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Abstract

This technical report summarizes the results of the research and development project

'Conformance Testing { A Tool for the Generation of Test Cases'.

1

Within this project

we developed a method for the automatic generation of test cases based on formal speci�-

cations and formally de�ned test purposes. The method is called SaMsTaG. It is imple-

mented in the SaMsTaG tool. Most of the work has already been published in conference

proceedings [13, 30], technical reports [12, 14, 15] and project reports [11, 5, 6, 7, 8, 9, 10].

For detailed information these publications should be consulted.

The report starts with a short introduction (Section 1). Then the standardized confor-

mance testing procedure [22], in the following abbreviated by CTMF/FMCT, is compared

with other test case generation methods (Section 2). Afterwards, the SaMsTaG method

(Sections 4, 5) and the SaMsTaG tool are introduced (Section 6). In the last section the

formal aspects of CTMF/FMCT, other test case generation methods and the SaMsTaG

method are summarized (Section 7). This summary provides a possibility for a complete

formal explanation of the entire conformance testing procedure.

CR Categories and Subject Descriptors: C.2.0 [Computer-Communication Net-

works]: General; C.2.2 [Computer-Communication Networks]: Network Protocols;

D.2.5 [Software Engineering:] Testing and Debugging

General Terms: Validation, Test Case Generation, Test Case Speci�cation
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1 Introduction

For approximately 10 years the ISO/IEC and the ITU-TS
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have been working on meth-

ods for protocol conformance testing. A result of these investigations is the interna-

tional ISO/IEC standard 9646
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'OSI Conformance Testing Methodology and Framework'

(CTMF) [22]. CTMF consists of seven parts. It includes general concepts for confor-

mance testing, several test methods, the 'Tree and Tabular Combined Notation' (TTCN)

[24] as description language for test cases, and information concerning test realization,

requirements on test laboratories, protocol pro�le test speci�cation, and implementation

conformance statements. CTMF also seems to be a good basis for industrial protocol test-

ing. The growing availability of commercial tools which support and automate several

parts of standardized conformance testing procedure emphasizes the broad acceptance

and increasing dissemination of CTMF.

In parallel with the development of CTMF, ISO/IEC and ITU-TS developed the

formal description techniques SDL, Estelle, LOTOS [16] and MSC [26]. The application

of these languages in protocol standards should support implementation, validation and

conformance testing of communication protocols. For this reason the joint project 'Formal

Methods in Conformance Testing' (FMCT) [18, 23] of ISO/IEC and ITU-TS formalizes

CTMF, i.e. adapts and extends CTMF to meet the speci�c needs of conformance testing

for formally speci�ed protocols.

This chapter also deals with the conformance testing of formally described protocols.

Therefore CTMF and FMCT can not be treated independently from each other. We refer

to the work of both, i.e. to [22] and [23], by means of the abbreviation CTMF/FMCT.

The use of formal methods in protocol speci�cation also resulted in scienti�c research

in the area of conformance testing. A result of this work was the development of several

methods for the automatic generation of test cases. In the following we refer to these

methods with the term scienti�c methods. A discussion of such methods for example can

be found in [19] or [27].

All scienti�c methods try to prove a relation, the so-called conformance relation, be-

tween a speci�cation and an implementation by means of a test. The test case generation

is determined by the speci�cation and the used conformance relation. The scienti�c meth-

ods have to deal with three main problems. The �rst problem concerns the conformance

relation. Most of the used conformance relations can be used only for protocol speci�-

cations which can be described by �nite automata. In practice, this restriction is hardly

ever met. The second problem concerns the complexity of real protocols. Even if the

conformance relation can be checked, often the number of necessary tests is so large that

they are not manageable within an industrial environment. The third problem concerns

the relation to CTMF/FMCT. Most concepts and procedures of the scienti�c methods

can not be related directly to the terms and procedures de�ned in CTMF/FMCT.

However, there exists a possibility to bring CTMF/FMCT and the scienti�c methods

closer together. For this, the results of the research project 'Conformance Testing - A Tool

for the Generation of Test Cases' may play an important role. The project was closely
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In March 1993 the CCITT became the 'Telecommunications Standards Sector of the International

Telecommunication Union' (ITU-TS).
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ITU-TS issues CTMF as recommendation X.290.
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aligned with CTMF/FMCT. A main goal of the project was to formalize an important

step of the standardized procedure for conformance testing and to automate it by means

of a prototype tool. The selected step concerns the generation of abstract test cases based

on a formal protocol speci�cation and a set of test purposes. Since in CTMF/FMCT the

term test purpose is not de�ned formally, we formalized it and developed a method for

the automatic generation of test cases. The method is called SaMsTaG (Sdl And Msc

baSed Test cAse Generation) method and is implemented in the SaMsTaG tool.

2 CTMF/FMCT and scienti�c methods

This section starts with a description of the conformance testing procedure according to

CTMF/FMCT. Then, the scienti�c methods are explained and afterwards, the similarities

and di�erences of both procedures are summarized.

