
Vision Planner for an Intelligent Multisensory Vision

System

X. Y. Jiang, H. Bunke

Institut f�ur Informatik und angewandte Mathematik

Universit�at Bern, L�anggassstrasse 51, 3012 Bern, Switzerland

Abstract

In this paper we present a multisensory vision system that is intended to

support the vision requirements of an intelligent robot system. Contrary to

many other vision systems, our system has two signi�cant new features. First,

it contains multiple sensors, object representations, image analysis and interpre-

tation methods in order to solve a number of di�erent vision tasks. Secondly,

it comprises a vision planner. Upon a task-level vision request from the robot

system, the vision planner transforms it into appropriate sequences of concrete

vision operations, executes these operations, and if necessary, �nds out alter-

native strategies. Experimental results demonstrate the clear advantage of this

combination of multiple resources with the vision planner in solving typical vi-

sion problems for robotic tasks.

CR Categories and Subject Descriptors: I.2.8 [Problem Solving, Control Meth-

ods, and Search]: Plan execution, formation, generation; I.2.10 [Vision and Scene

Understanding]: Architecture and control structures.

Additional Key Words: Robot vision, multisensory vision system, planning.

1

1 Introduction

Robots have large potential in industrial production. Properly used, they can free

humans from harmful, strenuous, or dull jobs, reduce the manufacturing cost of pro-

ducts, and improve their quality. In spite of the strong social and economic incentives,

however, only a very small fraction of the entire human work force in the world has

been replaced by industrial robots. Moreover, robots that are used in most industrial

applications today merely carry out complex movements in a structured environment

by programmed control. Any unexpected event, say a workpiece not being in its

programmed position, would lead to a manupulation failure. It is thus commonly

agreed that robots of the next generation, although not required to act or look like a

human, should be able to perform tasks that need arti�cial intelligence and exibility

[14].

Arti�cial intelligence means here the ability of a robot to perceive the actual si-

tuation it is faced with which may not be known a priori, to decide what actions

to be done, and to plan these actions accordingly. The sequences of actions to be

performed by the e�ectors of the robot are thus not preprogrammed. Instead, they

are dynamically determined depending on the current situation. In such an intelligent

robot system the use of a sensory subsystem as shown in Figure 1 is indispensable.

The sensory system supplies the robot system with an initial high-level symbolic scene

description for some robotic task, say assembly. Later on the sensory system performs,

upon request of the robot system, particular vision tasks as an aid to monitoring and

to further re�ning the robotic task.

Besides arti�cial intelligence, an intelligent robot system is also required to possess

some degree of exibility. This means the ability to perform a number of di�erent

tasks. Robot functions can be classi�ed into active and passive tasks. Active tasks

require the action of the robot e�ectors. Some examples are grasp, move, align, in-

sert, sort, assemble, walk, etc. Passive tasks include recognize, locate, verify, inspect,

etc. that are usually done passively, although sometimes manipulation is needed. In

an unstructured environment the success of an active task is crucially dependent on

the information from some passive tasks that are usually carried out by the sensory

subsystem. The robot function assemble, for example, involves the following sequence

of subtasks: position-sensor, recognize, locate, grasp, move, align, insert, and verify.

The two vision subtasks recognize and locate supply the robot system with the current

situation of the work cell. Only after they have been �nished, the actual assembly

action can begin. Thus a number of di�erent tasks an intelligent robot system should

be able to perform implies a number of di�erent vision tasks. Some examples of such

vision tasks are the determination of the location of an object of a certain type in

the actual scene, the identi�cation and localization of the topmost object in a pile of

objects, the ver�cation if a 3-D path is free of obstacles, etc. The successful execu-

tion of these vision tasks represents a precondition for any active robotic task in an

unstructured environment.

Object recognition is a di�cult problem. Like other problems in pattern recognition

2

Robot System

Execution Monitor

and

Task Planner

E�ectors

?

actions

�

request

-

feedback

Sensory System

World

�

6

Figure 1: The sensory system and its integration in an intelligent robot system.

and computer vision, it is far away from being solved in terms of straightforward

solutions to a given recognition task. Instead, plenty of object recognition methods

have been proposed in the literature [1, 2, 8, 18]. They di�er from each other in sensory

data type (intensity image, range data, � � �), object type they can handle (polyhedra,

curved objects, � � �), scene complexity (objects are isolated, touching, or overlapping),

scene and model features used, matching strategies, etc. Each recognition method has

its strength and its limitations. There is no best method for all possible recognition

problems. Even for a particular recognition task, say the localization of a known

polyhedron, there is often no consensus on the optimal recognition strategy. Since

the vision system for an intelligent robot system is required to solve a number of

quite di�erent vision tasks, and these vision tasks may dynamically arise during the

execution of some other task, for example assembly, the only design choice is therefore

a system with a rich set of sensors, object representations, and recognition strategies.

