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Abstract

A method for the o�-line recognition of cursive handwriting based on Hidden

Markov Models (HMMs) is described. The features used in the HMMs are based

on the arcs of skeleton graphs of the words to be recognized. An average correct

recognition rate of over 98% on the word level has been achieved in experiments with

cooperative writers using two dictionaries of 150 words each.

CR categories and Subject Description: I.5: Pattern Recognition; I.4: Image Pro-

cessing

General Terms: Algorithms

Additional key words: Optical character recognition, cursive script recognition, o�-

line recognition, hidden Markov model, skeleton graphs
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1 Introduction

Optical character recognition (OCR) has been receiving much attention in the past few

years although it is one of the oldest and most intensively studied sub�elds of pattern

recognition [1]. The growing interest in this �eld has been driven by the steadily increasing

power of computing machinery and an expanding commercial market. In OCR, we usually

distinguish between the recognition of machine and hand printed text. The latter category

can be further decomposed into the recognition of isolated characters and cursive script.

For both isolated characters and cursive script, on-line and o�-line recognition methods

have been proposed. In on-line recognition, an electronic pen or a mouse is used as writing

device, and the movement of this device as a function of time is recorded and taken as

input data. In o�-line recognition, by contrast, only the spatial distribution of the pixels

belonging to script patterns, without any temporal information, is available.

The recognition of machine printed characters is considered a mature area and com-

mercial products for a broad spectrum of applications are available today. Reviews of

the state of the art can be found in [2],[3]. The �eld of handwriting recognition is less

developed. During the past few years, most of the attention in handwriting recognition

was directed to the on-line mode. This interest in on-line recognition has been stimulated

by new \pen-type" computer interfaces that are currently under design to replace the

traditional keyboard in a variety of applications. The two most recent surveys on on-line

handwriting recognition are provided in [4],[5], where ref. [5] particularly focuses on orien-

tal languages. More recently, neural networks [6]{[9], hidden Markov models [10],[11] and

dynamic programming matching of character hypotheses against a dictionary [12] have

been proposed for the on-line recognition of cursive handwriting.

O�-line recognition of both isolated characters and cursive script has applications in

areas like postal address reading, or form and check processing at banks and insurance

companies. Progress in o�-line recognition of isolated characters achieved in the past

years is quite remarkable. In two recent surveys, recognition rates of up to 99.5% and

reliability of up to 100% have been reported [13],[14]. By contrast, the problem of o�-line

cursive handwriting recognition is still widely unsolved. The recognition rates reported in

the literature vary between 50% and 96% depending on the experimental conditions and

task de�nition. In [15], Bozinovic and Srihari described a system for o�-line cursive script

recognition. They applied a heuristic segmentation algorithm to create letter hypotheses,

and a dictionary search to �nd the most plausible interpretation of an input word. A

syntactic approach based on error-correcting parsing was proposed in [16]. Edelman et al.

presented a method that is based on matching character prototypes against parts of an

input word that may undergo an a�ne transformation [17]. A lexical veri�cation module

was employed for making the �nal decision about the identity of an unknown input. Simon

and Baret extracted so-called descriptive chains, which represent structural features of an

input word, and matched them against similar chains obtained from dictionary words

[18]. A neural network based approach to o�-line cursive script recognition was proposed

in [19]. The authors used the quantized directions of the strokes contained in a word as

descriptive features.

In the present paper, we propose a method for o�-line cursive script recognition based

on hidden Markov models (HMMs). The importance of HMMs in the area of speech

recognition has been observed several years ago [20]. In the meantime, HMMs have also
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been successfully applied to image pattern recognition problems such as shape classi�cation

[21] and face recognition [22]. HMMs qualify as a suitable tool for cursive script recognition

for a number of reasons. First, they are stochastic models that can cope with noise

and pattern variations occurring in human handwriting. Next, the number of tokens

representing an unknown input word may be of variable length. This is a fundamental

requirement in cursive handwriting because the lengths of the individual input words

may greatly vary. Moreover, using an HMM-based approach, the segmentation problem,

which is extremely di�cult and error prone, can be avoided. This means that the features

extracted from an input word need not necessarily correspond with letters. Instead, they

may be derived from part of one letter, or from several letters. Thus the operations carried

out by an HMM are in some sense holistic, combining local feature interpretation with

contextual knowledge. Finally, there are standard algorithms known from the literature

for both training and recognition using HMMs. These algorithms are fast and can be

implemented with reasonable e�ort.

HMMs have been applied to the problem of o�-line cursive script recognition by a

number of researchers in a variety of ways. Kundu and Bahl built an HMM for the

English language [23]. However, they require the input word being perfectly segmented

into single characters. In a later paper, Chen and Kundu showed several other possibilities

to apply HMMs to cursive script recognition where the segmentation algorithm is allowed

to split a character into up to four parts [24]. Under \real world" conditions they obtained

recognition rates between 74.5% and 96.8% depending on the size of the dictionary and

the HMM architecture actually used. In [25] a status report about a system that is under

development by Kaltenmeier et al. was given. The authors applied detectors that look for

strokes of special shape within a sliding window in order to extract features. At present,

the recognition rate of the system is about 85% on data from real mail addresses. An

approach that assumes segmentation of a word into parts of letters like loops or upper

and lower extensions was described in [26]. The authors have studied two di�erent HMM

topologies, one for large and another for small size vocabularies. The recognition rate of

this system lies between 79% and 91%. It is dependent on the vocabulary size and the

quality of the input data.