2.1 Conformance testing according to CTMF/FMCT

Figure 1 presents the CTMF/FMCT conformance testing procedure to derive a confor-

mance statement by means of a test which is based on a protocol speci�cation and a

protocol implementation.

4

The rectangles denote actions and the ellipses describe the in-

puts and outputs of the actions. Dashed rectangles and ellipses represent actions, inputs,

and outputs which are described informally in CTMF/FMCT. Letters and numbers serve

as references for the following description.

The goal of conformance testing is to prove that a protocol implementation (a) has

the behavior which is described in a protocol speci�cation (b). The implementation is not

veri�ed directly against the speci�cation, but tested with a set of test cases, a so-called

test suite.

For deriving a test suite from a protocol speci�cation a set of test purposes (c) has

to be de�ned. A test purpose is an informal description of a behavior or a property

which shall proven by the conformance test. Based on the test purposes and the protocol

speci�cation an abstract test suite is developed. An abstract test suite consists of abstract

test cases. In CTMF/FMCT the de�nition of the test purposes (1), the test purposes

itself (c) and the speci�cation of the abstract test suite (2) are described only informally.

In practice the actions (1) and (2) are performed manually by experts.

An abstract test case describes the required exchange of protocol data units (PDUs)

and service primitives (SPs) independent from the protocol implementation and test re-

alization. In order to transform an abstract test suite (d) into a executable test suite (e),

all PDUs and SPs have to be converted into bit combinations which can be interpreted

by the test equipment, i.e. test processes or test devices.

During the conformance test (4) the implementation is stimulated by inputs and the

resulting outputs are observed. The inputs and outputs are described within the individual

4

CTMF/FMCT de�nes a very comprehensive and complex procedure. Therefore Figure 1 cannot

describe all aspects of the entire conformance testing procedure. E.g. the inuences of PICS and PIXIT

are not considered.
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Figure 1: The conformance testing procedure according to CTMF/FMCT

test cases. According to the shown behavior one of three possible test verdicts is assigned

to each test case. The whole test campaign is recorded in a test log (f).

The evaluation of the test (5) and the following conformance statement are described

only informally in CTMF/FMCT. One reason for this is that, besides the test log, a

general conformance statement also should consider further technical and non technical

aspects, e.g. the reputation of the manufacturer.

Only the actions (3) and (4) in Figure 1 can be automated. Currently, the actions

(1), (2) and (5) are described informally. Therefore, they can not be automated. The

input for the de�nition of the test purposes (1) is a protocol speci�cation. We assume

that it is written in a standardized formal description technique, i.e. LOTOS, Estelle, or

SDL. Although the behavior of the protocol is unambiguously described by the protocol

speci�cation, action (1) can not be automated, because the central term test purpose

and its relation to the protocol speci�cation still is an open question. Since the set of
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Figure 2: The general procedure of test case generation with scienti�c methods

test purposes is the prerequisite for the speci�cation of the abstract test suite (2), this

action also can not be automated. For the manual speci�cation of the abstract test

cases the standardized test case description language TTCN [24] can be used. Action (3)

can be performed automatically by means of commercial TTCN editors, compilers and

interpreters (e.g. [33]). Also the technical equipment for the automatic execution of the

conformance tests is commercially available.

2.2 Test case generation with scienti�c methods

Methods for test case generation which are developed in a scienti�c environment, in the

following called scienti�c methods, generate test cases from a formal speci�cation in order

to prove a conformance relation between speci�cation and implementation.

In the following we explain the general procedure of scienti�c methods by means of two

examples and Figure 2. Example A refers to methods which are discussed by Holzmann

in [19]. They can be used to generate test cases for �nite automata. In example B we

discuss a method which can be applied to generate test cases for LOTOS speci�cations.

It is described by Brinksma in [3]. The letters and numbers in the following text serve as

references to the rectangles and ellipses in Figure 2.

In general, all scienti�c methods start with the de�nition of a conformance relation

(h). This relation states something about the relation between the traces of the protocol

speci�cation and the protocol implementation. The validity of the relation should be

veri�ed by the conformance test.

Unfortunately, there exist conformance relations which can not be proven for arbitrary
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speci�cations and implementations. For example, within �nite time a behavioral equiva-

lence can only be checked for speci�cations and implementation which can be described

by �nite and deterministic automata. This means that the conformance relation restricts

the set of testable speci�cations and implementations.

For conformance testing the protocol speci�cation (b) is given and it can be checked

directly whether the speci�cation is testable for the chosen conformance relation (h). In

general, the implementation is given as black box, i.e. conformance testing is black box

testing and it it can not be checked if the implementation is testable or not. Therefore,

one has to make assumptions about the implementation (i). Thus, the validity of the

conformance statement (g) depends on the validity of the assumptions.

Approach A. The scienti�c methods which are discussed by Holzmann attempt to

prove a behavioral equivalence between speci�cation and implementation. It is as-

sumed that the time available for testing is �nite. To prove behavioral equivalence

speci�cation and implementation have to behave like �nite, strongly connected and

deterministic automata. In conformance testing the implementation is given as

black box. Therefore it can not be proven that the implementation behaves like

the required automaton. We only can make assumptions about the behavior of the

implementation (cf. Figure 2 (i)).