In our multisensory vision system we use two sensors, a CCD camera and a range

sensor, to acquire intensity and range images. In each step of the image data analysis

and interpretation process, multiplemethods are available in the vision system in order

to solve one out of a number of di�erent vision tasks. In such a system, however, the

control problem becomes essential. Upon a request from the robot system, the vision

system must be able to �gure out an appropriate sequence of vision operations, trigger

and monitor their execution, and in case of failure, �nd out alternative strategies. In

our vision system we call this meta-level control component the vision planner.

The rest of this paper is organized as follows. First, an overview of our multisensory

vision system is given, including a short description of the modules in the current

3

Scene Description

Vision Planner

Scene

Request
to robot system

Feedback

Sensors
Preprocessing

Experts

Images

Segmentation

Experts

Edges

Regions Structures

Relational

Experts

Interpretation Recognition

Experts

Vision

Models Models

CAD

Interface

CAD2

3

1

Layer from robot system

Figure 2: Overview of the multisensory vision system. Layer 1: data structures; layer

2: sensors and software modules; layer 3: vision planner.

prototype. Then, the vision planner is described in Section 3. Some implementation

issues are given in Section 4, followed by experimental results in Section 5. Finally,

some discussions conclude this paper.

2 Multisensory vision system

An overview of our multisensory vision system is shown in Figure 2. It contains three

layers: data structures, sensors and software modules, and the vision planner. The so-

called experts in the layer of sensors and software modules perform specialized tasks in

the vision system. These vision tasks include image acquisition, image preprocessing,

edge- and region-based segmentation, interpretation based on general, object inde-

pendent knowledge for feature grouping and noise elimination, recognition methods,

and a CAD-interface for automatic generation of vision models from CAD-models. In

each processing step, several method are available in the system. The decision which

method is actually used is made by the vision planner dependent on the particular

request from the robot system.

Appropriate data structures are used to store results from the sensors, the software

modules, and the CAD-interface. The entities to be stored include intensity and range

images, enhanced images, segmented images, attributed relational scene descriptions,

4

and vision models. Except the vision models, all these data structures are dynamically

generated during run time.

The meta-level vision planner has knowledge about all the components in the �rst

two layers. It accepts task-level vision commands from the robot system and sends the

results of the vision system back to the robot system. Upon a vision task request, the

vision planner transforms the task-level command into sequences of concrete vision

operations, executes these operations and, in case of failure, �nds out alternative

sequences of vision operations.

We have realized a prototype of this multisensory vision system which contains

the vision planner and a number of implemented modules. In the rest of this section

we give a brief description of some important modules in the prototype. The vision

planner is described in detail in Section 3.

2.1 Object recognition in intensity images

The intensity images are acquired by a CCD camera. From an intensity image, line and

junction features are extracted by means of the following steps [10, 11]: convolution of

the intensity image with a Gauss-Laplace operator; edge point detection by locating

the zerocrossings in the convoluted image with subpixel accuracy; linking of the edge

points to edge chains; segmentation of the edge chains into straight lines, arcs and

ellipses; connection of the lines at junctions and classi�cation of the junctions. The

information of lines and junctions is represented by means of an attributed graph

structure. Similar attributed graph structures for model objects are constructed by

the CAD-interface and stored in the model database. The recognition is based on the

hypothesis-and-veri�cation principle. A small number of scene features are assumed

to correspond to some model features (hypothesis generation). These correspondences

allow the unique determination of the spatial transformation that causes the model

to be transformed into the image plane. The hypothesis is then veri�ed by using the

transformation to project other model features into the image plane and check their

existence. Due to the two stage strategy this recognition method is computationally

very e�cient.

2.2 Object recognition in range images

2.2.1 Range sensing

The range sensor we use is an active system based on the coded light approach [3].

Through a sequence of n binary patterns from a projector, 3-D space can be partitioned

into 2

n

thin regions. A camera receives n images, each corresponding to one binary

pattern, and creates a stack of n bit maps assigning an n bit code to each observed scene

point. The bit code and the geometric relationship between camera and projector,

obtained through a calibration procedure, is used to calculate the distance of each

observed scene point by triangulation. Our sensor acquires a range image of 512�512

points and a registered intensity image in a few seconds. For more details see [17].

