithm for determining isomorphism of planar

triply connected graphs", IEEE Trans. on Circuit Theory, Vol. 13, No. 2, 142{148, 1966.

[35] J. D. Wolter, T. C. Woo, and R. A. Volz, \Optimal algorithms for symmetry detection in

two and three dimensions", The Visual Computer, Vol. 1, 37{48, 1985.

[36] J. D. Wolter, R. A. Volz, and T. C. Woo, \Automatic generation of gripping positions",

IEEE Trans. on Systems, Man, and Cybernetics, Vol. 15, No. 2, 204{213, 1985.

[37] H. Zabrodsky, S. Peleg, and D. Arnir, \A measure of symmetry based on shape similarity",

Proc. of CVPR'92, 703{706, 1992.

25