Approach B. Brinksma has worked on testing behavioral equivalence in the realm

of labeled transition systems, i.e. in�nite automata.

5

His theory can handle labeled

transition systems, because he does not assume that the time for testing is �nite.

Based on the conformance relation (h) and the assumptions (i) a coverage criterion (j)

is determined. This criterion de�nes how the speci�cation should be covered by the test

cases. For example, a coverage criterion may require that all state transitions have to be

performed for at least once. Based on the coverage criterion and the protocol speci�cation

the test cases (d) are generated. The scienti�c methods have no notion about the term

test purpose which is a central concept of CTMF/FMCT (cf. (c) in Figure 1).

Approach A. To test the behavioral equivalence of two �nite automata all state

transitions have to be checked. But, it is not necessary to develop an individual test

case for each state transition. By means of a so-called transition tour only one big

test case is generated. This test case checks all state transitions at once.

Approach B. The approach of Brinksma also tests the entire behavior of the speci�-

cation, i.e. all state transitions. But, instead of producing test cases, he generates a

so-called canonical tester. A canonical tester is a labeled transition system which de-

scribes the environment of the speci�cation. It can be considered to be the inversion

of the speci�cation.

The conformance test itself is not treated by the scienti�cmethods. But, it is assumed that

there exist a test log (f) which, together with the assumptions (i) and the conformance

relation (h), can be used for the evaluation of the whole test (5). The result of the

evaluation is a conformance statement (g) which states whether the conformance relation

is proven or not.

5

Brinksma uses LOTOS [21] as speci�cation language.
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Approach A. The conformance relation is proven if the test case which is generated by

the transition tour has been executed successfully. As stated earlier, the validity of

this statement can only be guaranteed if the assumptions about the implementation

are valid.

Approach B. For test execution the canonical tester is connected with the implemen-

tation which should be tested. The result is a closed system, i.e. all communication

is system internal. If the system does not terminate, nothing can be said about

the validity of the conformance relation. If the system ends with an allowed trace,

i.e. a trace where canonical tester and speci�cation end, the test is successful. If

all allowed traces can be tested, the validity of the conformance relation is proven.

The conformance relation does not hold when the system presents a trace that is

not allowed.

2.3 A comparative summary

By starting with the test case development and ending with the conformance statement

CTMF/FMCT covers the whole conformance testing procedure. But, the individual steps

are de�ned with a di�erent degree of formality. As a consequence, they also di�er in the

possibility to be automated.

The whole test execution (cf. Figure 1) which starts with the abstract test suite (d)

and ends up with the test log (f) has already been automated. Therefore, it is su�-

ciently formally de�ned. In contrast to this, the terms test purpose (c), conformance

statement (g) and the actions test purpose de�nition (1), test case speci�cation (2) and

test evaluation (5) are described only informally. This is problematic for several reasons.

The development of the abstract test suite is based on two informal steps which,

in most cases, are performed manually by protocol experts. The goal of the expert is

to produce a test suite which checks all functions of the protocol. How close this goal

is reached heavily depends on the de�nition of the test purposes (1). Without formal

criteria it is di�cult to judge the set of test purposes.

For the test case speci�cation (2) the protocol expert interprets the test purposes and

transforms his interpretation into corresponding test cases. The test cases are written in a

test case description language. The interpretation of test purposes and transformation into

test cases are non trivial tasks, and therefore a test suite may include misinterpretations

and errors. These problems may inuence the evaluation of the whole conformance test

(5). The concluding conformance statement may become very vague without any criterion

which judges the quality of the test suite.

The scienti�c methods in [3] and [19] (cf. Figure 2) formalize the test case generation

(2) and the test evaluation (5). This is done by means of a conformance relation which

de�nes the goal of the test. The conformance relation determines a coverage criterion

(j). Based on the coverage criterion and the protocol speci�cation a test suite can be

generated automatically. The test is evaluated (5) by checking whether all generated test

cases have been performed successfully. In this case the conformance relation is proven,

i.e. the goal of the test is reached.

The main problems of the scienti�c methods are the conformance relation and the

complexity of real systems. There exist conformance relations which are not provable for
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arbitrary speci�cations and implementations. Therefore, a conformance relation restricts

the set of testable speci�cations and implementations. Most conformance relations can not

be proven for real protocols. Even if a conformance relation is theoretically testable, the

number of necessary test runs often is so big that in practice they can not be performed.

Within the scienti�cmethods the conformance relation and the corresponding coverage

criterion determine the quality of the test suite. But, because of the mentioned problems

the scienti�c methods can rarely be used for conformance testing. As a consequence,

other criteria for the judgement of test suites and test logs have to be found. In industrial

practice the test purposes play an important role.

A manufacturer has to prove that his product ful�lls the requirements of a customer.

For this, it might be necessary to give test cases and test logs to the customer. He can

make a critical test review and then judge whether the requirements are ful�lled or not.

But, such a test review only is possible if the purpose of each test case is known. On

the other side, the test purposes may also be helpful for the manufacturer. Test purposes

may help to locate implementation errors, if a test case fails.