5

We have established a range image database of about 20 scenes containing up to �ve

polyhedral objects.

2.2.2 Range image segmentation through scan line grouping

The goal of range image segmentation is to partition range images into surface patches

useful for subsequent interpretation tasks. For the analysis of scenes containing only

polyhedral objects it is adequate to segment range images into planar regions. A fast

method for doing this [12] is based on the observation that in a scan line, the points

belonging to a planar surface form a straight line segment. On the other hand, all

points on a straight line segment surely belong to the same planar surface. Based

on these observations, we �rst divide each scan line into straight line segments and

subsequently do region growing using the set of line segments as the segmentation

primitives. Due to the use of straight line segments instead of the individual pixels,

the data dimension that must be handled in the region growing process can be greatly

reduced. This makes the segmentation method very fast.

2.2.3 Range image segmentation through variable-order surface �tting

Another region-based segmentation method [16] is an implementation and improve-

ment of the algorithm described in [4, 5]. It segments range images into not only

planar but also curved surface patches. In the �rst step, the range image is divided

into subimages by jump edge detection. Each subimage is subsequently divided into

smooth patches by pixel grouping based on the sign of mean and Gaussian surface cur-

vature (surface type label). Then, in each region of the same surface type label, a seed

region is extracted and expanded by iterative region growing based on variable-order

bivariate surface �tting. To improve the region boundaries, a postprocessing step has

been introduced in which each region is expanded or contracted according to its local

approximation error.

The two segmentation algorithms described in the present section and in Section

2.2.2, respectively, have been tested on range images acquired by three di�erent sen-

sors: (i) images synthesized by a ray tracer developed at our institute, (ii) real range

images from a laser range sensor, and (iii) real range images from our own database.

The segmentation results for range images from these di�erent types of range sensors

were very satisfactory and demonstrate the robustness of the algorithms.

2.2.4 Object recognition by pose clustering

From the surface patches found by the segmentation algorithms, other scene features

like vertices and lines can be easily extracted. We have implemented an object recog-

nition method using three-dimensional line segments [7]. The idea is that if we assume

a correspondence between a pair of model line segments and a pair of scene line seg-

ments, then we can compute the three-dimensional transformation that causes the

model to be transformed to the location and orientation (pose) of the object in the

6

scene. By taking all combinations of scene line pairs and model line pairs, a large

number of transformations are produced. Among them, the correct transformation,

i.e., the one that causes the model to coincide with an object in the scene, will occur

much more frequently than incorrect transformations. Thus, the transformations that

have a high frequency establish the identi�cation and location of model objects in the

scene. Note that since straight line segments are used for matching, this method works

only for polyhedral objects.

2.2.5 Object recognition by subgraph isomorphism search

We have developed another object recognition method by subgraph isomorphism

search [19]. From the segmentation results we construct a scene graph where a node

stands for a surface patch while an edge represents the neighborhood relationship be-

tween two surface patches. The graph nodes and edges get assigned attributes, such

as area, surface type (planar, curved), angle between two neighboring surface patches,

etc. Similar attributed graph structures for model objects are constructed by the

CAD-interface and stored in the model database. If part of the scene is an instance of

a model object, then the corresponding part in the scene graph must be a subgraph

of the model graph and the attributes in both graphs should be compatible. Thus,

object recognition can be done by a subgraph isomorphism search. In our actual im-

plementation we have introduced a special clustering method for the surface patches in

combination with an extensive use of geometric constraints. This leads to a subgraph

isomorphism search of linear time complexity.

2.3 CAD-interface

In our vision system, object recognition is model-based. As described in the previous

sections we use a number of di�erent recognition strategies, each of which needs a

di�erent model representation. An attractive method for the automatic generation of

object models is that of CAD-model transformation. In industrial applications the

integration of CAD-models is advantageous since CAD-representations of the objects

under study are usually available, due to the application of CAD-systems in the process

of object design. On the other hand, geometric representations common in CAD-

systems usually cannot be directly applied for object recognition. To overcome this

problem, we have built a CAD-interface [9] that automatically constructs the model

representations from CAD-models generated by the commercial CAD-system Prime-

Medusa.

3 Vision planner

The ultimate goal of our multisensory vision system is to meet the needs of various

vision tasks required by an intelligent robot system. The robot system sends task-level

vision commands to the vision system. It is then the objective of the vision planner

7

to decide how the vision system should proceed to perform the required vision task.

