
The Generation of TTCN Test Cases from MSCs

Jens Grabowski

IAM-94-004

May 1994

Abstract

In 1992 and 1993 the University of Berne cooperates with the Siemens-Albis AG Z�urich

in order to develop a method which allows to generate complete TTCN test cases from

MSC descriptions. The goal is reached by extending the MSC language with a few new

language constructs, relating MSCs and data descriptions, and developing the algorithms

for the TTCN generation. The method is implemented by a set of prototype tools.

The paper starts with a short introduction (Section 1). Then the current procedure

of conformance testing is examined (Section 2). The extensions of the standardized MSC

language are described and the speci�cation of test cases with MSCs is shown (Section

3). The algorithm for the generation of TTCN behavior descriptions is sketched (Section

4) and MSCs are related to data descriptions (Section 5). The whole method is summa-

rized and a set of prototype tools which implements the method is presented (Section 6).

Finally, a short outlook is given (Section 7).

CR Categories and Subject Descriptors: C.2.0 [Computer-Communication Net-

works]: General; C.2.2 [Computer-Communication Networks]: Network Protocols;

D.2.5 [Software Engineering:] Testing and Debugging

General Terms: Validation, Test Case Generation, Test Case Speci�cation

1 Introduction

Testing is one of the most popular methods to protect users and customers against in-

secure, inappropriate, or even erroneous soft- and hardware products. Furthermore, a

thorough and comprehensive test gives an indication about the quality of a product. In

the telecommunication area special tests, so-called conformance tests, are often demanded

by the customers (mainly national PTTs). A telecommunication system is a distributed

system and a soft- or hardware product may become a component of such a system. A

conformance test should ensure the required functions of a component to interwork with

other system components. These functions are de�ned within standards or recommenda-

tions provided by international standardization organizations (e.g. ITU-TS

1

, ISO/IEC, or

ETSI) and by the customer which may require additional country speci�c functions.

The de�nition of test cases for conformance tests is a complex and error prone pro-

cess. Therefore, it is necessary to de�ne test cases in a clear and unambiguous way. For

this purpose the ISO/IEC standardizes a special test case description language which is

called Tree and Tabular Combined Notation (TTCN) [11]. TTCN seems to become very

important since several standardized TTCN test suites are already available or are in

preparation and since it is possible to generate the code which controls the test equip-

ment directly from TTCN descriptions. Unfortunately, TTCN is not easy to read and the

purpose of a test case is often hidden in the TTCN notation.

As a consequence we propose to specify the information exchange to ful�ll the purpose

of a test case in a more user-friendly way. We use Message Sequence Charts (MSCs) [13]

which are a widespread and well accepted means for the graphical visualization of selected

system runs within telecommunication systems [8]. With some additional assumptions

and by extending the standardized MSC language with data references it is possible to

generate complete TTCN test cases automatically.

There are several advantages for using MSCs as test case description language. The

process of test case speci�cation is facilitated since the MSC language is easier to use

than TTCN. MSCs are easy to understand, and therefore a customer is able to make a

critical test review without detailed TTCN knowledge. Furthermore, the customer can be

enabled to de�ne additional test cases which are documented in a clear, unambiguous and

graphical way. As a summary one can say that the use of MSCs for test case speci�cation

will improve the quality of test suites.

2 The current procedure of conformance testing

In this section we describe the speci�cation and implementation of test cases for confor-

mance tests by means of an example. The related problems are explained and it is shown

which of these problems are solved or improved with our method.

1

Until March 1993 the ITU Telecommunication Standards Sector (ITU-TS) was called Comit�e Con-

sultatif International T�el�egraphique et T�el�ephonique (CCITT).

1

Subscriber A Subscriber BISDN Switching System

Main Processor

LTG LTG

Layer 3 (Q.931)

Figure 1: Part of an ISDN system

2.1 An environment for a protocol layer test

Suppose, we want to test a layer 3 protocol within a Line Trunk Group (LTG) of an

ISDN

2

switching system as shown in Figure 1. The layer 3 protocol is given by the ITU-T

Recommendation Q.931 [3].

The Q.931 protocol is implemented within the LTG and there is no direct access to

this implementation. Furthermore, each LTG has only one standardized interface which

may be is connected with a telephone. The interface of an LTG to the main processor

is proprietary and not standardized. Since the conformance to standards shall be tested,

proprietary interfaces are not adequate for conformance testing.

One possibility to interface the Q.931 protocol is to use the whole ISDN system and

to connect the test equipment directly with the standardized interfaces.

3

Figure 2 shows

such a test system. The telephones in Figure 1 are replaced by test devices and the devices

are controlled by a test manager which also records the test results.

2.2 The manual speci�cation and implementation of test cases

For the speci�cation and implementation of test cases for an environment like the one in

Figure 2 certain tasks have to be carried out. The whole procedure is shown in Figure

3. Within the �gure, the rectangles represent actions and the ellipses describe data or

documents which serve as input for, or are produced by the di�erent actions.

All three tasks are based on standards and additional customer or country speci�c

requirements. Since these documents mainly are written in plain text, all tasks have to

be carried out manually by protocol specialists.

A test case description can be divided into a dynamic and a static part. The dynamic

part is mainly given by a test case speci�cation. The static part includes the speci�cation

of the data units which are exchanged between the test equipment and the system under

test.

The de�nition of a test case speci�cation (Task 1) is based on the relevant protocol

standards and, in most cases, on additional country and customer speci�c requirements.

4

2

ISDN is an abbreviation for 'Integrated Services Digital Networks'.

3

In practice the use of a whole ISDN switching system is very expensive. As a consequence for testing

purposes, instead of a real system, parts of the ISDN system are often only simulated.

4

Country speci�c requirements may for example be caused by the currency. A Swiss tax counter may

2

Test Manager

Main Processor

LTG LTG

Layer 3 (Q.931)

ISDN Switching SystemTest Device A Test Device B

Figure 2: An ISDN test environment

A test case speci�cation consists shall be independent from the concrete implementation

and the test equipment. An example of a test case speci�cation will be described in

Section 2.4.1.

Task 2, the speci�cation of data types and default constraints is based on the same

documents as Task 1. The data type description comprises the de�nition of messages

5

and message parameters. For the parameters often default constraints exists. Such a

constraint may de�ne a concrete default value or restrict the range of parameter values.

Default constraints also have to be speci�ed formally. The output of Task 2 is a �le which

is interpretable by the tested system and the test equipment.

For the implementation of a test case (Task 3) the test case speci�cation and the

data type and default constraint speci�cation have to be combined to an executable test

case. An executable test case can be considered to be the program which controls the

test equipment during the test case execution. It comprises the complete sequence of the

exchanged messages, the corresponding parameter values, actions to synchronize the test

devices and further information concerning speci�c characteristics of the test equipment.

Often a test case speci�cation is not su�cient to serve as implementation basis. Concrete

parameter values may depend on test purpose or country speci�c requirements. Conse-

quently, during test case implementation the standards and the additional requirements

have to be consulted.

count in 10 Rappen units and a German one may use 10 Pfennig units.

5

According to the OSI basic reference model [12] protocol entities exchange protocol data units (PDUs)

and service primitives. Since this paper does not treat the OSI model, we use the more general term

message. But, the abbreviations ASP and PDU occur in several TTCN tables.

3

Standards and
 Additional

Requirements

TASK 2 :
Specification of
Data Types and
Default Constraints

TASK 3:
Implementation of
a Test Case

Data Type and
Default Constrain ts

Desc rip t ion

Test Case
Spec if icat ion

Executable
 Test Case

TASK 1:
Definit ion of a
Tes t Case
Specif icat ion

Figure 3: The speci�cation and implementation of test cases

2.3 The problems of the current procedure

The three tasks identi�ed in the previous section are performed manually. This is the

main problem of the whole procedure. Errors may be a result of misunderstanding or

misinterpretation of the relevant standards or test case speci�cations. The intuition and

experience of the persons which perform the tasks is a decisive factor for the quality of

the test suite and the conformance test itself.