3 Fundamental notions

For the explanation of the SaMsTaG method, the test case generation with the SaM-

sTaG method and the SaMsTaG tool we need to introduce some fundamental notions.

Most of them are taken from the CTMF/FMCT work [22] and from the ITU-TS recom-

mendations Z.100 [25] and Z.120 [26]. Only the terms trace and observable are new. We

need them to simplify the description in the following sections.

3.1 SDL

The 'Speci�cation and Description Language' (SDL) is a standardized speci�cation lan-

guage for the behavior description of distributed systems. An SDL speci�cation describes

a set of extended �nite state machines, so-called processes, which communicate asyn-

chronously by means of messages. The entire behavior of an SDL speci�cation can be

described formally by a labeled transition system, i.e. by an in�nite automaton. The

states of the labeled transition system are de�ned by the global system states of the SDL

speci�cation. Such a global system state comprises the local states of the SDL processes,

the variable values, and the not processed messages. The state transitions of the labeled

transition system are de�ned by the state transitions of the SDL processes. In the fol-

lowing we do not need speci�c SDL features. We assume that the behavior of an SDL

speci�cation is given by a labeled transition system.

3.2 MSC

Also the 'Message Sequence Chart' (MSC) language is a standardized language. MSC is

a graphical trace language which admits a particularly intuitive representation of system
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runs in distributed systems. Formally, an MSC

6

de�nes a set of partially ordered message

send and message receive actions. The behavior which is represented by an MSC can be

described by a �nite automaton. The automaton accepts all sequences of send and receive

actions which are consistent with the partial order in the MSC. More detailed information

can be found in [31].

3.3 IUT, SUT, tester and test architecture

IUT is an abbreviation for 'Implementation Under Test'. It denotes a protocol implemen-

tation which should be tested.

In CTMF/FMCT it is assumed that the interface of an IUT to the next lower layer

is not freely accessible. Therefore, this interface has to be controlled and observed via

the service of the next lower layer, i.e. via other implementations. CTMF/FMCT uses

the term system under test (SUT) to denote an IUT and the implementations which are

necessary to interface the IUT.
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During the conformance test the SUT is driven and controlled by testers. A tester

might be a software process, a test device, or a person which stimulates and observes the

SUT manually.

A test architecture consists of the SUT and the test environment, i.e. all testers.

CTMF/FMCT describes di�erent test architectures for conformance tests. They mainly

di�er in the possibilities to access and control the IUT.

An example may clarify the di�erent notions. Figure 3 presents a test architecture

for the Inres protocol [17]. The IUT is the Initiator. The lower interface of the Initiator

has to be tested via the Medium service. Therefore, the SUT consists of the Initiator and

Medium service. The testers are the upper tester UT and the lower LT.

For the SaMsTaG tool it is required that a whole test architecture is described by

an SDL speci�cation. This o�ers the exibility to generate test cases for di�erent test

architectures.

3.4 Trace and Observable

The behavior description of a speci�cation (e.g. given in form of an SDL speci�cation or an

MSC) may include observable, and not observable (system internal) actions. Therefore,

we distinguish between a trace and the observable of a trace. A trace is a sequence of

arbitrary actions of a speci�cation. Related to SDL, a trace may include arbitrary SDL

actions, e.g. input, output, task, decision, set, or reset. In the following we use MSCs for

the clear description of SDL traces. But, it should be noted that, because of its partial

order representation, an MSC may describe a whole set of traces and observables.

The observable of a trace is the sequence of observable actions of a trace. An observable

relevant for conformance testing may for example only include the actions of the testers.

Figure 5 presents a trace of an SDL speci�cation in form of an MSC and a corresponding

6

In general, the term MSC is used for a diagram written in the MSC language and the language itself.

Where necessary, we distinguish between both by using the terms MSC language and MSC diagram.

7

For the test it is assumed that the implementations which are necessary to interface the IUT work

correctly, i.e they do not inuence the course of the test.
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observable. The observable only includes the actions of LT and UT. It should be noted

that there exists no unique relation between an observable and a trace. Di�erent traces

may have the same observable.

3.5 Test case

A test case consists of preamble, test body and postamble. Each part describes certain

actions of the test processes (or devices). The preamble should drive the IUT from its

initial state

8

into a state from which the test body can be performed. The test body

de�nes the actions which should be executed in order to reach the test purpose, and the

postamble drives the IUT back into its initial state. Furthermore, a complete test case

should consider unforeseen responses of the IUT.

We de�ne a test case as a set of observables. The observables describe action sequences

of the testers. Each observable leads to a unique test verdict.

3.6 Test verdicts

The possible test verdicts are pass, inconclusive and fail. Pass is given if the test purpose

is reached and if the test run ends in the initial state of the tested protocol.

9

A fail is

assigned if a response of the IUT is not allowed by the speci�cation. Inconclusive is given

if neither a pass nor a fail can be assigned

3.7 TTCN

The 'Tree and Tabular Combined Notation' (TTCN) is a standardized test case description

language [24] which should be used for the speci�cation of abstract test suites. The Figures

8 and 9 present examples for TTCN descriptions.