To do this, the vision planner must have knowledge about the modules in the system

and the data structures used to store the results produced by the individual modules.

Upon a request from the robot system, the vision planner transforms the task-level

command into sequences of concrete vision operations by using the knowledge base,

executes these operations, and if necessary, �nds out alternative vision operations.

Finally, the vision planner sends the results of the vision system back to the robot

system to support its operations in an unstructured environment.

3.1 Communication with the robot system

One task of the vision planner is to communicate with the robot system. It accepts

task-level vision commands from the robot system. Examples of the particular tasks

to be performed by the vision system are

� �nd object X of model database Y in the scene,

� �nd all objects of model databases Y

1

; Y

2

; � � � ; Y

m

in the scene,

� �nd the topmost object in the scene.

In the present version of the system, the �rst two items of this list have been imple-

mented. After planning and executing concrete vision subtasks necessary to perform

the overall task-level vision request, the vision planner sends the results of the vision

system back to the robot system. The feedback from the vision planner corresponding

to the above vision commands is

� the location of object X in the scene,

� the identi�cation and location of all objects found in the scene,

� the identi�cation and location of the topmost object in the scene.

The robot system makes use of this information to guide its operations in an unstruc-

tured environment. Later on new vision tasks may arise, say in order to verify the

assembly result or to support new robotic tasks. Then the robot system sends again

task-level vision commands to the vision planner. The vision planner has to �nd out

appropriate strategies to perform the new vision task and sends the results back to

the robot system. Thus the robot system and the vision system work together in a

request-and-feedback cycle.

3.2 Knowledge base

The vision planner transforms the task-level vision command from the robot sys-

tem into sequences of concrete vision operations, executes these operations, and if

necessary, �nds out alternative strategies. Thus it can be regarded as a meta-level

8

Root

? ?

Range image acquisition

?

Median �lter

?

Seg. by scan line grouping

?

Seg. by function approxi.

?

Line segment extraction

?

Rec. by pose clustering

??

Rec. by isomorphism

Intensity image acquisition

?

Gauss-Laplace operator

?

Line detection

?

Junction grouping

?

Rec. by graph matching

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

Figure 3: The module network.

component of our multisensory vision system. In order to do planning, the vision

planner must have knowledge about all other components in the system. Referring to

Figure 2, our vision system contains, besides the vision planner, modules for various

vision subtasks and data structures. Thus, the knowledge base of the vision planner

is divided into a part module knowledge and a part data structure knowledge.

3.2.1 Module network

The information on all modules available in the system is stored in a module network.

Shown in Figure 3 is part of the module network containing the modules described in

Section 2. Each module corresponds to a node in the network and is represented by a

frame. Information about a module is stored in the slots of the corresponding frame.

In the current version of the vision planner, two types of information are provided:

� runtime: the computation time of the module,

� predecessors: a list of possible predecessor modules.

9

The computation time of a module may be a constant T , or a function of some sys-

tem parameters f(P

1

; P

2

; � � � ; P

m

). For example, the computation time of a low-level

�ltering operation (median �lter or Gauss-Laplace operator) depends on the image

resolution. Other modules, say region-based image segmentation or object recogni-

tion, require a variable computation time, dependent on the scene complexity. In this

case we assign a range (T

1

; T

2

) to the runtime slot and the average

T

1

+T

2

2

is considered

later as the actual computation time.

The slot \predecessors" stores the information on the temporal sequence of the

modules. For a particular module M , this slot has the form

((M

1

; C

1

); (M

2

; C

2

); � � � ; (M

n

; C

n

));

meaning that the modules M

1

;M

2

; � � �, or M

n

can be used to supply the data needed

by module M . In certain situations the predecessor relationship betweenM and some

M

i

is not always meaningful, but crucially depends on the current vision task. In

order to determine the location of an object X in the scene, for example, we may use

the module \Rec. by isomorphism" in the module network. If X is a polyhedron, we

may use either of the two region-based range image segmentation modules \Seg. by

scan line grouping" or \Seg. by function approxi." to get the information necessary

for the recognition task. If X is a curved object, however, the module \Seg. by scan

line grouping" is no more an adequate predecessor of the recognition module since

this segmentation module only partitions the range image into planar surface patches.