The approach proposed in this paper di�ers from other HMM-based methods described

in the literature mainly in the type of features extracted from the input. We are using shape

descriptors of the skeleton graph edges of an input word. These features are somehow at

an intermediate level of abstraction, providing a good compromise between discriminatory

power and extraction reliability and reproducibility. For example, they probably provide

more distinctive information than the low level features used in [25]. But on the other hand,

they can certainly be more reliably extracted than high level features such as complete

letters [23]. It must be also mentioned that our motivation is di�erent from that behind

the work reported in [24]{[26]. Other authors aimed at the recognition of di�cult data

collected from real mail or bank checks. By contrast, we assume a cooperative writer who

is willing to adapt his or her personal writing style such that the recognition performance

of the system is improved. Such an assumption is realistic in the context of several

applications, for example, computer input of personal notes written on regular paper,

or data acquisition for banks or insurance companies via personal customer workstations.

The remainder of this paper is organized as follows. In section 2, the image prepro-

cessing and feature extraction procedures used in our system will be described. Then an

3



Figure 1: An example of binarization, horizontal projection pro�le computation, and

reference line extraction.

introduction to HMMs will be given in section 3. In section 4, more details about the

application of HMMs to the problem of cursive script recognition will be provided. Ex-

perimental results will be presented in section 5. Finally, a discussion and conclusions will

be given in section 6.

2 Image Preprocessing and Feature Extraction

Our input images are of format A4 and include typically 20 lines with four words in each

line. The images are scanned at a resolution of 100dpi and binarized using Otsu's method

[27]. Then the text lines are extracted using horizontal projection pro�les. For each line

of text, we extract four reference lines: the lower line, lower baseline, upper baseline, and

upper line. These reference lines de�ne three vertical zones, namely the lower, middle, and

upper zone. Our procedure for reference lines extraction is similar to the one described

in [15]. That is, the lower and upper lines are simply obtained from the minimum and

maximum non-zero position in the horizontal projection pro�le, respectively, while the

lower and upper baselines correspond to the local extrema of the �rst derivative. For a

graphical illustration see Fig. 1. In order to become invariant to noise in the horizontal

projection pro�le, a smoothing operation is combined with the computation of the �rst

derivative. Moreover, a few heuristic rules are included in the reference line extraction

procedure to handle cases where a complete line of text may not include any strokes in

the upper or lower zone.

The process of word and reference line extraction is simpli�ed by the fact that in

our experiments we require each writer to use ruled paper with all four reference lines

on it. However, the reference lines are not captured by our scanner. More sophisticated

methods for word and reference lines extraction are described in [28]. It should be men-

tioned that our recognition approach does not require any slant correction. Therefore, our

preprocessing procedures don't include any slant normalization routines.

After the reference lines have been found, the individual words are extracted using the

vertical projection pro�le. Then some morphological smoothing on the binary image is

performed, followed by the computation of the skeleton of each word by means of Tamura's

algorithm [29]. A graphical illustration is given in Fig. 2. Note that our skeletons are based

on 4-neighborhood.

The skeleton of a word can be interpreted as a graph where all pixels with exactly

two neighbors are part of an edge, and pixels with either one, three, or four neighbors

are nodes. The features used in the HMM for recognition are based on the edges of the
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Figure 2: The two words shown in Fig. 1 after skeletonization.

skeleton graph of a word. Therefore, after the skeleton of a word has been obtained, we

extract the edges from the skeleton graph.

As any HMM needs its input data in strict sequential order, the most important

requirement for our edge extraction procedure is to ensure the edges being extracted in

some canonical order. Procedures have been reported in the literature that attempt to

recover the temporal stroke sequence from o�-line cursive words [30]. However, as the

original temporal stroke sequence of the input is not essentially required for recognition,

we adopted another approach. The edge extraction procedure used in our implementation

is guided by two main principles:

procedure edge extraction

input: the skeleton graph of a word

output: the sequence EDGES = (e

1

; : : : ; e

n

) containing all edges of the skeleton graph

in canonical order /� EDGES is initially empty �/

method:

�nd initial node and put it on a list OPEN; /� OPEN is initially empty �/

while OPEN is not empty do f

remove �rst node i from OPEN and put it on a list CLOSED;

/� CLOSED is initially empty �/

retriev all edges e

1

i

; : : : ; e

n

i

incident to i and remove them from the skeleton graph;

add all nodes of degree 3 or 4 to OPEN that are incident to e

1

i

; : : : ; e

n

i

and are

neither on OPEN nor on CLOSED;

order e

1

i

; : : : ; e

n

i

(and the corresponding nodes on OPEN) and add them to EDGES g

end edge extraction

Figure 3: Algorithm for the extraction of the edge sequence from the skeleton graph.

(i) The edges of each letter of the alphabet should always be extracted in the same

order, independent of the context of the letter and of its variations in shape.

(ii) If letter x has been written before letter y (or spatially speaking, if x is to the left

of y), then all edges of x should be extracted before any of the edges of y.

A pseudo code description of our edge extraction procedure is given in Fig. 3. In

this procedure, the left-most node of the skeleton graph is usually taken as initial node.