One possibility to improve the whole procedure is to increase the quality of the stan-

dards. Here, we have to distinguish between the description of the protocol behavior and

the speci�cation of the exchanged data units.

For the behavior description the use of standardized formal description techniques,

i.e. LOTOS, Estelle and SDL [10], can help to avoid ambiguities and misinterpretations.

The behavior description in existing protocol standards are mainly written in plain text

which is enriched with more or less informal drawings. Furthermore, it is not always possi-

ble to specify all relevant properties with the standardized formal description techniques,

e.g. time, probability and performance aspects cannot be described adequately.

For the data description the situation is more promising. The data description lan-

guage ASN.1 [17, 4] is frequently used within protocol standards. One reason for the broad

acceptance of this language is that there exist encoding rules which allow an automatic

implementation of the data types and data values [5].

Because of the mentioned problems, the Tasks 1 and 3 in Figure 3 are the most

critical parts in the test case speci�cation and implementation procedure. Task 2 can

considered to be easy if the standard includes a formal data speci�cation, e.g. in the

ASN.1 notation. The data description only has to be adapted to country and customer

speci�c requirements.

For standards which mainly include descriptions in plain text, Task 1 only can be

improved by education and perhaps by a critical review of the obtained test speci�cations.

As we will see in Section 2.4, the output of Task 1 is a more or less informal document.

This causes problems for Task 3, since in international telecommunication companies the

Tasks 1 and 3 are often not carried out by the same people.

Task 3 is based on two informal documents and a data description. The test errors

which can be produced during the realization of this task may be a result of

4

� misunderstanding and misinterpretation of standard and additional requirements,

� misunderstanding and misinterpretation of the test case speci�cation,

� inconsistencies of the standard and the test case speci�cation, and

� errors in the test case speci�cation.

If during the conformance test the tested implementation behaves in an unexpected way,

it is not automatically clear whether the implementation or the test case includes an error.

Furthermore, it is possible that an implementation passes a test although it includes errors

which should be detected with a correct test suite.

The output of Task 3 is an executable test suite, i.e. a set of executable test cases. Cur-

rently, most test case implementations are proprietary for a certain environment, i.e. the

various manufacturers of test equipment for example use proprietary programming lan-

guages. However, the situation seems to change. The availability of TTCN as standard-

ized test case description language [11], existing and forthcoming standardized TTCN test

suites, e.g. [1, 7], and customer demands forces various manufacturers to develop TTCN

compiler or interpreter for their test equipment, e.g. [2, 16]. The characteristics of TTCN

will be explained in Section 4.1.

It is our goal to improve and to automate the implementation of the test cases, i.e. Task

3 in Figure 3. To motivate our solution we will examine the task in more detail.

2.4 The test case implementation

The implementation of a test case is based on a test case speci�cation, the relevant stan-

dards, additional requirements, and the de�nitions of data types and default constraints.

The executable test case is written in an implementation language.

2.4.1 The speci�cation of test cases

In Figure 4 an example of a test case speci�cation is presented. The test case shall prove

a certain property of the ISDN system shown in Figure 1. The shown notation is very

close to a notation which is used within the Siemens-Albis AG. But, it is not speci�c to

Siemens-Albis, we know from several other telecommunication companies that they use

very similar test case descriptions.

The test case speci�cation in Figure 4 consists of two parts. A textual description

and a diagram called general message ow. The textual description includes a test case

identi�er, a test purpose, a test con�guration, preconditions which have to be satis�ed

before the test case can be applied to the tested system and a hint about further control

of the test. The general message ow diagram gives some indication about the sequence

of messages which shall be observed when the test case is executed. In the following we

refer to this test case speci�cation by using the the test case name EDSAOUX.

The analysis of the example shows that the test case description is informal and

incomplete. The informal character of the description in Figure 4 is obvious, but the

incompleteness shall be explained by means of two examples.

5

Test case identifier: EDSAOUX

Test purpose: The test shall ensure that after connection establishment

Subscriber A receives at least three Information messages. The display

parameter within the Information message shall have the format

'Fr. x.x0' (0 � x �9).

Test configuration: Subscriber-A-SWITCH-Subscriber-B

Pre-conditions:

- The system is in its initial state n(0).

- The tax parameter ABS is not set.

- The tax units are set for time rates of 0,3 Rp/s.

Control: Observation of the tax display

General message flow:

ISDN systemSubscriber A Subscriber B

Setup

Setup Acknowledge

Information

Connect

Connect Acknowledge

Information

Information

Information

Release Complete

Connect

Connect Acknowledge

Setup

End

Figure 4: The speci�cation of the test case EDSAOUX

1. The ISDN system is connected with the test devices at two di�erent interfaces. In

the OSI Reference Model [12] the interfaces are called service access points (SAPs).

Within the general message ow the SAPs are described by the two vertical borders

of the box representing the ISDN system. The sequence of messages exchanged

at one SAP is described by the order of messages along the corresponding border.

However, the protocol describes the message exchange between the users at di�erent

SAPs. As a consequence there exists an order between certain messages at di�erent

SAPs. For example, the message Setup can only be received by Subscriber B after

the Information has been sent by Subscriber A. The general message ow does not

describe such dependencies, although they can be important for the test case imple-

mentation, especially, in situations where the test devices have to be synchronized.

6

msc Postamble1

ReleaseComplete
SYNCHRONIZATION Disconnect

ReleaseComplete

B_SAP BA A_SAP

msc Postamble2

ReleaseComplete
SYNCHRONIZATION ReleaseComplete

B_SAP BA A_SAP

Figure 5: Alternative postambles of the test case EDSAOUX

2. The diagram with the general message ow includes the message End. This message

is not de�ned in the corresponding protocol standard. After the reception of the

ReleaseComplete message by the ISDN system the standard allows two alternative

behaviors of the system. The system may send a Release Complete or a Disconnect

message to the Subscriber B. In the case that Subscriber B receives a Disconnect, it

has to answer with a Release Complete in order to release the connection correctly

after the test case has been applied. The two alternatives are shown in Figure 5

6

.

The notation di�ers slightly from the diagram in Figure 4. The ISDN system is

represented by two vertical axes which describe the above mentioned SAPs and the

names Subscriber A and Subscriber B are replaced by A and B. Furthermore, a

special SYNCHRONIZATION message describes the ordering between messages at

di�erent SAPs.

Most of the missing information can be found in the relevant standards and the additional

requirements. It has to be added when the test case is implemented. Therefore the

inuence of the standards and the additional requirements on the test case implementation

may be reduced or even avoided by extending the test case speci�cation. However, a test

case speci�cation as shown in Figure 4 can not serve as basis for the automatic generation

of executable test cases. But, it de�nes the functions for the manual implementation

of test cases. Since these are also the functions which shall be improved, we list them

explicitly.

� The test case speci�cation in Figure 4 indicates the control ow of the executable

test case, i.e. the program which controls the test devices, by means of a diagram.

6

The term postamble in the caption of the �gure will be explained in Section 3.2.4.

7

ASN1 ASP Type Definition

ASP Name : Information

PCO Type : A

Comments : Reference 3.1.8, u<−−>n, local

Type Definition

SEQUENCE
{ProtocolDiscriminator [0] ProtocolDiscriminator_type,
CallReference
[1] CallReference_type,
MessageType [2] MessageType_type,
SendingComplete [3] SendingComplete_type OPTIONAL,
Display [4]
Display_type OPTIONAL,
KeypadFacility [5] KeypadFacility_type OPTIONAL,
CalledPartyNumber [6] CalledPartyNumber_type OPTIONAL}

Detailed Comments :

Figure 6: ASN.1 de�nition of the Information message in Figure 4

� It relates the data type and default constraint description to the test case speci�-

cation. This is done by the names of messages and message parameters (within the

informal text) which refer to type de�nitions.