In a TTCN table the observables of a test case are described by means of a tree notation

(cf. column 'Behaviour Description' in Figure 8). The tree structure is determined by

the order and the indentation of the speci�ed actions. In general, the same indentation

denotes a branching, i.e. alternative actions (e.g. lines Nr. 8 and Nr. 13), and the next

larger indentation describes a subsequent action (e.g. lines Nr. 1 and Nr. 2).

Actions are characterized by the involved instance (i.e. LT and UT), by its kind (i.e. ' !'

denotes a send action, '?' describes a receive action) and by the message which has to

be send or received. An example may clarify the notation. The statement 'UT!ICONreq'

describes the sending of ICONreq to the IUT via the UT. TTCN allows to specify actions

with arbitrary messages by using the OTHERWISE statement (e.g. UT?OTHERWISE in

Figure 9).

Test verdicts are de�ned within a verdict column of a TTCN table. The verdict column

of Figure 8 only includes pass and inconclusive verdicts. In this example fail behavior is

speci�ed by a default behavior description which is shown in Figure 9. Such defaults have

8

CTMF/FMCT requires a stable testing state as the start and end state of the test case. This state

might be an initial or and idle state.

9

CTMF/FMCT allows several alternatives for the assignment of a pass verdict. Another possibility is

to give a pass if the test purpose is reached, although the test run does not lead back to the initial state.
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to be referenced in the test case header (cf. Default in Figure 8). TTCN o�ers much more

facilities like Constraints, Labels, or Timer which are not relevant for the understanding

of this chapter. A tutorial on TTCN can be found in [28].

4 The theory of the SAMSTAG method

In the previous sections it is shown why the scienti�c methods in [3] and [19] only

partially can explain the standardized CTMF/FMCT conformance testing procedure

[22, 23]. Especially, scienti�c methods have no notion of test purposes which are cen-

tral for CTMF/FMCT. Contrary to the scienti�c methods, during the development of the

SaMsTaG method we were guided by the CTMF/FMCT work. As a consequence, we

formalized the term test purpose.

The SaMsTaG method is developed within the research and development project

`Conformance Testing a Tool for the Generation of Test Cases' which is funded by the

Swiss PTT. The goal of this project is the development of a method and a tool which

allows to generate TTCN test cases [24] based on protocol speci�cations written in SDL

[1, 25] and Message Sequence Charts (MSCs) [4, 26]. It is assumed that the allowed

behavior of the protocol which should be tested is de�ned by an SDL speci�cation and

that the purpose of a test case is given by an MSC. The SaMsTaG method can be

related to the general CTMF/FMCT procedure of conformance testing (cf. Section 2.1).

In Figure 1 the test case speci�cation, i.e. Action (2), is formalized.

SaMsTaG is an abbreviation of 'Sdl And Msc baSed Test cAse Generation'. The

abbreviation reects the original project goal. But, we generalized the method in such a

way, that it also can be used for protocols and test purposes which are not given by SDL

speci�cations and MSCs.

The SaMsTaG method formalizes test purposes and de�nes the relation between test

purposes, protocol speci�cations and test cases. Furthermore, it includes the algorithms

for the test case generation. In this section we explain the meaning of test purposes and

describe the relation. The algorithms are described in the next section.

4.1 A property oriented view on testing

Speci�cations and implementations can be looked at as generators for traces. They de�ne

�nite or even in�nite sets of traces and observables. We de�ne a set of traces to be a

property. An implementation has the property of a speci�cation if its set of traces is a

subset of the trace set of the speci�cation.

There exist several classes of properties. Manna and Pnueli [29] distinguish between

guarantee properties, safety properties and four higher classes of properties. Informally

said, a guarantee property states that in each of its traces something good happens.

10

In

contrast to this, a safety property states that in each of its traces never something bad

happens. The higher properties state that in each trace always something good happens,

or that from a certain point of time something good continuously happens.

10

Therefore a guarantee property also can be interpreted as a reachability criterion.
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The objective of testing means to compare the traces of an implementation and a

speci�cation. By this we try to �nd out something about the relation of the two sets of

traces. In principle, we make statements about the properties of the speci�cation which

are shared or are not shared with the implementation. We call the classes of properties

for which we can make these statements testable properties.

In [32] we only identi�ed guarantee and safety properties to be testable properties.

Informally said, a safety property is testable because during the test an implementation

is able to show something bad. In this case it is proven that the implementation does

not have the safety property. A guarantee property is testable because during the test

an implementation is able to show the good thing. In this case the guarantee property is

validated. Higher properties can neither be validated nor be violated. A �nite test can

not check whether something good happens arbitrarily often.

4.2 Safety and guarantee properties in conformance testing

Safety and guarantee properties can also be found in the conformance testing procedure

according to CTMF/FMCT. The allowed system behavior is de�ned by a speci�cation.

Therefore the speci�cation can be interpreted as a safety property.

11

In contrast to this

a test purpose de�nes something which during the test should be observed. Thus, a test

purpose can be interpreted as a guarantee property.