However, there are a few exceptions to this rule in order to ensure the validity of principle

(i) under the possible variations produced by di�erent writers. Examples of possible
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---------------CCCC--------------------------------------------------------

-.............CC..C.......................................................-

-............CC...C.......................................................-

-............C....C.......................................................-

-...........CC....C.......................................................-

-...........C....CC.......................................................-

-...........C...CC........................................................-

-...........C..CC.........................................................-

-..........B3CCC..........................................................-

-..........B..............................................................-

----------BB---------------------------------------------------------------

-.........B.............EEEEEE............................................-

-........BB...........EEE....EE..........GGGGG.............1........1.....-

-....AAA3B...........EE.......E........GGG...G.............M........O.....-

-..AAA..D...........EE.......EE......GGG.....GG...........MM.......OO.....-

-1AA....D..........EE........E......GG........G...........M........O......-

-.......D.......DDD3.........E.....GG.........G..........MM........O......-

-.......DD....DDD..F.........E....GG.........GG.........MM........OO......-

-........D..DDD....F....FFFFF3...GG.........GG......LLLL3......NNN3.......-

-........DDDD......F...FF....G..GG..........G......LL...N....NNN..P.....S1-

-..................FFFFF.....GGGG........1..G.....LL....N..NNN....P...SSS.-

-........................................HHH3...LLL.....NNNN......P.SSS...-

-...........................................I..LL.................3SS.....-

--------------------------------------------I3LL------------------Q--------

-............................................J...................QQ.......-

-............................................J...................Q........-

-.........................................KKK3K...............RRR3........-

-........................................KK...K.............RRR..R........-

-.......................................KK....K.............R....R........-

-.......................................K.....K............RR....R........-

-.......................................K....KK............R....RR........-

-.......................................K...KK.............R....R.........-

-.......................................KK.KK..............RR..RR.........-

-........................................KKK................RRRR..........-

---------------------------------------------------------------------------

Figure 4: The result of extracting the edges from the second word in Fig. 2.

exceptions are letters like B or I (see Fig. 8) where the left-most node of the skeleton

graph may randomly be either the upper or lower node of degree 1 at the left end of the

word. Here, the procedure always picks the upper node regardless if it is in the left-most

or the second-left position.

The edge ordering step in the algorithm of Fig. 3 is based on the directions in which

the edges e

1

i

; : : : ; e

n

i

leave the actual node i. The order of directions is west, north, south,

east. For example, if node i is reached from west | in this case, the western edge has

already been deleted from the skeleton graph and added to EDGES |, then an edge

leaving i to the north will be included in EDGES before a southern edge, and a southern

edge will be added before an eastern edge. For determining the direction of an edge, the

�rst 50% of its pixels are examined.

The result of extracting the edges from the skeleton of the second word in Fig. 2 is

shown in Fig. 4. Numbers 1 and 3 represent nodes of the graph and letters A, B, C, : : :are

used to label the edges. The letters also indicate the order of the edges in EDGES, i. e., A

is the �rst element of EDGES, B the second one, and so on.

There are a few exceptions to the (west, north, south, east)-ordering rule. One a�ects

loops that occur, for example, in letters like `, z, or y (see Fig. 4). If such a loop is detected,
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---------------aaaa--------------------------------------------------------

-.............aa..a.......................................................-

-............aa...a.......................................................-

-............a....a.......................................................-

-...........aa....a.......................................................-

-...........a....aa.......................................................-

-...........a...aa........................................................-

-...........a..aa.........................................................-

-..........#3aaa..........................................................-

-..........#..............................................................-

----------##---------------------------------------------------------------

-.........#.............AAAAAA............................................-

-........##...........AAA....AA..........#####.............1........1.....-

-....###3#...........AA.......A........###...#.............#........#.....-

-..###..#...........AA.......AA......###.....##...........##.......##.....-

-1##....#..........AA........A......##........#...........#........#......-

-.......#.......###3.........A.....##.........#..........##........#......-

-.......##....###..A.........A....##.........##.........##........##......-

-........#..###....A....AAAAA3...##.........##......####3......###3.......-

-........####......A...AA....#..##..........#......##...#....###..#.....#1-

-..................AAAAA.....####........1..#.....##....#..###....#...###.-

-........................................###3...###.....####......#.###...-

-...........................................#..##.................3##.....-

--------------------------------------------#3##------------------#--------

-............................................#...................##.......-

-............................................#...................#........-

-.........................................bbb3b...............ccc3........-

-........................................bb...b.............ccc..c........-

-.......................................bb....b.............c....c........-

-.......................................b.....b............cc....c........-

-.......................................b....bb............c....cc........-

-.......................................b...bb.............c....c.........-

-.......................................bb.bb..............cc..cc.........-

-........................................bbb................cccc..........-

---------------------------------------------------------------------------

Figure 5: The result of loop extraction.

it will be added to EDGES not as last, but as second-last element. This exception is needed

in order to guarantee the validity of the main principle (ii). As an example, the exception

changes the order of loop C and edge D in Fig. 4. Similarly, also the order of K and L, and

of R and S are changed.

During edge extraction, we check the skeleton graph for loops. This is not only needed

for edge ordering. But it is also useful because loops carry important discriminatory

information for recognition. For example, valley-shaped edges on the base line occur in

many letters, e. g. in v, e, y, ` or a in Fig. 2. But the range of possible interpretations, i. e.

character hypotheses, can be reduced if we know whether the edge is part of a loop or not.