� The test case speci�cation describes the requirement which shall be tested. In our

case the requirement consists of two properties for a speci�c message. One denotes

the number of receptions by the test equipment. The other is a condition on the

format of a message parameter.

2.4.2 The data type and default constraint description

The data type and default constraints description is derived from the relevant standards

and the additional requirements. Since the description is necessary for all test cases,

we can assume that it is given in a formal language, often even in the implementation

language of the test case. Possible formalisms might be ASN.1, TTCN data types, or even

C data types. Figure 6 presents an ASN.1 example. It de�nes the Information message

which shall be checked by the test case EDSAOUX.

2.4.3 The executable test case

An executable test case can be considered to be the program which controls the test

equipment and checks the required properties. For our test case example the executable

test case has to simulate the functions of Subscriber A and Subscriber B. This simulator

has to stimulate the ISDN system and to observe the corresponding responses. A response

may be expected, not expected, correct, or even incorrect. A complete test case description

should treat all di�erent cases.

An executable test case is written in a language which can be interpreted by the test

equipment. There are test devices controlled by programs written in C, C++, Forth, or

even SDL. Furthermore, there exist a lot of proprietary solutions.

Currently, various manufacturers of test equipment start to interface their test equip-

ment with the Tree and Tabular Combined Notation (TTCN) [11]. This development is

8

forced by the demands of users and customers for a standardized interface, and by the

availability and development of standardized TTCN test suites.

TTCN is developed as description language for abstract test cases, i.e. test case de-

scriptions which are independent of the concrete test realization. Therefore standardized

TTCN test suites, e.g. [1, 7], are abstract test suites, i.e. the test cases have to be adapted

to the concrete test environment and the country speci�c requirements.

However, TTCN can be used on several levels of abstraction. The TTCN language

can be applied for test case speci�cation, although more intuitive descriptions as for

example shown in Figure 4 might be more appropriate for this purpose. But, TTCN

also o�ers the possibility to de�ne test cases in all details. A detailed TTCN description

can be executed by test devices [2, 16]. In this sense TTCN is a possible implementation

language for executable test cases. In this chapter we also use TTCN for the representation

of executable test cases and focus on the generation of TTCN descriptions.

2.5 The goal of our method

It is our goal to improve and to automate the implementation of the test cases, i.e. Task 3

in Figure 3. The advantages are obvious since most of the mentioned problems (cf. Section

2.3) can be avoided. To reach our goal we have to deal with �ve main problems:

1. The direct inuence of standard and additional requirements on the test case im-

plementation has to be suppressed.

2. A description language for test case speci�cations is needed.

3. The algorithms for generating executable test cases from data type descriptions and

test case speci�cations have to be developed.

4. A mechanism which relates a test case speci�cation to the data type and default

constraint description has to be found.

5. We have to work out a mechanism to specify test case speci�c constraints.

The inuence of the standard and the additional requirements on the implementation

process can only be suppressed by putting more e�ort in Task 1, i.e. the missing informa-

tion of the standard and the additional requirements have to be de�ned in the test case

speci�cations. This increases the demands for the required test case description language.

The formalism should be

� formal enough to support the generation of executable test cases,

� expressive enough to allow the comfortable speci�cation of complete test cases,

� well accepted by the users, because the inuence on the tasks 1 and 2 should be as

small as possible,

� standardized to avoid proprietary and incomparable test suites, and

� tool supported, because this will facilitate the development, exchange and modi�-

cation of test case speci�cations.

9

3 The speci�cation of test cases with MSCs

There are several reasons for the popularity of test case descriptions as shown in Figure

4. One is of course the fact that all relevant information of a test case can be written

on one page. Another reason is the use of informal diagrams (in our example it is called

general message ow) which immediately give an intuitive understanding of the described

behavior. As a consequence of these facts we searched for a graphical formalism which is

almost as easy to use as the shown diagram, but which is formal enough to improve the

test case implementation. We identi�ed the Message Sequence Chart (MSC) language

to be adequate for our purposes. MSC is standardized by the ITU-TS [13], its formal

semantics de�nition is in preparation [8] and there exist tools which support the use of

the language [9, 18, 20, 19].

In this section we introduce the MSC language (Section 3.1) and describe certain

extensions which adopt the language to the speci�c needs of testing (Section 3.2).

3.1 The MSC language

The MSC standard is provided by the ITU-T recommendation Z.120. The MSC rec-

ommendation includes two syntactical forms: MSC/PR as pure textual and MSC/GR

as graphical representation. An MSC

7

in MSC/GR representation can be transformed

automatically into a corresponding MSC/PR representation. We pro�t by the graphical

form in the test case speci�cation and base our algorithms on the MSC/PR form. This

gives us the exibility to use several graphical tools for test case speci�cation. Because of

simplicity in this paper we only use the MSC/GR form.

Figure 7 presents an example of an MSC. The diagram describes the message ow be-

tween the instances A, A SAP, B SAP and B. The instances are represented by vertical

axes. The messages are described by horizontal arrows. An arrow origin and the corre-

sponding arrow head denote sending and consumption of a message. In addition to the

message name, parameters may be assigned to a message. The send and receive actions

along an instance axis are totally ordered. The order of events on di�erent instance axes

is mediated by the messages, i.e. a message must be sent before it can be received. The

inscribed hexagon in Figure 7 which covers the instances A SAP and B SAP is a so-called

condition. It denotes the state n(0) which the covered instances have in common.

Further constructs of the MSC language concern instance actions, timer handling,

instance creation, instance termination, the order of events along an instance axis (core-

gion), and the re�nement of instance axes by means of so-called submscs. A complete

introduction to the MSC language can be found in [8].

The MSC in Figure 7 describes a part of the general message ow in Figure 4. The

two SAPs of the ISDN system are represented by the individual axes A SAP and B SAP.

The dependencies between events on di�erent instance axes are de�ned explicitly by the

SYNCHRONIZATION messages. The precondition concerning the initial state n(0) is

added by means of the condition.

7

The term MSC is used for a diagram written in the MSC language and the language itself. Where

necessary, we distinguish between both by using the terms MSC language and MSC diagram.

10

Setup

SYNCHRONIZATION
Setup

Connect

SYNCHRONIZATION

SetupAcknowledge

msc Example

B_SAP BA A_SAP

Information

ConnectAcknowledge

Connect

ConnectAcknowledge

n(0)

Figure 7: MSC describing a part of the general message ow in Figure 4

Obviously, the MSC in Figure 7 o�ers the same intuitive understanding of the re-

quired system behavior as the diagram in Figure 4. The example also shows that it is

possible to suppress the inuence of standards and additional requirements on the test

case implementation (cf. Problem 1 on Page 9) by adding information to an MSC test

case description. Furthermore, the MSC/PR form o�ers a standardized interface for tool

supported test case implementation. These facts lead to the conclusion that the MSC

language is appropriate for the speci�cation of test cases.

3.2 Adopting MSCs for the needs of testing

The algorithms which automate the generation of TTCN test cases have to extract the

actions of the testers

8

from the MSCs and to transform them into the TTCN notation.

During the transformation process the di�erent semantics of MSC and TTCN have to be

taken into account. In the MSCs which later on will form the test case EDSAOUX the

actions are those of the instances A and B (e.g. Figure 8). They represent Subscriber A

and Subscriber B in Figure 4. The automation requires that the MSCs comprise all tester

actions and further relevant information, e.g. information concerning the synchronization

of the testers. Besides the sending and reception of messages, a tester may also supervise

timers (e.g. Figure 12), or control the number of recurrences of a speci�c message.