A test case is determined by a safety property, i.e. a system speci�cation, and a

guarantee property, i.e. a test purpose. The test verdicts pass, fail , and inconclusive

follow directly from the combination of statements which during the test can be made

about the two properties.

� pass is assigned to an observable which proves uniquely the guarantee property and

which does not violate the safety property.

� inconclusive is assigned to an observable which does not prove the guarantee prop-

erty, but also does not violate the safety property.

� fail is assigned to an observable which violates the safety property, regardless

whether the guarantee property is proven or not.

12

4.3 The representation of safety and guarantee properties

For the automatic generation of test cases a formal representation of safety and guarantee

properties is needed. Possible formalisms for example are Petri nets, automata models, or

temporal logic formulas. For the SaMsTaG method we choose an automaton model.

13

11

In general, a speci�cation also may describe other properties. If temporal logic formulas are used as

speci�cation language, it is for example possible to specify liveness properties. For conformance testing

we are only interested in the fact that a speci�cation can be interpreted as guarantee property.

12

The fail cases include the situation where the guarantee property is proven and the safety property

is violated, although the situation should never appear. It makes no sense to design a test purpose which

is not allowed by the speci�cation.

13

A short discussion about the advantages and disadvantages of the di�erent models can be found in

[12].
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UT

Initiator

LT

Medium service

Figure 3: Test architecture for the Initiator entity of the Inres protocol

The SaMsTaG method assumes that a safety property is given by a labeled transition

system, i.e. by an in�nite automaton. The labeled transition system accepts all traces

which do not violate the safety property. This approach is general enough to handle safety

properties which are speci�ed with a standardized formal description technique, i.e. LO-

TOS, Estelle, or SDL [16]. A guarantee property is represented by a �nite automaton.

The automaton accepts all traces which validate the property. Examples for formalisms

which can be used to specify guarantee properties are the MSC language and temporal

logic formulas [34].

5 Test case generation by SAMSTAG

In general, the automatic generation of test cases is based on the simulation of a test

architecture. The simulation is driven by the test purpose and the test case de�nition

(cf. Section 3.5). The observables which build the basis for the test case description are

gained by recording the actions of the testers. In this section we describe the test case

generation with the SaMsTaG method by means of a small example. The example is

based on the Inres protocol [17].

Figure 3 presents a test architecture. We assume that it is given in form of an SDL

speci�cation. The Initiator entity of the Inres protocol should be tested. The test purpose

is the MSC in Figure 4. It describes a special situation of the connection establishment

phase.

The Initiator receives a connection request ICONreq from the upper tester UT and

then sends a CR to a remote entity which in our case is simulated by the lower tester

LT.

14

Afterwards, it waits for a connection con�rmation CC. If after a certain time limit

no CC is received, the Initiator is able to retransmit the CR for three times. In our case

the lower tester LT answers after the observation of the third CR. The Initiator indicates

the reception of the CC by sending an ICONind to the upper tester UT.

A test case consists of a �nite set of observables. One of three test verdicts is as-

signed to each observable. Therefore we distinguish between pass, fail and inconclusive

observables. The algorithms for the test case generation are based on the calculation of

14

The lower interface of the Initiator entity has to be controlled via the Medium service. The protocol

data units CR, CC, DT, or DRmust be sent and received as parameters of the service primitivesMDATreq

and MDATind. The Medium service transmits the protocol data units transparently and has no inuence

on the behavior of the Initiator. Therefore in the following we abstract from the service primitives

MDATreq and MDATind.
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ICONreq
MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATind(CR)

MDATind(CR)

MDATreq(CC)
MDATind(CC)ICONconf

Medium LTUT Initiator

msc  test_purpose

Figure 4: Connection establishment after the reception of the CR

these observables. The observables are generated in four steps which are reected in the

architecture of the SaMsTaG tool (cf. Figure 11).

1. In a �rst step so-called possible pass observables are calculated. A possible pass

observable is the observable of a trace for which the following two conditions hold:

(a) The trace starts and ends in the initial state of the SDL system.

(b) The trace includes the signal exchange which is speci�ed in the MSC.

The calculation of a possible pass observable starts with the search of a preamble

which drives the SDL system into a state from which the signal exchange of the

MSC can be observed. The preamble of our example is empty (cf. Figure 4). The

MSC starts in the initial state. After the observation of the test purpose, i.e. the

signal exchange of the MSC, the tested system has to be driven back into its initial

state. A possible postamble is a normal disconnection (c.f. Figure 5). The lower

tester LT initiates the disconnection by sending a disconnection request DR. On

receipt of the CR the Initiator indicates the disconnection by sending an IDISind

to the upper tester UT. The observable of the described trace is a possible pass

observable.

In general, no unique relation exists between a trace and an observable. Di�erent

traces may have the same observable. The observable in Figure 6 (b) is identical

with the observable in Figure 5 (b) with the except of the �nal event MDATind(CR).

The SDL semantics allow no assumptions about the time which we have to wait

for a possible MDATind(CR) after the reception of the IDISind. Therefore the

observation of the IDISind does not guarantee the carrying out of the test purpose.