Therefore, we include this information in the feature vector of an edge. A distinction is

made between simple loops, which consist of just one edge, and complex loops including

several edges. The result of loop extraction from Fig. 4 is shown in Fig. 5 where lower

case and capital letters are used to label simple and complex loops, respectively, and the

symbol # denotes non-loop pixels.

Having extracted the edges and loops from the skeleton graph of a word, we transform

each edge into a feature vector of �xed length. A total of ten features f

1

; : : : ; f

10

are used

in our present implementation to describe an edge. Their meaning is described in more
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detail below.

Features f

1

; : : : ; f

4

: These features describe the spatial location of an edge. Let R

1

; R

2

;

R

3

and R

4

denote, from top to bottom, the reference lines shown in Fig. 1. As most

of the edges are between R

2

and R

3

, we de�ne a �fth reference line R

0

2

exactly in the

middle of R

2

and R

3

. Then f

1

; : : : ; f

4

are de�ned as the percentage of pixels of an

edge lying between R

1

and R

2

, R

2

and R

0

2

, R

0

2

and R

3

, and R

3

and R

4

, respectively.

Feature f

5

: This is a binary feature indicating whether an edge is incident to a node of

degree one or not.

Feature f

6

: This feature is a measure of curvature. It is de�ned as the ratio of the

Euclidean distance of the two endpoints of an edge and its length. For straight lines,

f

6

is equal to one while for simple loops it is equal to zero. We set f

6

equal to zero,

by de�nition, if an edge belongs to a complex loop. In this way, some invariance is

achieved with respect to breaking a simple loop into several pieces.

Features f

7

; : : : ; f

10

: They contain more details about curved edges and are de�ned as the

percentage of pixels lying above the top endpoint, below the bottom endpoint, left of

the left-most endpoint, or right of the right-most endpoint of an edge, respectively.

For edge E in Fig. 4, for example, these features take the following values: f

7

=

21=23; f

8

= 0; f

9

= 0; f

10

= 3=23. Similarly for loop K we have f

7

= 0; f

8

=

21=25; f

9

= 18=25; f

10

= 5=25.

It is easy to see that all features f

1

to f

10

are invariant with respect to translation and

scaling. Features f

5

and f

6

are also rotation invariant. Theoretically, the other features

are not invariant under rotation. But in practice they are fairly robust under the degree

of rotation that occurs in our experimental data. Also, the vector quantization process

that maps feature vectors to symbols eliminates smaller variations as similar vectors will

be mapped to the same symbol. This is a justi�cation why no slant correction is applied

in our approach.

3 Basic Theory and Implementation Tools for HMMs

For the purpose of self-containedness, we provide a brief introduction to the theory of

HMMs in this section. Our notation follows the standard literature to which the reader is

referred to for further details [20],[31].

Hidden Markov Models (HMM). The Hidden Markov Model is a straightforward

generalization of ordinary probability distributions to the case of randomly generated

sequences of discrete- or continuous-valued events. A discrete density HMM produces

strings O = O

1

: : :O

T

of symbols from a �nite alphabet fv

1

; : : : ; v

K

g, while the continuous

density version creates sequences of real-valued feature vectors x 2 IR

d

.

The generation of the observable outputs O

t

of the model is controlled by a doubly

stochastic process. At each time instant t = 1; : : : ; T , the model is in one out of N

possible states fs

1

; : : : ; s

N

g. The state q

t

taken by the model at time t is a random
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variable which depends only on the identity of its immediate predecessor state. According

to this assumption the state distribution is completely determined by the parameters

�

i

= p (q

1

= s

i

) and a

i;j

= p (q

t

= s

j

j q

t�1

= s

i

) ;

in other words, the vector � = (�

1

; : : : ; �

N

)

>

of initial probabilities together with the

(N �N)-matrix A = [a

i;j

] of transition probabilities form a �rst-order Markov chain.

The actual state sequence taken by the model serves as a probabilistic trigger for the

production of the output sequence. The q

t

themselves, however, remain hidden to an

observer of the random process. According to a second model assumption, the probability

distribution of an output symbol O

t

(or an output vector, respectively) depends solely on

the identity of the present state q

t

; thus, the distribution parameters

b

j;k

= b

j

(v

k

) = p (O

t

= v

k

j q

t

= s

j

)

of a discrete density HMM constitute a (N � K) probability matrix B = [b

j;k

]. Con-

sequently, the behaviour of an HMM with discrete output is entirely speci�ed by the

cardinality N of the state space, the alphabet size K, and a parameter array

� = (�;A;B)

of non-negative probabilities, obeying the (1 + 2N) normalization conditions

P

i

�

i

=

P

j

a

i;j

=

P

k

b

j;k

= 1.