The investigated examples show that the current MSC standard in most cases is su�-

cient for describing the message exchange of test cases. But, we also identi�ed situations

where additional language constructs might be helpful. Some of these constructs are short-

hand notations, some are real extensions and some concern the combination of MSCs. In

the following we introduce them briey.

8

A tester can be a software process, a test device, or a combination of both.

11

Setup

SYNCHRONIZATION
Setup

Connect

SYNCHRONIZATION

SetupAcknowledge

msc Preamble

B_SAP BA A_SAP

Information

ConnectAcknowledge

Connect

ConnectAcknowledge

CallProceeding

Figure 8: Preamble of the test case EDSAOUX

3.2.1 Optional messages and always messages

There are situations where a certain message may or may not occur, but has no further

inuence on the test run. The tester must be able to handle such messages and therefore

they have to be speci�ed. Within our example test cases we identi�ed two sorts of messages

and call them optional messages and always messages.

Optional messages. An optional message may occur in exactly one situation. The

MSC in Figure 8

9

describes almost the same message ow as the MSC in Figure 7.

Only the condition is omitted, and additionally it includes the message CallProceeding.

CallProceeding is an optional message which may occur immediately after the Information

message is sent by A. Whether the message occurs depends on the con�guration of the

whole ISDN system. Sometimes the tester has no inuence on this con�guration. By the

use of the MSC standard the only way to express the possible occurrence of an optional

message is to specify two alternative MSCs. Of course, this is awkward and not very

user-friendly. As a consequence we introduced optional messages and represent them by

dashed arrows.

Always messages. An always message is a message which from a certain point in time

may always occur arbitrarily often. Within our tool the �rst use within the MSC de�nes

the point from which it may occur. Figure 9 (a) shows an example for the graphical

representation of an always message.

9

The term preamble in the caption of the �gure will be explained in Section 3.2.4.

12

ExampleAlways

A B

(a) Always message

Information

msc LoopExample

B_SAP BA A_SAP

ExampleLoop
(now+10min)

ExampleLoop

(b) Timer loop

Figure 9: MSC constructs for test case speci�cation

3.2.2 Synchronization messages

The MSC in Figure 8 includes messages which are inscribed with SYNCHRONIZATION.

These synchronization messages are no real messages. They only express the order of

send and receive actions on di�erent instance axes. In certain cases such information is

necessary to synchronize the di�erent testers. In our examples we only use synchronization

messages to describe the order of events at di�erent SAP axes, but in our tool we also allow

to describe synchronization explicitly, i.e. to specify synchronization messages between

instance axes which represent testers.

3.2.3 Loops

Several test cases require that a certain message, or a speci�c part of a message exchange

should occur repeatedly. The number of occurrences may be stated explicitly or deter-

mined by a time limit. Even the test purpose of the test case EDSAOUX requires that

the Information message should at least occur 3 times. In this simple case it is possible

to specify the three messages explicitly, but for more complicated message exchanges it

is more appropriate to use a loop construct.

Consequently, we introduced a timer loop and a counter loop. The graphical represen-

tation of both is the same. We use two trapeziums which enclose the recurrent message

exchange. The termination criterion in the upper trapezium states whether the loop is

controlled by a counter variable or a time limit. Figure 9 (b) presents an example. It

speci�es that the message Information should be observed for 10 minutes.

3.2.4 The combination of MSCs

The purpose of the test case EDSAOUX (cf. Figure 4) is to test the arrival of three

Information messages.

10

The test case can be structured in a preamble, a testbody, and

a postamble. The preamble describes the message exchange from the initial state n(0)

10

The test of the parameter values will be explained in Section 5.

13

Information

msc Testbody

B_SAP BA A_SAP

Information

Information

(; Display:DisplayEDSAOUX)

(; Display:DisplayEDSAOUX)

(; Display:DisplayEDSAOUX)

Figure 10: Testbody of the test case EDSAOUX

(cf. Pre-conditions in Figure 4) into a state from which the Information messages are

observable. This preamble is shown in Figure 8. The testbody comprises the observation

of the three Information messages. It is shown in Figure 10. The postamble includes the

message exchange which is necessary to drive the tested system back into the initial state.

As stated in Section 2.4.1 for the test case EDSAOUX exist two alternative postambles.

They are shown in Figure 5. The complete test case description should include both

postambles.

The message ow of the test case EDSAOUX is described by theMSCs in the Figures 5,

8, and 10. Now, we need a mechanism to specify how the MSCs should be combined. Such

a description can be looked at as a more general test case description since it abstracts

from the message ow.

We use a graphical notation. Figure 11 presents an example. The MSCs are repre-

sented by inscribed ellipses. An arrow between two ellipses speci�es a sequence of two

MSCs, e.g. in Figure 11 the signal exchange of the MSC Preamble is followed by the MSC

Testbody, a branching denotes alternative MSCs, e.g. the MSCs Postamble1 and Postam-

ble2 may happen alternatively. The supernode ellipsis only indicates the start of the test

case description.

Our graphical notation introduces a sequence and an alternative operator in the MSC

language. The graphical notation can be used to specify recursion, i.e. an MSC is followed

by itself. In this case the graph will include loops. The described behavior might be

in�nite. However, a test case should be �nite, and therefore we only allow to specify

tree structures. It is possible to de�ne several other operators to combine MSCs, but for

test case speci�cation we only need the operators sequence and alternative. However, a

discussion on MSC operators can be found in [6]. It is intended to include such operators

in the MSC standard Z.120 [13].

One may argue that it is not necessary to structure test cases in a whole set of MSCs,

but even the two possible postambles of our example show that it is necessary to include

alternative MSCs in one test case description. Furthermore, we recognized that di�erent

test cases often check di�erent aspects of the same, or at least of almost the same message

ow. In such situations the test cases include identical parts, and it is advantageous to

reuse parts of existing test case speci�cations. Structuring supports the reuse of existing

14

msc Postamble1

supernode

msc Preamble

msc Testbody

msc Postamble2

Figure 11: Combining the MSCs which form the test case EDSAOUX

Information

msc TestbodyWithTimers

B_SAP BA A_SAP

Information

Information

set (6s,T)

set (6s,T)

Figure 12: Alternative testbody

test speci�cations. An examplemay clarify this. The test purpose of our test case example

(cf. Figure 4) is to check the arrival of three Information messages. Within the test suite

which we investigated another test purpose states that the period of time between two

Information messages should be less than 6 seconds. The test case descriptions of both

only di�er in the MSC which checks the Information messages. Figure 12 presents the

new testbody. This MSC also shows the use of timer constructs in MSCs.

4 The generation of TTCN behavior descriptions

In previous sections we explained how a test case speci�cation can be speci�ed by means

of MSCs. From such a speci�cation it is possible to generate the dynamic part of a TTCN

test case description automatically. The dynamic part of a TTCN test case description

speci�es the control ow of the executable test case. In order to understand the algorithm

we have to introduce the TTCN language briey.

11

11

A more complete tutorial on TTCN can be found in [14].

15

4.1 The TTCN language

A TTCN description speci�es a whole test suite. It consists of

� a test suite overview which mainly is a contents list of the test suite,

� a declarations part which includes the message and data type de�nitions,

� a constraints part which consists of conditions on message parameters, i.e. default

values or value ranges which should be tested, and

� a dynamic part which for each test case describes the sequence of exchanged mes-

sages.

TTCN has two syntactical forms: TTCN/MP (TTCN Machine Processible form) as pure

textual representation and TTCN/GR (TTCN GRaphical form) which is a graphical

representation. Both forms are equivalent and can be translated into each other. In

this section only the TTCN/GR form is described. As indicated by the name 'Tree and

Tabular Combined Notation' (TTCN), a TTCN test suite is a collection of di�erent tables.

The Figures 15, 16, 17, 18, and 19 present several examples for TTCN tables. They are

elements of the dynamic part and will be explained later on.