To represent this kind of task-dependent predecessor relationships we associate each

predecessor relationship between M and M

i

with a condition C

i

. For the example

above this condition is formulated as \the object domain is polyhedral". In most

cases C

i

=true. In Figure 3 the predecessor relationship between M and M

i

is shown

by an arrow from M

i

to M . The predecessor condition C

i

is illustrated by a solid

arrow for C

i

=true, and by a dashed arrow otherwise.

While all frames in the module network have the runtime and predecessor infor-

mation, some frames possess some additional slots. The most important examples are

the recognition modules. They contain also slots with information about

� function: the function of the recognition module,

� domain: the object domain they can handle.

The slot \function" may have the value �nd-one, �nd-all, or �nd-top, corresponding

to the di�erent kinds of vision tasks requested by the robot system. Upon a particular

request, this slot enables the planner to �nd out those recognition modules that are

potentially useful to solve the vision task.

Not only the function of a module but also the object domain it can handle deter-

mines its usefulness for a particular vision request. If the vision system is required to

�nd the location of a curved object in th scene, for example, then the module \Rec.

by pose clustering" should not be considered as a candidate since it can only recognize

polyhedral objects. The slot \domain" may have one of the values polyhedral, curved,

or free-form.

10

The goal of the vision planner is to plan sequences of vision subtasks and to execute

them. For the purpose of execution, the vision planner must have knowledge about

the calling convention and the input/output data structures of each module in the

network. In our system this information is coded in a procedure attached to each

module. The execution of a module is done by calling its corresponding procedure.

It takes appropriate data structures generated by earlier modules and establishes new

data structures for the output of the current module. Then the actual execution of

the module is triggered. After the execution the control is given back to the vision

planner.

3.2.2 Data structures

Besides the modules in our multisensory vision system the meta-level vision planner

has also knowledge about the data structures necessary to store the results from the

modules and the vision models from the CAD-interface. As stated in Section 2, all data

structures other than the vision models are dynamically generated during run time.

The knowledge about these dynamic data structures is also coded in the procedure

attached to eachmodule that makes use of data structures generated by earlier modules

and produces new data stuctures for later use.

The vision models automatically constructed by the CAD-interface are organized

in a number of model databases. Each model database contains

� a list of model names,

� the domain of the models. This may be polyhedral, curved, or free-form, corres-

ponding to the domains of the recognition modules.

In our vision system object recognition uses the model-based approach. Thus, each

recognition module involves some model from the model databases to guide the actual

recognition task.

3.3 Planning

Upon a task-level vision request from the robot system, the actual planning in the

vision planner is done by a goal-driven best-�rst search process. The search begins

with those modules whose function satis�es the request and recursively generates their

predecessors. A solution is found if the special node Root in the module network is

reached. During the search the di�erent subpathes in the search space are rated by

an evaluation function so that always an optimal solution is found. Then the vision

planner executes the modules of the optimal solution. If the execution is successful, the

vision planner feeds the �nal results back to the robot system and starts a new request-

and-feedback cycle. Otherwise the vision planner does a replanning by continuing the

search to �nd out alternative strategies.

11

3.3.1 Search

Given an object recognition request, we can easily determine the function (�nd-one,

�nd-all, or �nd-top) and the object domains (polyhedral, curved, or free-form) it

concerns. While the function comes immediately from the request, the domains can

be derived from the particular object to be localized or the model databases speci�ed

in the request. The function and the object domains determine those recognition

modules and in turn those sequences of modules that are potentially able to solve the

current vision task. These two entities build the input to the goal-driven best-�rst

search.

The search process is described in pseudocode in Figure 4. First, two �lters are

applied to the set of all object recogntion modules to �lter out modules that obviously

cannot solve the current vision task. After the function �lter has been applied, only

those modules remain whose slot function contains the input variable function. Simi-

larly, the domain �lter retains only modules that can handle the object domains in the

input variable domains. Thus, the modules in the �nal set are all potential candidates

for solving the current vision task.

The actual search is the well-known best-�rst search. Here we assume an eva-

luation function f to be available. It rates all the subpathes expanded so far in the

OPEN list. In the present version of the planner, this function is the total computation

time of a sequence of modules. Note that for node expansion, the predecessors are

�rst checked against the predecessor conditions described in Section 3.2.1. Thus, only

those predecessors whose condition is satis�ed are really expanded. Since the OPEN

list is sorted after each node expansion, the subpath corresponding to the �rst node

in this list is always the optimal one among all subpathes expanded so far. Once the

�rst element of OPEN, N, is the special module Root in the module network, we have

reached an optimal sequence of modules that can be immediately executed.