Any of the state-dependent probability density functions (PDF)

b

j

(x) = p (O

t

= x j q

t

= s

j

)

of an HMM with continuous output can be reasonably well approximated by a convex

combination

b

j

(x) =

K

X

k=1

b

j;k

� g

j;k

(x) =

K

X

k=1

b

j;k

� N (x j �

j;k

;�

j;k

)

of multivariate Gaussian PDFs. The huge amount of statistical parameters found in a

continuous mixture HMM as de�ned above | the model includes estimates of a distribu-

tion mean �

j;k

2 IR

d

and a covariance matrix �

j;k

2 IR

d�d

for each of (N �K) index pairs

| can be drastically reduced if all state-dependent sets fg

j;k

j k = 1; : : : ; Kg of mixture

components are pooled into one global collection of PDFs. The resulting type of model is

termed semi-continuous HMM; its output distributions

b

j

(x) =

K

X

k=1

b

j;k

� g

k

(x) with g

k

(x) = N (x j �

k

;�

k

)

all share the same global set g = (g

1

; : : : ; g

K

) of Gaussians regardless of the state index j.

The semi-continuous model is therefore characterized by the statistics � = (�;A;B; g),

where density function g

k

is represented parametrically by its mean vector �

k

and co-

variance matrix �

k

. Evidently, our notation suggests that �, A, and B can be inter-

preted as an ordinary discrete HMM and g as the codebook of a K-class probabilistic

(soft) vector quantizer, transforming continuous feature vectors x into a likelihood array

(g

1

(x); : : : ; g

K

(x))

>

.
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Recognition and training. When applied to pattern recognition problems, HMMs

serve as generative models for the feature representations of the objects under analysis |

spoken words or written words, for instance. In order to estimate the probability p (Oj�)

that a particular model � generated a certain observation O, the expression

p (O j �) =

X

q

1

: : :

X

q

T

 

�

q

1

b

q

1

(O

1

) �

T

Y

t=2

a

q

t�1

;q

t

b

q

t

(O

t

)

!

with the summations ranging over all possible state sequences q = (q

1

; : : : ; q

T

) has to

be evaluated. Fortunately, the above expression can be reformulated as a set of N � T

recursive relations, allowing an e�cient computation of p (Oj�); this procedure is known

as the forward algorithm (see, for instance, [20]). Provided that appropriate reference

models �

l

for the competing pattern classes are available, we can decode an observed

pattern O by selecting that class label l with maximum a posteriori probability

p (�

l

j O) =

p

l

� p (O j �

l

)

P

k

p

k

� p (O j �

k

)

:

In many applications, the conditional probabilities on the right hand side of this decision

rule are replaced by p

�

(Oj�

l

) = p (O; q

�

j�

l

), where q

�

is a state sequence maximizing

p (O; qj�

l

). The optimal state sequence q

�

together with the quantity p

�

(Oj�

l

) is computed

by the well-known Viterbi algorithm which operates usually much faster than the forward

algorithm.

Maximum a posteriori classi�cation is known to be the optimal decision rule provided

that the involved models are correct with respect to the actual probability distribution

of the underlying data. In order to satisfy this requirement, the structure as well as the

parameters of the model have to be �tted to an appropriately designed training sample.

Firstly, the sizes N and K of the model and the codebook (or, equivalently, the output

alphabet) are chosen. In the subsequent training phase, the statistical parameters of the

HMM are adapted in order to match the distribution of the training data. We obtain a

reasonable estimate

^

� of the model parameters by maximizing the total likelihood function

L(�) =

M

Y

m=1

p (O

(m)

j �)

of the particular observation sequences O

(1)

; : : : ; O

(M)

encountered in the training data.

This Maximum-Likelihood estimate can be approximated by an iterative procedure |

the Baum-Welch algorithm | which converges to a parameter point

^

� that is at least

locally optimal with respect to the criterion L(�). A comprehensive treatment of Baum-

Welch training algorithms for HMMs with di�erent types of discrete, continuous, and

semi-continuous output distributions can be found in [32]. It is worth mentioning that

the vector quantization codebook itself is part of the semi-continuous model; as such it is

subject to the reestimation process, too.

The ISADORA system. The classi�cation stage of the cursive script recognizer de-

scribed in section 4 is based on the ISADORA system [33]. This tool provides highly


exible HMM-based pattern analysis and the possibility to build hierarchically structured

models from simple constituents. Following the theory of Recursive Markov Models [34],
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linear left-to-right HMM

ISADORA atomic nodes

sequential connection

ISADORA syntagmatic nodes

parallel connection

ISADORA paradigmatic nodes

feedback loop

ISADORA repetition nodes

general adjacency structure

ISADORA �nite-state nodes

Figure 6: Elementary operations for HMM construction.

a rule mechanism is employed to represent complex objects of the application domain in

an acyclic graph structure of nested Markov Models. Each node of this network de�nes

a particular HMM related to the models of its successor nodes as speci�ed by one of the

following combination mechanisms (see Fig. 6):

� Atomic nodes form the elementary units of the network and, as such, consist of

linear left-to-right HMMs, i. e., all transition probabilities a

i;j

vanish unless i = j or

i = j � 1.

� Syntagmatic nodes denote a sequential concatenation of the successor nodes' models

in order to form a larger HMM.

� Paradigmatic nodes serve to represent the choice between alternative pattern classes.

� Repetition nodes denote an arbitrary reiteration of a single successor object imple-

mented by self-looping the corresponding model.

� The most general means of hierarchical model construction is provided by the type

of Finite State Network nodes. Its model is obtained by interconnecting all successor

models according to a particular adjacency matrix.