4.1.1 The declarations and constraints part

TTCN has its own data type and value assignment concept. It includes very powerful

operators to express conditions on parameter values. For practical purposes TTCN also

allows to use ASN.1 in the declarations and constraints part. E.g. the ASN.1 de�nition

of the Information message in Figure 6 is written in a TTCN table. An ASN.1 constraint

which checks the correct value format of the test case EDSAOUX is shown in Figure

13. For the sake of simplicity, we only like to mention that the �x letters of the format

are represented by bit strings, e.g. the �rst letter F of the format 'FR. x.x.0' (0�x�9)

(cf. Figure 4) is represented by '01000110'B.

TTCN allows to structure constraints, i.e. a constraint may itself refer to other con-

straints. An example is shown in Figure 14. This constraint refers to the constraint shown

in Figure 13

4.1.2 The dynamic part

A TTCN test case describes the sequences of events which should be performed by the

testers. In general, these are send and receive events. The event sequence is speci�ed by

means of a tree notation. Figure 15 shows an example. The tree notation can be found

in the Behaviour Description column.

The tree structure is determined by the ordering and the indentation of the speci�ed

events. In general, the same indentation denotes a branching (i.e. alternative events,

e.g. lines Nr. 2 and 4) and the next larger indentation denotes a succeeding event (e.g. lines

Nr. 1 and 2). Events are characterized by the involved entities (i.e. A and B), by its kind

(i.e. "!" denotes a send event and "?" describes a receive event) and by the message

16

ASN1 Type Constraint Declaration

Constraint Name : DisplayEDSAOUX

ASN1 Type : Display_type

Derivation Path :

Comments : Test case specific constraint for Display values
(Test case name: EDSAOUX)

Constraint Value

{d_id ’00101000’B,
d_length ’08’H,
d_info
{’01000110’B,
’01110010’B,
’00101110’B,
’00100000’B,
(’00110???’B, ’0011100?’B),
’00101110’B,
(’00110???’B, ’0011100?’B),
’00110000’B}}

Detailed Comments :

Figure 13: ASN.1 constraint DisplayEDSAOUX

ASN1 ASP Constraint Declaration

Constraint Name : InformationEDSAOUX

ASP Type : Information

Derivation Path :

Comments : Test case specific constraint for Information messages
(Test case name: EDSAOUX)

Constraint Value

{ProtocolDiscriminator ProtocolDiscriminatorDefRec,
CallReference CallReferenceDefRec,
MessageType ’01111011’B,
SendingComplete SendingCompleteDefRec IF_PRESENT,
Display DisplayEDSAOUX,
KeypadFacility KeypadFacilityDefRec IF_PRESENT,
CalledPartyNumber CalledPartyNumberDefRec IF_PRESENT}

Detailed
Comments :

Figure 14: ASN.1 constraint InformationEDSAOUX

Test Step Dynamic Behaviour

Test Step Name : Postamble

Group :

Objective :

Default : UnexpectedEvents

Comments : Postamble of the test case EDSAOUX

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 A!ReleaseComplete ReleaseCompleteDefSend

2 B?Disconnect DisconnectDefRec

3 B!ReleaseComplete ReleaseCompleteDefSend PASS

4 B?ReleaseComplete ReleaseCompleteDefRec PASS

Detailed Comments :

Figure 15: TTCN test step Postamble

17

Default Dynamic Behaviour

Default Name : UnexpectedEvents

Group :

Objective :

Comments :

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 A?OTHERWISE FAIL

2 B?OTHERWISE FAIL

Detailed Comments : FAIL is assigned if something unexpected happens

Figure 16: TTCN default behavior description UnexpectedEvents

Test Case Dynamic Behaviour

Test Case Name : EDSAOUX

Group :

Purpose : The test
shall ensure that after connection establishment Subscriber A receives at
least three
Information messages.

Default : UnexpectedEvents

Comments : The display parameter of an Information
message shall have the format ’FR. x.x0’ (0=<x=<9)

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 +Preamble

2 +Testbody

3 +Postamble

Detailed Comments :

Figure 17: TTCN test case description EDSAOUX

which should be sent or received. An example may clarify the notation. The statement

B?Disconnect denotes the reception of the message Disconnect by the entity B.

The table in Figure 15 includes some further information. The entries in the Con-

straints Ref. column refer to a TTCN or ASN.1 constraint. An entry in the Verdict column

assigns a so-called test verdict to a test run. The verdicts indicate the success of the test

run. A pass verdict denotes that the test purpose is reached, a fail states that something

bad happens and an inconclusive describes a situation where neither a pass nor a fail can

be assigned.

The example in Figure 15 only includes pass verdicts. The fail cases are speci�ed in

a default behavior description which is referred in the test case header. The default is

shown in Figure 16. It includes the special eventOTHERWISE which represents arbitrary

(correct or even incorrect) messages.

TTCN allows to structure test case descriptions. This is done by so-called test steps.

A test step is a behavior tree which can be added to other behavior trees by means of a

so-called tree attachment. Figure 17 presents an example. The test case attaches at �rst

the test step Preamble (Figure 18), then the test step Testbody (Figure 19), and �nally

the test step Postamble (Figure 15).

The TTCN tables in the Figures 15, 16 17, 18, and 19 specify the whole message

18

Test Step Dynamic Behaviour

Test Step Name : Preamble

Group :

Objective :

Default : UnexpectedEvents

Comments : Preamble of the test case EDSAOUX

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 A!Setup SetupDefSend

2 A?SetupAcknowledge SetupAcknowledgeDefRec

3 A!Information InformationDefSend

4 B?Setup SetupDefRec

5 B!Connect ConnectDefSend

6 B?ConnectAcknowledge ConnectAckDefRec

7 A?CallProceeding CallProceedingDefRec

8 A?Connect ConnectDefRec

9 A!ConnectAcknowledge ConnectAckDefSend

10 A?Connect ConnectDefRec

11 A!ConnectAcknowledge ConnectAckDefSend

Detailed Comments :

Figure 18: TTCN test step Preamble

Test Step Dynamic Behaviour

Test Step Name : Testbody

Group :

Objective :

Default : UnexpectedEvents

Comments : Testbody of the test case EDSAOUX

Nr Label Behaviour Description Constraints Ref Verdict Comments

1 A?Information InformationEDSAOUX

2 A?Information InformationEDSAOUX

3 A?Information InformationEDSAOUX

Detailed Comments : Checks the format of the display parameter in an Information
message.

Figure 19: TTCN test step Testbody

exchange of the test case EDSAOUX. The main test case description is given by the table

in Figure 17. It attaches several test steps and refers to a default behavior description.

4.2 The algorithm

In this section we sketch the algorithm which automates the generation of TTCN behavior

descriptions from MSC speci�cations.

19

4.2.1 MSCs and TTCN test steps

The test case description comprises several MSCs. In general, each MSC is translated

into one test step, i.e. in one TTCN table. The MSCs of the test case EDSAOUX can

be found in the Figures 5, 8, and 10. The corresponding TTCN tables are shown in the

Figures 15, 18, and 19. For the sake of simplicity the alternative postambles (cf. Figure

5) are described in one TTCN table (cf. Figure 15).

The TTCN test case description combines the test steps by means of tree attachments.

The TTCN table which forms the test case EDSAOUX can be found in Figure 17. The

generation of such a table is a based on the diagram which de�nes the combination of the

MSCs. For the test case EDSAOUX the combination is de�ned in Figure 11.

4.2.2 Generating TTCN test steps from MSCs

For each MSC a TTCN test step has to be generated. The test step is speci�ed mainly

by the TTCN behavior tree in the Behavior Description column. The behavior tree is

generated in four steps.

1. An MSC describes a partial ordered set of actions. The partial order is de�ned by

the messages and by the order of actions along the instance axes (cf. Section 3.1).