For the purpose of execution we �rst �nd out the modules of this new sequence by

following the pointers established during the search process. In the replanning phase

the current sequence is compared with earlier sequences so that work already done

will not be unnecessarily repeated (see next section for more details). The modules

contained in the variable new sequence are then executed. In practice this is done

by calling the procedure attached to each module in the sequence that ensures a

correct information (data structure) exchange between the modules. If the execution

is successful, the search process stops. Otherwise the replanning phase starts to �nd

out alternative strategies.

3.3.2 Replanning

The replanning is simply a continuation of the search process described above in order

to �nd and execute the nth (n = 2; 3; � � �) optimal sequence in turn. The search

continues until the execution of some sequence is successful, or the module network

has been exhaustively searched and no new sequence can be found (OPEN=�).

In contrast with the �rst optimal sequence, some redundancy may occur during the

12

Input: function /� �nd-one, �nd-all, �nd-top �/

domains /� polyhedral, curved, free-form �/

begin

/� initialization �/

1: rec modules := f all object recognition modules g

2: rec modules := function �lter(rec modules, function)

3: rec modules := domain �lter(rec modules, domains)

/� search �/

4: sequences := �

5: OPEN := rec modules

6: sort OPEN according to the evaluation function f

7: if OPEN=� then return (failure)

8: N := �rst element of list(OPEN)

9: if N 6=Root then

/� node expansion �/

10: predecessors := fpredecessors of Ng

11: predecessors := predecessor �lter(predecessors)

12: OPEN := OPEN [predecessors

13: establish a pointer from each new element of OPEN to N

14: sort OPEN according to the evaluation function f

15: else

/� execution �/

16: new sequence := track solution(N)

17: new sequence := delete redundancy(new sequence, sequences)

18: execute the modules in new sequence

19: if successful then return (success)

20: sequences := sequences [fnew sequenceg

21: endif

22: goto 7

end

Figure 4: The goal-driven best-�rst search.

13

execution of later sequences. To illustrate this point let's assume the �rst and second

optimal sequence being

S

1

= fM

11

;M

12

; � � � ;M

1m

g; S

2

= fM

21

;M

22

; � � � ;M

2n

g

respectively. Let's furthermore suppose that the �rst two modules of S

1

and S

2

are

the same, say,

M

11

= M

21

= Range image acquisition; M

12

= M

22

= median �lter:

Then after �nding the sequence S

2

, if we simply execute it, the range image acquisition

and the median �ltering would be unnecessarily done again. Similar situations may

not only occur between sequences i� 1 and i, but also between sequences i� k and i,

k > 1. In order to avoid this kind of redundancy we save all sequences found so far in

the variable sequences. Once a new sequence is found, it is compared with all earlier

sequences and only that part of the sequence not already done is actually executed.

For the example above the execution of the sequence S

2

means just that of the modules

M

23

; � � � ;M

2n

.

4 Implementation

We have implemented a prototype of the vision planner described in the last section on

Sun workstations with Common Lisp and Common Lisp Object System (CLOS) [13,

15]. The current version runs in the interative Lisp environment. The communication

with the robot system is simulated by a dialog with the user. The syntax of the vision

commands are

(find-one-object 'database 'object)

(find-all-objects '(database database ...))

(find-top-object '(database database ...))

where database is one of the two model databases �db-poly� and �db-curved� cur-

rently de�ned in the system and object is one of the models in a certain model

database.

The best-�rst search for the planning requires an evaluation function f that rates

the candidate sequences of modules so that always the optimal one is found. In our

prototype this evaluation function is set to the total computation time of a sequence

of modules. Therefore, the solution with the least computation time is tried at �rst.

The prototype contains the modules described in Section 2. Since they have been

developed in their own right and are now available not as subroutines but as stand-

alone programms, the integration of these modules into a single system is realized at

the operating system level. That is, the vision planner triggers the execution of these

programms by sending an execution request to the operating system. The exchange

of data structures is accomplished through �les.

14

5 Experimental results

By two examples we demonstrate in this section the ability of the vision planner to

�nd appropriate strategies for di�erent vision tasks. In the �rst example, we assume

that the task of the vision system is to recognize all polyhedral objects in the scene.