Presently, ISADORA provides models with semi-continuous output distributions. A modi-

�ed version of the Baum-Welch training algorithm supports context-dependent modelling

as well as parameter estimation techniques like tying, Bayesian adaptation, and deleted

interpolation.
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At the decoding stage, ISADORA performs a beam-search driven Viterbi algorithm on

the analysis model, trying to �nd a best-�tting alignment between its states and the input

data. The result of this procedure is a nested hypothesis structure providing object iden-

tities along with their probabilistic scores as well as their temporal or spatial (depending

on the application) boundaries in the input data.

Besides the application to Cursive Script Recognition (see below), ISADORA has been

applied in the �elds of Automatic Speech Recognition [35, 36] and the diagnosis of sensor

data from moving vehicles [37].

4 Application to Cursive Script Recognition

word models:

HMM for \kind" HMM for \knock"

k i n d k n o c k

HMM for \n"

HMM for \k"

HMM for \d"

letter models:

Figure 7: Graphical illustration of the model building process. The dotted lines are

references from the word HMMs to the letter HMMs.
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The preprocessing and feature extraction procedures generate a sequence F = f

1

: : :f

T

of feature vectors for each word, where T is equal to the number of edges in the skeleton

graph. Each f

t

consists of ten components f

t;1

; : : : ; f

t;10

(see section 2). After F has

been generated, each feature vector f

t

has to be transformed into a set of probabilisti-

cally weighted labels by soft vector quantization. In order to create an initial quantizer

codebook, �rst the total number K of codebook symbols, or classes, has to be de�ned.

Each codebook symbol should represent one class of similar feature vectors, i. e., edges of

the skeleton graph. By manual inspection of the data set and experimentation, a suit-

able value K = 28 has been determined. Given the total number of codebook symbols,

the estimate-maximize (EM) algorithm [38] is applied to identify the Gaussian K-mixture

distribution of the training sample.

The linear model was adopted as basic topology of our HMMs. Examples of linear

models consisting of three, four and two states are included in Fig. 7 (letter models for

\d", \k" and \n"). In the experiments described in more detail in section 5, we aimed at

recognizing words from a dictionary of �xed size. In order to model a dictionary word,

we �rst de�ne a linear HMM for each letter of the alphabet. Then an HMM for each

dictionary word is built by concatenating the appropriate letter models. Notice that there

exists only one HMM per letter regardless of the number of occurrences of the letter in a

word or in the dictionary. That is, the same letter model is shared by all instances of that

letter occurring within the same word, and within all other dictionary words. A graphical

illustration of the way the word models are built from the letter models is shown in Fig.

7. By means of this two-level approach, the number of training samples available for each

letter is much larger than by de�ning a disjoint model for each individual word.

For the de�nition of the letter models it is important to observe that even when using

a reference alphabet, the shape of the letters in handwriting samples delivered by di�erent

writers is not always the same. Particularly, the skeleton graphs of di�erent instances of

the same letter do not necessarily consist of the same number of edges. Therefore, the

number of states in a letter model is not necessarily equal to the number of edges in the

skeleton graph of that letter because this number is not uniquely de�ned. When de�ning

the letter models, we set the number of states equal to the minimal number of edges

that can be expected for a letter. Taking the minimal number of edges of the skeleton

graph is an immediate consequence of using exclusively linear models. Otherwise, it could

happen that a sequence of observation symbols is rejected by the correct HMM because

the number of symbols is less than the number of states and, therefore, the HMM cannot

reach its �nal state. In Table 1 the number of states for each letter model is given.

To illustrate the letter model de�nition process in more detail, consider the skeleton

graph in Fig. 4. The minimal number of strokes for an \`" is the loop labelled with C

and the stroke labelled with D. Clearly, there are instances of an \`" where either stroke

A or B, or both of them are missing. The minimal number of strokes for an \a" is just

as represented by the instance in Fig. 4 (edges E and F). Apart from this, there exist also

instances of a' s that have a short vertical stroke attached to the upper right part of edge

E, for example. Such an instance of an \a" consists of four strokes which is certainly not

minimal. Similar arguments apply to the other letters of the alphabet.

For linear HMMs, the initial state distribution vector is always � = (1; 0; : : : ; 0). In

our application the initial probabilities of the output symbols are de�ned as uniform

distributions. The state transition probabilities a

i;i+1

and a

i;i

are set to 0.2 and 0.8,
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letter number letter number

model of states model of states

A 1 N 3

B 6 O 3

C 1 P 3

D 4 Q 3

E 2 R 4

F 5 S 3

G 3 T 3

H 4 U 2

I 2 V 4

J 3 W 6

K 4 X 4

L 4 Y 4

M 5 Z 3

letter number letter number

model of states model of states

a 2 n 2

b 2 o 2

c 1 p 3

d 3 q 3

e 2 r 3

f 4 s 1

g 3 t 3

h 3 u 3

i 2 v 2

j 3 w 3

k 4 x 3

l 2 y 3

m 3 z 3

Table 1: The number of states for each letter model.

Figure 8: The reference alphabet for our experiments.

respectively. For training, the Baum-Welch algorithm was used.

Finally, in the recognition phase we input an observation sequence F that represents an

unknown word into each HMM. Let �

l

be the HMM corresponding to the l-th word of the

dictionary, l = 1; : : : ;W . Then F is classi�ed as the dictionary word l with the maximum

a posteriori probability p(�

l

jF ); a uniform a priori distribution p

l

= 1=W of dictionary

words is assumed. As already mentioned in the preceding section, approximations of these

quantities are computed by the Viterbi algorithm.