Based on this information we calculate the sequences of actions which include the

actions of the MSC and which are consistent with the partial order de�ned by the

MSC. For the MSC in Figure 8 for example 402 di�erent sequences exist.

2. For the test case description only the actions of the testers are of interest. Therefore

in the second step we remove all actions which are not performed by the testers from

each sequence. For the MSC in Figure 8 we gain 13 di�erent sequences. They are

shown in Figure 20. The actions in the �gure are de�ned in a TTCN like manner.

3. MSC and TTCN are di�erent languages with di�erent semantics. For TTCN some

of the sequences which we generated in step 2 are redundant. During a test run they

can not be distinguished. In other words, for TTCN several sequences are in the

same equivalence class. In the third step we select one sequence of each equivalence

class. For the sequences in Figure 20 only two di�erent equivalence classes exist.

One class includes the sequences (1) - (3), the other consists of the sequences (4) -

(13). We select the sequences (1) and (10) for the test case description.

4. In the fourth step the selected sequences are transformed into the TTCN notation.

The TTCN notation for the sequences (1) and (10) can be found in Figure 18.

For the complete understanding of step 3 more knowledge concerning the TTCN semantics

might be necessary. But, in this chapter we only want to give an overall view. The details

can be found in [11] and [18].

4.2.3 Assigning test verdicts

A TTCN test case assigns one of three test verdicts to a complete test run. We only assign

the two verdicts pass and fail. This is due to the fact that industrial testing presupposes

20

B?
ConnectAcknowledge

A!
ConnectAcknowledge

A!
Setup

A?
SetupAcknowledge

A!
Information

B?
Setup

B!
Connect

B?
ConnectAcknowledge

A?
Connect

A!
ConnectAcknowledge

A!
Setup

A?
SetupAcknowledge

A!
Information

B?
Setup

B!
Connect

B?
ConnectAcknowledge

A?
Connect

A!
ConnectAcknowledge

(2) (3) (4)

A!
Setup

A?
SetupAcknowledge

A!
Information

B?
Setup

B!
Connect

B?
ConnectAcknowledge

A?
Connect

A!
ConnectAcknowledge

A?
CallProceeding

(5)

A!
Setup

A?
SetupAcknowledge

A!
Information

B?
Setup

B!
Connect

B?
ConnectAcknowledge

A?
Connect

A!
ConnectAcknowledge

A?
CallProceeding

(6)

A!
Setup

A?
SetupAcknowledge

A!
Information

B?
Setup

B!
Connect

B?
ConnectAcknowledge

A?
Connect

A!
ConnectAcknowledge

A?
CallProceeding

A!
Setup

A?
SetupAcknowledge

A!
Information

B?
Setup

B!
Connect

A?
Connect

(1)

A!
Setup

A?
SetupAcknowledge

A!
Information

B?
Setup

B!
Connect

B?
ConnectAcknowledge

A?
Connect

A!
ConnectAcknowledge

A?
CallProceeding

(7)

A!
Setup

A?
SetupAcknowledge

A!
Information

B?
Setup

B!
Connect

B?
ConnectAcknowledge

A?
Connect

A!
ConnectAcknowledge

A?
CallProceeding

(8) (9)

A!
Setup

A?
SetupAcknowledge

A!
Information

B?
Setup

B!
Connect

B?
ConnectAcknowledge

A?
Connect

A!
ConnectAcknowledge

A?
CallProceeding

(10)

A!
Setup

A?
SetupAcknowledge

A!
Information

B?
Setup

B!
Connect

B?
ConnectAcknowledge

A?
Connect

A!
ConnectAcknowledge

A?
CallProceeding

(11)

A!
Setup

A?
SetupAcknowledge

A!
Information

B?
Setup

B!
Connect

B?
ConnectAcknowledge

A?
Connect

A!
ConnectAcknowledge

A?
CallProceeding

(12)

A!
Setup

A?
SetupAcknowledge

A!
Information

B?
Setup

B!
Connect

B?
ConnectAcknowledge

A?
Connect

A!
ConnectAcknowledge

A?
CallProceeding

(13)

A!
Setup

A?
SetupAcknowledge

A!
Information

B?
Setup

B!
Connect

B?
ConnectAcknowledge

A?
Connect

A!
ConnectAcknowledge

A?
CallProceeding

Figure 20: The di�erent sequences of tester actions for the MSC in Figure 8

complete control over the implementation which should be tested and the test equipment.

An inconclusive case should not happen.

We assume that the pass behavior is de�ned by the MSCs. A fail is assigned if

something unexpected happens. In the test case EDSAOUX a pass is given if one of the

two postambles is performed (cf. Figure 15). The fail cases are de�ned by means of a

default behavior description (cf. Figure 16).

21

ASN1 Type Definition

Type Name : Display_type

Comments : Information element
Display, Reference 4.5.15

Type Definition

SEQUENCE
{d_id [0]
OCTET STRING (SIZE (1)),
 d_length [1]
OCTET STRING (SIZE (1)),
 d_info [2]
OCTET STRING (SIZE (0..32)) OPTIONAL}

Detailed Comments :

Figure 21: ASN.1 type de�nition Display type

5 MSCs and data descriptions

In the previous section it is shown how test case speci�cations can be described by MSCs

and how the dynamic part of a TTCN test case can be generated automatically. In order

to gain complete TTCN test cases the MSCs have to be related to data type and default

constraints de�nitions (cf. Problem 4 on Page 9), and we have to �nd a mechanism to

specify test case speci�c constraints (cf. Problem 5 on Page 9).

5.1 Data type and default constraints de�nitions

As described in Section 2.2 we can assume that data type and default constraints de�ni-

tions are given in a form which can be interpreted by a machine. The relations between

these de�nitions and the messages in an MSC are de�ned implicitly by the message name.

The message name refers to a type de�nition which itself includes, or refers to the type

de�nitions of the message parameters. We explain this by means of the test case ED-

SAOUX.

The Information message in the testbody of the test case (cf. Figure 10) refers to the

ASN.1 de�nition in Figure 6. The test case checks a part of the Display parameter format.

The Display parameter has the type Display type. The corresponding type de�nition is

shown in Figure 21.

For most messages and message parameter values the protocol standard, and the

additional user requirements provide default constraints, i.e. they de�ne default values

or restrict the value range. Also for the Information message which should be checked

by the test case EDSAOUX a default constraint exists. It is shown in Figure 22. The

constraint refers to the default constraints for the parameter values. Figure 23 presents

the default constraint of the Display parameter. The value of d id is completely de�ned

by the bit string '00101000'B. The possible values of d length are listed. Contrary to this,

the question mark states that the value of d info is not restricted. According to the type

de�nition in Figure 21 it is an arbitrary string of octets with a maximal length of 32 (in

hexadecimal form '20'H). We like to mention that the format which should be checked

by the test case EDSAOUX is encoded in d info. For the decoding of the message it is

necessary to know that d length describes the length of d info in form of a hexadecimal

string.

In the test case EDSAOUX the Information message occurs in two di�erent situations.