The corresponding task-level vision command is

(find-all-objects '(*db-poly*))

The �rst solution found by the vision planner is

Sequence S1:

Range image acquisition

Median filter

Seg.by scan line grouping

Rec.by isomorphism

Note that for the current vision task, the predecessor condition between the modules

\Rec. by isomorphism" and \Seg. by scan line grouping" is satis�ed and thus this

predecessor relationship is actually used during the planning. Then the vision planner

starts to execute this sequence. The range image acquired is shown in Figure 5(b). Also

shown in Figure 5(a) is the intensity image of the test scene in order to give the reader

a better understanding of the objects present in the scene. Figure 5(c) represents the

segmentation result using the module \Seg. by scan line grouping" where the planar

surface patches are colored by four grey levels in such a way that no two neighboring

surface patches get the same grey level. Note that the segmentation result reveals some

oversegmentation of large planar surfaces (the supporting plane and the wall behind

the objects) into several smaller surface patches with similar orientation. If necessary,

however, these patches can be merged later in the interpretation process and thus cause

no serious problems. The module \Rec. by isomorphism" successfully recognizes the

three objects in the scene and the pose of the objects is drawn in Figure 5(d). Since

the �rst sequence succeeds, no replanning takes place and the vision planner returns

the result back to the robot system.

The second example is to recognize an I-shaped objectM

I

from the model database

�db-poly� in the scene shown in Figure 6(a). The object M

I

is located in the shadow

area behind the large polyhedral object. The vision command

(find-one-object '*db-poly* 'IShape)

is given by the user where IShape is the actual name ofM

I

is the model database. The

�rst sequence found by the vision planner equals that in the �rst example. The range

image acquired during the execution of this sequence is shown in Figure 6(b). For this

test scene the area around the objectM

I

is seen by the camera but not illuminated by

the projector. Thus, no range data can be computed for this area. Accordingly, after

executing the median �ltering, segmentation and recognition modules, the object M

I

cannot be identi�ed in the scene. This failure causes the vision planner to �nd the

15

Figure 5: Scene 1. (a) intensity image. (b) range image.

16

Figure 5: (Cont.) Scene 1. (c) segmentation result. (d) recognition result.

17

Figure 6: Scene 2. (a) intensity image. (b) range image.

18

Figure 6: (Cont.) Scene 2. (c) edge points. (d) attributed graph and recognition

result.

19

next candidate sequence

Sequence S2:

Range image acquisition

Median filter

Seg.by scan line grouping

Line segment extraction

Rec.by pose clustering

As stated in Section 3.3.2 we compare a new sequence found in the replanning phase

with all earlier sequences to avoid unnecessary reexecution of identical modules. Based

on this comparison the vision planner decides to execute only the last two modules

\Line segment extraction" and \Rec. by pose clustering" using data structures pro-

duced during the execution of the sequence S1. Obviously, the sequence S2 cannot be

successful either. The next replanning cycle �nds

Sequence S3:

Intensity image acquisition

Gauss-Laplace operator

Line detection

Junction grouping

Rec.by graph matching

The intensity image acquired is shown in Figure 6(a). The edge points in subpixel

accuracy are drawn in Figure 6(c), and the attributed graph in terms of lines and

junctions in Figure 6(d). The object M

I

is successfully recognized and localized. The

result is shown in Figure 6(d) by projecting the model back into the scene (the dash

lines).

6 Discussions and conclusions

In this paper we have presented a multisensory vision system that is intended to

support the vision requirements of an intelligent robot system. Contrary to many

other vision systems our system has two signi�cant new features. It contains multiple

sensors, object representations and object recognition strategies, and is controlled by

a vision planner. So far, a number of modules have been implemented and successfully

tested on real intensity and range images. The two examples discussed in last section

illustrate the advantage of such a vision planner based multisensory vision system.

The availability of multiple sensors, and image analysis and interpretation methods

makes our vision system much more exible than many conventional approaches to

meet the need of various vision requests from an intelligent robot system. The vision

planner ensures that the appropriate sequence of modules is chosen for a given task-

level vision command. As a whole a highly powerful vision system results which is

able to support the sensory requirement of robots of the next generation.

20

To make our multisensory vision system to actually work in an unstructured en-

vironment the current prototype must be extended in a number of ways. First of

all, more modules should be integrated into the system to extend the functionality of

the system. Potential new modules could be the identi�cation and localization of the

topmost object in a pile of objects [20], matching of free-form surfaces [6], a.s.o. In a

working system the integration of the modules should be realized at a low level. That

is, the modules are coded as subroutines and the exchange of information between

the modules is done through internal data structures instead of �les as in the current

prototype.