5 Experimental Results

In contrast with other approaches, where it is tried to recognize cursive script on mail

or bank checks, we experimented with data produced by cooperative writers. That is,

we asked our writers to adhere as closely as possible to the writing style taught to �rst

grade pupils at Swiss elementary schools. The alphabet given to our writers as reference

is shown in Fig. 8. Furthermore, all writers had to use ruled paper where for each line

of text the four reference lines shown in Fig. 1 were given. (However, the reference lines

were not captured by the scanner.)

Despite these standardization attempts, the di�erences in writing style were quite

signi�cant. A total of �ve writers participated in our experiments. In Fig. 9, a complete

page written by writer 3 in the second experiment is shown.

Two experiments were carried out in order to assess the performance of the proposed
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letter a b c d e f g h i j k l m

no. of occurrences 72 18 34 31 131 13 27 35 65 6 11 59 24

letter n o p q r s t u v w x y z

no. of occurrences 60 56 30 7 60 35 54 39 12 13 5 27 5

Table 2: Letter frequencies in experiment 1.

letter A B C D E F G H I J K L M

no. of occurrences 6 6 6 6 6 6 6 6 6 6 6 6 9

letter N O P Q R S T U V W X Y Z

no. of occurrences 6 6 6 4 6 7 6 6 6 6 0 4 6

letter a b c d e f g h i j k l m

no. of occurrences 75 15 18 14 113 22 25 31 54 0 7 53 5

letter n o p q r s t u v w x y z

no. of occurrences 102 57 7 0 76 47 45 42 7 9 1 8 15

Table 3: Letter frequencies in experiment 2.

approach. In the �rst experiment, a dictionary of 150 randomly selected English words

was used and the HMM built for each word. The complete dictionary is listed in Appendix

A. We asked each writer to write each word four times. Thus we obtained four data sets,

A, B, C and D, each consisting of 750 words.

We �rst trained the HMMs with data sets A, B, C and used data set D as test set.

Then data sets A, B, D were used for training and C for testing, and so on. Eventually, a

test set of 3000 words and a training set of 9000 words were obtained thus with the test

data disjoint from the training data. For each word there were 60 training and 20 test

instances. Table 2 shows the number of occurrences of the individual letters in the dictio-

nary. As there is only one model for each letter that is shared by all dictionary words, there

were 72� 60 = 4320 training and 72� 20 = 1440 test instances of letter a, 18� 60 = 1080

training and 18 � 20 = 360 test instances of letter b, and so on. In this experiment, the

substitution error rate on the word level was 1.6%. A more detailed representation of the

results, showing the correct recognition rates for the individual writers is given in Table

4. One substitution error corresponds to a recognition rate decrease of 0.66%.

In the second experiment, we used a dictionary consisting of Swiss city and village

names. In contrast with the �rst experiment where only lower case letters occurred, both

capital and lower case letters were involved in the second experiment. Similar to the �rst

experiment, the dictionary size was 150 words. For a complete listing of all dictionary

words, see Appendix B. The letter frequencies are given in Table 3. All other conditions,

like number of writers, size of test and training sets a. s. o., were exactly the same as in

the �rst experiment. In the second experiment, the substitution error rate on the word

level was 1.73%, see Table 5.

In Tables 4 and 5, only the top candidates, i. e. the models with maximum a posteriori

probability, are taken into account. If we allow the correct word being among the top two

(three) candidates, then the substitution error rate can be further reduced to 0.7% (0.4%)

in experiment 1, and 0.97% (0.77%) in experiment 2; see Tables 6 to 9.

Our programs run on SUN Sparcstations under Unix. All preprocessing steps to-

gether, starting with binarization and ending with inputting the sequence of symbols to

the HMMs, take 0.3 s for one word on the average. (Our programs were written with

emphasis on 
exibility and transparency rather than speed, and there is ample room for
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Figure 9: Example of a complete page, written by writer 3.

making them faster.) Matching one input word against one HMM takes less than 5ms on

the average.
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writer test set A test set B test set C test set D average

1 99.33 96.67 98.67 98.00 98.17

2 97.33 96.67 95.33 97.33 96.67

3 100 99.33 100 100 99.83

4 96.67 96.00 99.33 98.00 97.50

5 100 100 100 99.33 99.83

average 98.67 97.73 98.67 98.53 98.40

Table 4: Results of experiment 1.

writer test set A test set B test set C test set D average

1 98.67 94.67 96.00 98.00 96.83

2 98.67 99.33 98.00 99.33 98.83

3 96.67 96.67 96.67 95.33 96.33

4 100 100 99.33 100 99.83

5 99.33 100 98.67 100 99.50

average 98.67 98.13 97.73 98.53 98.27

Table 5: Results of experiment 2.

writer test set A test set B test set C test set D average

1 99.33 99.33 99.33 99.33 99.33

2 98.00 98.67 97.33 100 98.50

3 100 100 100 100 100

4 98.00 98.00 100 99.33 98.83

5 100 100 100 99.33 99.83

average 99.07 99.20 99.33 99.60 99.30

Table 6: Results of experiment 1, allowing correct word among the top two candidates.
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writer test set A test set B test set C test set D average