22

ASN1 ASP Constraint Declaration

Constraint Name : InformationDefRec

ASP Type : Information

Derivation Path :

Comments : Default constraint for Information messages which are
received

Constraint Value

{ProtocolDiscriminator ProtocolDiscriminatorDefRec,
CallReference CallReferenceDefRec,
MessageType ’01111011’B,
SendingComplete SendingCompleteDefRec IF_PRESENT,
Display DisplayDefRec IF_PRESENT,
KeypadFacility
KeypadFacilityDefRec IF_PRESENT,
CalledPartyNumber CalledPartyNumberDefRec IF_PRESENT}

Detailed Comments :

Figure 22: ASN.1 constraint InformationDefRec

ASN1 Type Constraint Declaration

Constraint Name : DisplayDefRec

ASN1 Type : Display_type

Derivation Path :

Comments : Default constraint for Display values which are
received

Constraint Value

{d_id ’00101000’B,
d_length (’00’H,
’01’H, ’02’H, ’03’H, ’04’H, ’05’H, ’06’H, ’07’H, ’08’H, ’09’H, ’0A’H,
’0B’H, ’0C’H, ’0D’H, ’0E’H, ’0F’H,
 ’10’H,
’11’H, ’12’H, ’13’H, ’14’H, ’15’H, ’16’H, ’17’H, ’18’H, ’19’H, ’1A’H,
’1B’H, ’1C’H, ’1D’H, ’1E’H, ’1F’H, ’20’H),
d_info ?}

Detailed Comments :

Figure 23: ASN.1 constraint DisplayDefRec

In the preamble it is sent by tester A (cf. Figure 8), and in the testbody it is received

by tester A (cf. Figure 10). The message type de�nitions are identical, but the default

constraints for both situations di�er. A message which shall be sent by a tester must have

concrete parameter values. Figure 24 presents the default constraint for an Information

message which is send by a tester. The constraint refers to other parameter constraints. It

has no Display parameter. The standard [3] requires that an Information message which

is send by a subscriber has no Display parameter. Therefore the Information message

de�nition declares Display as optional parameter.

For the default constraints the names of the messages are su�cient to generate the

entries in the Constraints Ref. column of the TTCN test step tables, e.g. the TTCN table

in Figure 18 (line Nr. 3) refers to the constraint in Figure 24. The MSC language need

not to be extended. Di�erent situations may require di�erent default constraints for a

message, or message parameter, but name conventions can be used to avoid ambiguities.

23

ASN1 ASP Constraint Declaration

Constraint Name : InformationDefSend

ASP Type : Information

Derivation Path :

Comments : Default constraint for Information messages which are
send

Constraint Value

{ProtocolDiscriminator ProtocolDiscriminatorDefSend,
var_CallReference CallReferenceDefSend,
var_MessageType ’01111011’B,
var_CalledPartyNumber CalledPartyNumberDefSend}

Detailed Comments :

Figure 24: ASN.1 constraint InformationDefSend

5.2 Test case speci�c constraints

Test case speci�c constraints are important for two reasons. Sometimes, it is necessary

to send speci�c message parameter values to drive the tested protocol into a state from

which the test purpose can be proved, and test purposes often include constraints on

message parameter values.

Also the test case EDSAOUX includes a test case speci�c value constraint. The test

purpose requires to check the Display parameter format of the Information message. The

format de�nition 'Fr. x.x0' (0 � x �9) (cf. Figure 4) is a constraint on the value range

of the Display parameter.

Test case speci�c constraints have to be de�ned formally when the test case is im-

plemented. Currently, the de�nition of the test case speci�c constraints is based on the

informal test purpose description in the abstract test case, the data type de�nitions and

the standards and additional requirements. We described this situation in Figure 3.

Since it is our goal to automate the test case implementation we have to suppress the

inuence of the additional requirements and standards. Our way to do this is to formalize

the data aspects of test purposes, i.e. we include the test case speci�c constraints in the

abstract test case description.

5.2.1 MSCs and test case speci�c constraints

We have two possibilities to introduce test case speci�c value constraints in MSCs. They

can be explicitly de�ned in the MSCs, or they can be de�ned elsewhere and the MSCs

refer to them.

The �rst possibility is problematic, because the constraints may become too big for

the MSC. We explain this by means of the test case EDSAOUX. The ASN.1 constraint for

the Information message which should be tested is shown in Figure 14. This constraint

refers to another constraint which checks the format of the Display parameter. It is shown

in Figure 13. However, the constraints of the Information message comprise two pages,

and they should be valid for each Information message of the MSC in Figure 10. One

will loose all clearness if the MSC and all constraints are de�ned in the same diagram.

The second possibility is problematic, because the principle of locality is violated.

24

A reference mechanism may lead to situations where the relevant parts of a test case

description are de�ned at di�erent locations.

Often, a test case speci�c constraint only di�ers slightly from an existing default con-

straint. In the test case EDSAOUX the default constraint and the test case speci�c

constraint of the Information message are only di�erent with respect to the Display pa-

rameter constraint (cf. Figures 22, 14). In such a case it is more appropriate to specify

the di�erence to a default constraint within the MSC than to rewrite the whole default

constraint.

5.2.2 A reference mechanism for test case speci�c constraints

As consequence of the discussion in the previous section we decided to develop a comfort-

able reference mechanism which

� allows to refer to self written test case speci�c constraints,

� provides possibilities to de�ne test case speci�c constraints by modifying existing

constraints, e.g. within a default constraint for a message several default constraints

for parameter values can be replaced by a test case speci�c constraint, and

� allows to de�ne test case speci�c constraints within an MSC, e.g. if a test case

speci�c constraint only comprises one concrete value.

The reference mechanism is a reference language, in the following called RL, which can

be used to specify the mentioned possibilities. Within an MSC the statements of RL are

related to messages. They can be found in parenthesis near the corresponding message

name, or message arrow (cf. Figure 10). This is no extension of the MSC language,

because the MSC standard [13] proposes to use expressions in round brackets to assign

parameter information to messages.

An RL statement consists of several parts. The parts are separated by semicolons.

Each part may consist of several subparts which are separated by commas. The structure

of an RL statement reects the structure of a corresponding message.

A message has a hierarchical structure. A part of an RL statement represents a hier-

archy level. The subparts describe elements within a hierarchy level. Figure 25 presents

an example. The message M in (a) has the parameters P1 and P2. P1 is structured in

P11 and P12. P2 comprises P21 and P22. The statement in (b) shows how the di�erent

elements of M can be referred within an RL statement. The parts and subparts of an

RL statement refer to, or are constraints for the corresponding message. In general, the

omission of a part or subpart means that the default constraint is used.

Based on such an RL statement it is possible to automate the calculation of the

references to test case speci�c constraints within the TTCN tables, and to generate test

case speci�c constraints which are based on existing constraints. In this chapter we do

not want to describe the details of RL, but an example shall give an impression of the

reference mechanism. The details can be found in [15].

The MSC in Figure 26 is the testbody of the test case EDSAOUX (cf. Figure 10).

The inscription of the Information messages (; Display:DisplayEDSAOUX) states that

25

M

P1 P2

P11 P12 P21 P22

Message

Part

Part

(a) Message structure

(<M>; <P1>, <P2>; <P11>, <P12>, <P21>, <P22>)

(b) Structure of an RL statement

Figure 25: RL statements and the message structure

the constraint for these messages is a modi�cation of the default constraint. The default

constraint for the Display parameter shall be replaced by the test case speci�c constraint

DisplayEDSAOUX. Figure 26 only indicates the replacement schematically. But, we al-

ready presented the concrete ASN.1 constraints. The default constraints for the Informa-

tion message and the Display parameter are shown in the Figures 22 and 23. The test

case speci�c constraint DisplayEDSAOUX is shown in Figure 13. The test case speci�c

constraint for the Information message which can be generated automatically is shown in

Figure 14.

6 Summary and tool support

Within the previous sections we propose a method which automates the implementation of

test cases. The inuence of informal protocol standards and user requirements is the main

problem of the current test case implementation procedure. We suppress this inuence

by extending and formalizing the description of test case speci�cations.

The MSC language plays the central role of the method, because it is the formalism

used to describe test case speci�cations. The language is extended with a few constructs

to meet the speci�c requirements of test case speci�cation. It is shown how data type and

default constraint de�nitions are related to MSCs and a comfortable reference mechanism

for test case speci�c constraints is presented. We use TTCN as description language for

executable test cases and sketch the algorithms which generate TTCN test cases fromMSC

test case descriptions. The algorithms presuppose that data type and default constraint

de�nitions are speci�ed in ASN.1 or TTCN.