If after the reception of the IDISind a fourth MDATind(CR) is observed, the test

verdict inconclusive has to be assigned (cf. Figure 6).

2. In a second step the uniqueness of the obtained possible pass observables is proven,

i.e. for each possible pass observable it is checked whether all traces which have the

possible pass observable as observable ful�ll the conditions (a) and (b) on page 13.

In this case we call an observable unique, or unique pass observable. In general, there

13



ICONreq
MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATind(CR)

MDATind(CR)

MDATreq(CC)
MDATind(CC)ICONconf

Medium LTUT Initiator

msc  possible_postamble

MDATreq(DR)
MDATind(DR)IDISind

(a) MSC

UT!ICONreq

LT?MDATind(CR)

LT?MDATind(CR)

LT?MDATind(CR)

LT!MDATreq(CC)

UT?ICONconf

LT!MDATreq(DR)

UT?IDISind

(b) Possible pass observable

Figure 5: MSC of Figure 4 with possible postamble and a corresponding observable

ICONreq
MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATind(CR)

MDATind(CR)

MDATreq(CC)MDATind(CC)
ICONconf

Medium LTUT Initiator

msc  undesired_system_run

MDATreq(DR)MDATind(DR)
IDISind

MDATreq(CR) MDATind(CR)

(a) MSC

UT!ICONreq

LT?MDATind(CR)

LT?MDATind(CR)

LT?MDATind(CR)

LT!MDATreq(CC)

UT?ICONconf

LT!MDATreq(DR)

UT?IDISind

LT?MDATind(CR) INCONCLUSIVE

(b) An observable of (a)

Figure 6: Undesired system run

may exist several unique pass observables for one test purpose. For the test case we

choose a subset of the shortest unique pass observables as pass observables.

15

For our example Figure 7 (a) presents the trace which has a unique pass observable.

Instead of a normal disconnection the upper tester UT initiates a data transfer by

sending a data request IDATreq. After receiving the IDATreq the Initiator transmits

15

We like to state clearly that we de�ne three sorts of pass observables. The possible pass observables

which are described in step 1, the unique pass observables which are de�ned in this paragraph and pass

observables of the test case. The pass observables of a test case are the unique pass observables which

can be found in the test case description.
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MDATreq(DT)
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MDATind(DT)
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(a) MSC

UT!ICONreq

LT?MDATind(CR)

LT?MDATind(CR)

LT?MDATind(CR)

LT!MDATreq(CC)

UT?ICONconf

UT!IDATreq

LT?MDATind(DT)

LT?MDATind(DT)

LT?MDATind(DT)

LT?MDATind(DT)

UT?IDISind PASS

(b) Unique pass observable

Figure 7: MSC of Figure 4 with unique postamble

a DT to the lower tester LT and waits for an acknowledgement. The lower tester LT

does not answer and, therefore the DT is retransmitted three times. Afterwards, the

Initiator indicates the failed data transmission by sending a IDISind to the upper

tester UT and returns to its initial state.

We choose the observable of the described trace as the pass observable of the test

case which should be generated (cf. Figure 7 (b)). From this the TTCN test case

shown in Figure 8 follows. The pass observable can be found in the lines 1 to 12.

3. In a third step the inconclusive observables are calculated. An inconclusive ob-

servable has a common pre�x with a pass observable, but it ends with an allowed

response of the IUT from which one can conclude that the required pass observable

is not performed. The inconclusive observables of our example can be found within

the TTCN description in Figure 8.

4. In the fourth and last step the fail observables are de�ned. They need not to be

calculated, because it is assumed that the allowed behavior is described by an SDL

speci�cation. Hence, every deviation from the SDL speci�cation is wrong. In TTCN

this can be easily de�ned by means of a default behavior description. The default

of our example is shown in Figure 9.

In the previous two sections the whole SaMsTaG method has been introduced. An

overall view of the SaMsTaG method is shown in Figure 10. Further information can be

found in [12], [13], [32] and [31].
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Test Case Dynamic Behaviour

Test Case Name : Test_Case_Example

Group :

Purpose : Connection establishment 
after the third retransmission of a Connection Request

Default : Unexpected_Events

Comments :

Nr Label Behaviour 
Description Constraints Ref Verdict Comments

1 UT!ICONreq

2 LT?MDATind(CR)

3 LT?MDATind(CR)

4 LT?MDATind(CR)

5 LT!MDATind(CC)

6 UT?ICONconf

7 UT!IDATreq

8 LT?MDATind(DT)

9 LT?MDATind(DT)

10 LT?MDATind(DT)

11 LT?MDATind(DT)

12 UT?IDISind PASS

13 LT?MDATind(CR) INCON

14 LT?MDATind(CR) INCON

Detailed Comments :

Figure 8: A TTCN test case

Default Dynamic Behaviour

Default Name : Unexpected_Events

Group :

Objective : Handle unexpected events

Comments :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 UT?OTHERWISE FAIL

2 LT?OTHERWISE FAIL

Detailed 
Comments :

Figure 9: TTCN default behavior for the test case in Figure 8

6 The SAMSTAG tool

The SaMsTaG tool realizes the SaMsTaG method for speci�cations written in SDL

and test purposes de�ned by MSCs. The tool architecture is shown in Figure 11. The

SaMsTaG tool consists of an MSC simulation tool, an SDL simulation tool and a test

case generator. The front- and backends are commercial SDL, MSC and TTCN editors.