1 99.33 100 99.33 100 99.67

2 98.67 98.67 98.00 100 98.83

3 100 100 100 100 100

4 99.33 99.33 100 99.33 99.50

5 100 100 100 100 100

average 99.47 99.60 99.47 99.87 99.60

Table 7: Results of experiment 1, allowing correct word among the top three candidates.

writer test set A test set B test set C test set D average

1 99.33 96.00 98.00 98.00 97.83

2 99.33 99.33 98.67 100 99.33

3 97.33 98.00 98.00 99.33 98.17

4 100 100 100 100 100

5 100 100 99.33 100 99.83

average 99.20 98.67 98.80 99.47 99.03

Table 8: Results of experiment 2, allowing correct word among the top two candidates.

writer test set A test set B test set C test set D average

1 99.33 96.67 98.00 98.00 98.00

2 99.33 99.33 99.33 100 99.50

3 99.33 98.00 98.67 99.33 98.83

4 100 100 100 100 100

5 100 100 99.33 100 99.83

average 99.60 98.80 99.07 99.47 99.23

Table 9: Results of experiment 2, allowing correct word among the top three candidates.

6 Conclusions

An approach to o�-line recogniton of cursive script based on HMMs was proposed in this

paper. There are signi�cant di�erences in the size of the vocabulary, quality of the data,

and task de�nition, in general, between the handwriting recognition experiments reported

in the literature. Therefore, it is perhaps not meaningful to compare the recognition

performance of our approach directly to other methods, like those described in [15]{[19]

and [23]{[26]. Nevertheless, a correct recognition rate of over 98% can be considered quite

satisfactory in the context of any complex OCR problem, even if the data is of \good"

qualitiy. One of the conclusions that can be drawn from our experiments is that under the

scenario of cooperative writers and a limited dictionary, it is possible to reach a recognition

rate in o�-line cursive handwriting close to that achieved in isolated handwritten character

recognition [13],[14].

So far, we have not yet fully exhausted the potential of HMM methodology as imple-

mented in the ISADORA package. In particular, our letter models are presently insensitive

to their surrounding context, and no attempts have been made to build individual models
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for signi�cantly di�erent realizations of the same letter.

In the future, we plan to use larger vocabularies and extend our experimental data set

by including more writers. The fact that the substitution error rate didn't signi�cantly

increase when an alphabet consisting of capital and lower case letters was used instead of

lower case letters only is an indication that the limits of the proposed method have not

yet been reached.
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Appendix A: Complete Dictionary Used in Experiment 1

able decide gesture joke moderate pretend telephone wear

accomplish deep ghost journey morning quantum this which

afternoon disappoint give judge name quarrel thread wide

agree discover grill ketchup narrow queen tough window

although dream harbour kettle naughty question transfer woman

avenue earth help key neglect quick typical xylonite

balance easy high kidnap night quiver umbrella xylophone

bene�cial edit highway kind nobody ready uncertain yacht

blood empty honey knock obsolete recommend unique yawn

breath evening hurry lazy obtain remember unlock yes

broom expensive identical legal o�ce return upward yesterday

busy familiar ignore lesson omit riddle usually yield

car fetch illegible listen opposite rise vague young

casual �ction illuminate lunch oscillate sample vegetables zebra

celebrate follow incomplete luxury paper school very zero

chance free index maintain parallel script visible zipper

cheap furniture jacket man persuade shu�e vision zoom

cigarette garage jealous merchandise photograph silent vote

day general jewel mighty please splendid water

Appendix B: Complete Dictionary Used in Experiment 2

Aarau Davos Glarus Jona Montreux Payerne Staefa Vitznau

Airolo Delsberg Gossau Juckern Morges Pfae�kon Stans Wassen

Altdorf Dielsdorf Grenchen Juf Moutier Port Teufen Wengen

Appenzell Dietikon Gstaad Kandersteg Murten Pratteln Thalwil Wetzikon

Arbon Dornach Henniez Klosters Muttenz Quarten Thorberg Wil

Arosa E�retikon Herisau Kloten Naefels Quartino Thun Winterthur

Baden Eglisau Hochdorf Koblenz Naters Quinten Trub Wohlen

Basel Einsiedeln Horgen Kreuzlingen Nebikon Quinto Twann Yens

Bellinzona Elm Horw Kriens Neuenburg Rapperswil Unterseen Yverdon

Bern Engelberg Huttwil Langenthal Nidau Raron Urdorf Yvonand

Biel Estavayer Ibach Lausanne Nyon Reinach Urnaesch Yvorne

Burgdorf Fiesch Ilanz Liestal Oberhofen Riehen Uster Zermatt

Carouge Flawil Ins Locarno Oey Rorschach Uznach Zernez

Cham Flims Interlaken Lugano Oftringen Rueti Uzwil Zo�ngen

Chiasso Frauenfeld Ipsach Luzern Olivone Sarnen Valbella Zuerich

Chillon Fribourg Isone Martigny Olten Scha�hausen Vellerat Zug

Chur Frutigen Jassbach Meilen Orbe Schwyz Vevey Zurzach

Colombier Gandria Jaun Meiringen Parpan Sion Villars

Dallenwil Genf Jegenstorf Monthey Passugg Solothurn Visp
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