The success of such a method depends on various factors. To improve the acceptance

by the users during the development of the method we try to be as close as possible to

existing and well established procedures. The success also depends on the availability of

tools which support the method. The choice of the standardized languages MSC, TTCN

and ASN.1 allows to use commercial tools for test case speci�cation and test execution.

Furthermore, we developed a set of prototype tools which implement our method.

The tool set is shown schematically in Figure 27. The tools are represented by rect-

angles and the interfaces between them by ellipses. The core of the tool set is a graphical

MSC editor which can be used to specify MSCs, to refer to, or de�ne test case speci�c

constraints, and to combine MSCs to abstract test cases. The editor transforms test

26

Information

ms c Testbody

B_SAP BA A_SAP

Information

Information

(; Display:DisplayEDSAOUX)

(; Display:DisplayEDSAOUX)

(; Display:DisplayEDSAOUX)

Information message default constraint

Cal ledPar tyNumber
KeypadFacil i ty
Display
Sen d ingC ompl e te
MessageType
Cal lReference
ProtocolDiscriminator Defa u l t

Defa u l t
Defa u l t
Defa u l t
Defa u l t
Defa u l t
Defa u l t

Message Parameter Constraint

Constraint: DisplayEDSAOUX

d_info
d_ leng th
d_i d

........

........

Element Constraint

(replacement)

Figure 26: The reference mechanism for test case speci�c constraints

case descriptions in the graphical MSC/GR form into the textual MSC/PR form. The

MSC/PR �les are the input for the MSC/TTCN generator which generates the dynamic

part of a TTCN test case in TTCN/MP form. The TTCN builder combines the output

of the MSC/TTCN generator, and the data type and constraint de�nitions to complete

TTCN test cases. The TTCN builder calculates the constraint references in the TTCN

test step tables and generates additional test case speci�c constraints which are de�ned

by our reference mechanism. All tools are implemented on a PC in a Windows 3.1 envi-

ronment.

The Figures 28 and 29 shall give an impression of the tool interfaces. Figure 28

presents the user interface of the MSC editor. The shown MSC is the preamble of the

test case EDSAOUX. The corresponding MSC/PR form and the generated TTCN/MP

form can be found in Figure 29.

27

MSC edi tor

MSC/TTCN generator

TTCN/MP test case
descript ion (dynamic part)

ASN.1 or TTCN data type
and constraints definitions

 MSC/PR tes t
case specification

executable
TTCN/MP test case

TTCN bu i lder

Figure 27: A set of prototype tools for test case speci�cation and implementation

Figure 28: The user interface of the MSC editor

28

Figure 29: MSC/PR and TTCN/MP

7 Outlook

For the application of our method in an industrial environment the interface to the ref-

erence mechanism for test case speci�c constraints should be improved. Complicated

message constraints may lead to complex statements of the reference language RL. Fur-

thermore, without detailed knowledge of the message structure the RL statements are not

easy to read. But, an RL statement can considered to be the minimum information to

generate the references to test case speci�c constraints within the TTCN tables, and to

de�ne new constraints which are based on existing ones.

However, we believe that the reference mechanism should have no inuence on the test

case speci�cation process. We started to extend the MSC editor by a graphical interface

for message constraints. The user should be enabled to check, de�ne and modify the

message constraints without knowledge of the underlying reference mechanism.

29

Acknowledgements

The elaboration of this report was funded by the KWF-Project No. 2555.1 'Graphical

Methods in the Test Process'. The author would like to thank Beat Br�andle, Dieter

Hogrefe, Roger Sch�onberger, and Charles Zehnder for supporting this work, and Iwan

Nussbaumer, Christoph R�ufenacht, Andreas Spichiger, and Stefan Suter for valuable com-

ments and suggestions.

References

[1] Abstract Conformance Test Development Team for Layers 2/3 (ACT 23). LAPD

Conformance Testing Abstract Test Suite. North American ISDN Users Forum,

February 1990.

[2] Alcatel Network Systems. Alcatel 8650 - Conformance Test System - GSM. Product

Information, Alcatel STR AG (Z�urich), 1993.

[3] CCITT. Recommendations Q.930- Q.940: Digital Subscriber Signalling Systen No. 1

(DSS 1), Network Layer, User-Network Management. The International Telegraph

and Telephone Consultative Committee (CCITT), Geneva, 1989.

[4] CCITT. Recommendations X.208 (ISO/IEC IS 8824 and 8824/AD1): Informa-

tion Processing Systems - Open Systems Interconnection - Speci�cation of Abstract

Syntax Notation One (ASN.1) and Addenum 1: ASN.1 Extensions. The Interna-

tional Telegraph and Telephone Consultative Committee (CCITT), Geneva, Novem-

ber 1989.

[5] CCITT. Recommendations X.209 (ISO/IEC IS 8825 and 8825/AD1): Information

Processing Systems - Open Systems Interconnection - Speci�cation of Basic Encoding

Rules for Abstract Syntax Notation One (ASN.1) and Addenum 1: ASN.1 Exten-

sions. The International Telegraph and Telephone Consultative Committee (CCITT),

Geneva, November 1989.

[6] J. De Man. Towards a Formal Semantics of Message Sequence Charts. In O. Faerge-

mand and A. Sarma, editors, SDL'93 - Using Objects. North-Holland, October 1993.

[7] ETSI SPS5. Integrated Services Digital Network (ISDN); Digital Subscriber Signal

No. 1 (DSS1), Abstract Test Suite (ATS) for User of Data Link Layer Protocol for

General Application. Draft prI-ETS 300 313, Reference: DE/SPS-5001, European

Telecommunications Standards Institute, February 1993.

[8] J. Grabowski, P. Graubmann, and E. Rudolph. The Standardization of Message

Sequence Charts. In Proceedings of the IEEE Software Engineering Standards Sym-

posium 1993, September 1993.

[9] J. Grabowski, D. Hogrefe, and R. Nahm. Test Case Generation with Test Purpose

Speci�cation by MSCs. In O. Faergemand and A. Sarma, editors, SDL'93 - Using

Objects. North-Holland, October 1993.

30

[10] D. Hogrefe. Estelle, LOTOS und SDL - Standard Spezi�kationssprachen f�ur verteilte

Systeme. Springer Verlag, 1989.

[11] ISO/IEC JTC 1/SC21. Information Technology - Open Systems Interconnection -

Conformance Testing Methodology and Framework - Part 3: The Tree and Tabular

Combined Notation. International Standard 9646-3, ISO/IEC, 1992.

[12] ISO/IEC TC97/SC21. Basic Reference Model. International Standard 7498,

ISO/IEC, 1984.

[13] ITU Telecommunication Standards Sector SG 10. ITU-T Recommendation Z.120:

Message Sequence Chart (MSC). ITU, Geneva, June 1992.

[14] J. Kroon and A.Wiles. A Tutorial on TTCN. In Proceedings of the 11th International

IFIP WG 6.1 Symposium on Protocol, Speci�cation, Testing and Veri�cation, 1991.

[15] Ch. R�ufenacht. Anreicherung von MSCs mit Dateninformationen zur Testfallspez-

i�kation. Diploma Thesis, University of Berne, Institute for Informatics, February

1994.

[16] Siemens AG. Product Information K1197, K1103. Siemens AG Berlin, 1993.

[17] D. Steedman. Abstract Syntax Notation One (ASN.1): The Tutorial and Reference.

Technology Appraisals, 1990.

[18] S. Suter. Die Erzeugung des dynamischen Teils von TTCN aus MSCs. Diploma

Thesis, University of Berne, Institute for Informatics, January 1994.

[19] TeleLOGIC Malm�o AB, Box 4128, S-203 12 Malm�o (Sweden). SDT 2.3, 1993.

[20] D. Toggweiler. TTCN-Testfallgenerierung f�ur mit Sequence Charts spezi�zierte

verteilte Systeme. Diploma thesis, University of Berne, March 1992.

31