Given a larger number of modules the maintenance of the system becomes more

important. For the purpose of easy maintenance a viewing and editing tool for the

knowledge base should be added to the system. That allows the visual representation

of the knowledge base, in particular the module network. Instead of adding Lisp codes,

the addition of new modules will be greatly simpli�ed by using the tool. Furthermore,

the visualization of the planning process may be desireable, too. All these auxiliary

tools will make the system more transparent and easier to maintain.

Finally, it is worth to mention that some of the modules integrated in the current

prototype have been adopted from the literature while the others are our own new

developments. Although these new techniques have been developed in the context of

our multisensory vision system, they are valuable in their own right and can also be

used in other applications. Some examples of these new developments are the fast

range image segmentation method [12] and the object recognition method in intensity

images [10, 11] and range images [19]. Also, the CAD-model transformation approach

for automatic generation of vision models [9] is becoming more and more important

and may make a large contribution to the area of automatic model construction.

References

[1] F. Arman, J. K. Aggarwal, Model-based object recognition in dense-range images

- A review, ACM Computing Surveys, Vol. 25, No. 1, 5{43, 1993.

[2] P. J. Besl, R. C. Jain, Three dimensional object recognition, ACM Computing

Surveys, Vol. 17, No. 1, 75{145, 1985.

[3] P. J. Besl, Active, optical range imaging sensors, Machine Vision and Applica-

tions, Vol. 1, No. 2, 127{152, 1988. Also in J. L. C. Sanz (Ed.), Advances in

machine vision, 1{63, Springer-Verlag, 1989.

[4] P. J. Besl, R. C. Jain, Segmentation via variable-order surface �tting, IEEE Trans.

on Pattern Analysis and Machine Intelligence, Vol. 10, No. 2, 167{192, 1988.

[5] P. J. Besl, Surfaces in range image understanding, Springer-Verlag, 1988.

[6] P. J. Besl, The free-form surface matching problem, in H. Freeman (Ed.), Machine

vision for three-dimensional scenes, 25{71, Academic Press, 1990.

21

[7] B. Boyter, J. K. Aggarwal, Recognition of polyhedra from range data, IEEE

Expert, Vol. 1, No. 1, 47{59, 1985.

[8] J. P. Brady, N. Nandhakumar, J. K. Aggarwal, Recent progress in object recog-

nition from range data, Image and Vision Computing, Vol. 7, No. 4, 295{307,

1989.

[9] T. Glauser, E. Gm�ur, X. Y. Jiang, H. Bunke, Deductive generation of vision re-

presentations from CAD-models, Proc. of 6th Scandinavian Conference on Image

Analysis, 645{651, Oulu, Finland, 1989.

[10] E. Gm�ur, Robuste und e�zienteErkennung von 3D Objekten mittels Hypergraph-

Homomorphismen, in R. E. Grosskopf (Ed.), Mustererkennung 1990, Informatik-

Fachberichte 254, 667{674, Springer-Verlag, 1990.

[11] E. Gm�ur, PHI-2: Ein e�zientes und robustes Sichtsystem zur Erkennung dreidi-

mensionaler Werkst�ucke, Technical Report, IAM-90-016, 1990.

[12] X. Y. Jiang, H. Bunke, Fast segmentation of range images into planar regions by

scan line grouping, Machine Vision and Applications. (to appear)

[13] S. E. Keene, Object-oriented programming in Common Lisp, Addison Wesley,

1989.

[14] D. Nitzan, Development of intelligent robots: Achievements and issues, IEEE

Journal of Robotics and Automation, Vol. 1, No. 1, 3{13, 1985.

[15] A. Paepcke (Ed.), Object-oriented programming: the CLOS perspective, The

MIT Press, 1993.

[16] R. Robmann, Segmentierung von Tiefenbildern, Master's Thesis, 1991.

[17] T. G. Stahs, F. M. Wahl, Fast and robust range data acquisition in a low-cost

environment, Proc. of ISPRS-Conference, SPIE Vol. 1395, Zurich, 496{503, 1990.

[18] P. Suetens, P. Fua, A. J. Hanson, Computational strategies for object recognition,

ACM Computing Surveys, Vol. 24, No. 1, 5{61, 1992.

[19] A. Ueltschi, Modellbasierte Objekterkennung in Tiefenbildern, Technical Report,

IAM-93-018, 1993.

[20] H. S. Yang, A. C. Kak, Determination of the identity, position and orientation of

the topmost object in a pile, Computer Vision, Graphics, and Image Processing,

Vol. 36, 229{255, 1986.

22