The MSC simulation tool consists of an MSC transformer and an MSC interpreter.

The MSC transformer transforms the MSC input into an internal data structure which,

during test case generation, is interpreted by the MSC interpreter.

For reasons of performance, the SDL simulation tool is implemented in a di�erent

way. It consists of an SDL transformer which transforms an SDL speci�cation into an

executable C++ program, the SDL simulator. The SDL simulator behaves like the spec-

16



test case definition

algorithms for the test case generation
includes:

parallel simulation of a labeled transition
system and a finite automaton

a)

b) generation of the test case description

test case generation with the
SAMSTAG method

includes:
definition of the relation between test
purpose, test case and system specification

a)

b) assignment of test verdicts

test case description
(e.g. TTCN)

system specification
given as

labeled transition system
(e.g. SDL,  LOTOS, Este l le)

test purpose specification
given as finite automaton

(e.g. MSC, temporal logic formulas)

Figure 10: The SaMsTaG method

i�cation.

The test case generator controls the MSC interpreter and the SDL simulator. During

test case generation it calculates the possible pass observables, the unique pass observ-

ables and the inconclusive observables. Finally, the test case generator de�nes the fail

observables and stores the TTCN description of the generated test case as ASCII �le.

6.1 The calculation of the possible pass observables

The computation of the possible pass observables is a typical search problem. The test

case generator has to �nd SDL traces which include the events speci�ed by the MSC and

which lead the SDL system from its initial state back to its initial state. The observable

of such a trace is a possible pass observable. Unfortunately, we can not ensure that we

�nd possible pass observables, because this problem is equivalent to the halting problem

of Turing machines [2] which is not decidable [20]. One only can search and hope to �nd

the required observables. We search by simulating the SDL description and the MSC in

parallel.

There exist several search methods like depth and breadth search. Breadth search can

not applied because it is impossible to store all reached states of the SDL system

16

. Also

16

A state of an SDL system includes the control states of the processes, the contents of the queues and

the values of the variables.
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SAM STAG tool

SDL simulator

SDL simulation
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SDL transformer

SDL frontend
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MSC simulation
tool

MSC transformer

MSC frontend

test case generator

calculation of the possible pass observables

calculation of the unique pass observables

calculation of the inconclusive observables

definition of the fail observables and
generation of the TTCN test case description

Figure 11: The architecture of the SaMsTaG tool

depth search is not usable since we can not guarantee termination. As a consequence we

use a k-bounded depth search which evaluates all possible traces of length k. If no trace

with the required properties is found, the search can be repeated with a higher bound k

or stopped without results.

6.2 The calculation of the unique pass observables

Also the unique pass observables are calculated by simulation. For each possible pass

observable the traces which have the possible pass observable as observable are generated.

Then, it is checked whether all of them ful�ll the conditions (a) and (b) on page 13. In

general, there may exist many unique pass observables. In this case we select a subset of

the shortest unique pass observables to be the pass observables of the generated test case.

Similar to the possible pass observables the existence of unique pass observables can not

be guaranteed. There may exist possible, but no unique pass observables.

6.3 The calculation of the inconclusive observables

For the chosen unique pass observables the corresponding inconclusive observables have

to be generated. Therefore the SDL description is simulated according to the traces of the

18



pass observables. An inconclusive observable ends in a response of the IUT from which

one can conclude that the required pass observable is not performed.

6.4 Fail observables and generation of the TTCN description

Finally, the pass and inconclusive observables are transformed into the TTCN notation

and the fail cases are added by means of a TTCN default behavior description. The result

of the test case generation is an ASCII �le which includes the TTCN description of the

generated test case.

7 Summary and outlook

In the previous sections the SaMsTaG method and the SaMsTaG method have been

introduced. The SaMsTaG method makes it possible to generate abstract test cases for

conformance tests based on a formal speci�cation and a set of test purposes. For this

the SaMsTaG method formalizes the term test purpose which is an important concept

in CTMF/FMCT. Furthermore, in Section 2 the CTMF/FMCT conformance testing

procedure is discussed and compared with other methods for test case generation.

All described approaches formalize di�erent steps of the entire conformance testing

procedure. Figure 12 presents an overall view of the parts which are formalized by the

di�erent approaches. The approaches may intersect in several aspects, but for the sake of

clearness we omitted all overlaps.

Figure 12 also shows, that the theoretical foundation for the test purpose de�nition

(1) has not been worked out. But, we believe that it is possible to formalize this step by

means of the coverage criteria which already are used in the scienti�c methods.

However, for the application of a complete formal model for conformance testing to

practice further investigations might be necessary. Particularly, the concepts coverage

criterion (j) and conformance relation (h) have to be generalized and adopted to practical

needs.
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