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Abstract

1

Within this paper a method for the generation of test cases for conformance tests is

presented. The method is based on a formal speci�cation written in CCITT SDL [CCI92b]

and on Message Sequence Charts (MSCs) [CCI92a]. It assumes that the purpose of a

test case is given by at least one MSC. Although SDL was chosen as formal description

technique and MSCs were chosen to express test purposes, in principle, the presented

method should work for any formal speci�cation which can be represented as labeled

transition system and for any test purpose which can be described by a �nite automaton.

CR Categories and Subject Descriptors: C.2.0 [Computer-Communication Net-

works]: General; C.2.2 [Computer-Communication Networks]: Network Protocols; D.2.5

[Software Engineering]: Testing and Debugging
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1 Introduction

Formal description techniques (FDTs, i.e. LOTOS, Estelle, or SDL) frequently are used

within industry and standardization bodies to describe the functional properties of commu-

nication systems (e.g. OSI or ISDN). FDT descriptions can be simulated and the possible

interactions between a system and its environment can be generated automatically. Al-

though test cases describe such interactions the automatic generation of test cases from

FDT descriptions is still an open problem. The basic problems deal with the questions:

How long is a test case? What is the test verdict (e.g. PASS, or FAIL)? and What can

be concluded from a test verdict? Furthermore, there exists a gap between research and

practical testing.

Research: Approaches coming from research like UIO [Wez90] or theW-method [Cho78]

can handle systems with a small state space. They test every state transition exactly one

time. Therefore, the length of the test cases is determined and the test verdicts are

PASS and FAIL. From a PASS verdict a behavioural equivalence between speci�cation

and implementation can be concluded. The problems of these methods are state explosion

and in�nite state spaces.

State explosion occurs because of exponential relations between a speci�cation and its

state space. This means for example that the state space exponentially grows with the

number of processes, or with the size of bu�ers. Even small examples cause problems for

UIO or the W-method.

None of the mentioned methods can be applied to systems with an in�nite state space.

Unfortunately, FDTs force the description of systems with an in�nite state space. In�nite

signal queues of SDL processes or unlimited data descriptions are two examples for this.

However, there can not exist test methods which guarantee behavioural equivalence for

systems with an in�nite state space. Even �nite state machines which communicate by

means of unbounded FIFO bu�ers (i.e. the base model of SDL) are as powerful as Turing

Machines [BZ83] for which the behavioural equivalence is undecidable [HU79]. For testing

the situation is more complicated since there is in general no knowledge about the whole

implementation. Only the interactions between an implementation and its environment

are observed for a certain time. One solution is to guarantee a �nite state space by giving

static restrictions to the speci�cation. But such restrictions often are also undecidable and

they do not prevent state explosion [Fin88].

Practical Testing: Real systems are very complex and approaches like UIO or the W-

method can not applied. The present procedure of writing test cases is an intuitive and

creative process which only is restricted by informal regulations. The intuition behind a

test case is reected by the so-called test purpose. A test purpose denotes an important

part of a speci�cation which should be tested. The meaning of the term important part of

a speci�cation often is a philosophical problem. Some people argue that one has to select

test cases which check the normal behaviour of a system (e.g. correct data transmission),

since this reects the main purpose of a system. Other people think that one has to test

the critical parts of a speci�cation (e.g. error handling), since in general the normal cases

have been tested thoroughly by the implementors.
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Figure 1: Architecture of the Inres protocol

Our approach: Our approach does not solve the mentioned philosophical problem but

it supports practical testing. It combines test purposes de�ned by Message Sequence

Charts (MSCs) [CCI92a, GR92] and a corresponding SDL description [CCI92b] in order

to generate test cases.

MSCs (cf. Figure 2) are a widespread means for the graphical visualisation of selected

system runs of communication systems [GGR]. A test purpose can be de�ned by an MSC

in form of the required signal exchange

2

. An MSC does not de�ne a complete test case. It

does not describe the signal exchange which drives the implementation into a state from

which the MSC can be performed (preamble). It does not de�ne the stimuli which are

necessary to drive the implementation back into an initial state after the MSC is observed

(postamble). It does not de�ne what to do if a signal is observed which is not de�ned in the

MSC, and it does not describe the values of message parameters. The missing information

can be provided by an additional FDT description. We choose SDL as FDT because SDL

is more used within industry and standardization bodies (e.g. CCITT, ISO/IEC, or ETSI)

than any other standardized FDT [Hog91a].

The rest of the paper is organized in the following way. In chapter 2 the basic ideas

of our approach are presented by means of an example. We formalize our approach by

relating the traces of an SDL description and an MSC. For generating the required traces

SDL descriptions are interpreted as labeled transition systems and MSCs are interpreted

as �nite automatons. The models for this formalization are de�ned within chapter 3 and

the test case generation is explained in chapter 4. In chapter 5 a tool is presented which

implements the described method. Finally, a summary and an outlook are given.

2 The basic ideas

In the following the basic ideas for using MSCs together with SDL descriptions as the

basis for test case generation are illustrated by means of an example which is taken from

the behaviour of the Inres protocol [Hog91b].

2

It should be noted that some test purposes (e.g. time constraints, or reliability requirements) can

not be expressed by MSCs. But the use of MSCs for describing the class of test purposes which can be

expressed seems to be common industrial practice. Therefore, we concentrate on MSCs.
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2.1 Structure and behaviour of the Inres protocol

In the sequel the Inres protocol is briey introduced. The architecture of the Inres pro-

tocol is shown in Figure 1. The Inres protocol renders a connection-oriented service for

data transmission. It uses a connectionless service. Data are transported from an Initia-

tor entity to a Responder entity. The used service is called Medium service. Messages

exchanged between Initiator, Initiator User, Responder, Responder User and Medium are

called service primitives (SPs) and the information units exchanged between Initiator and

Responder are called protocol data units (PDUs).

The Inres protocol works in three phases: connection establishment, data transfer and

disconnection (cf. Figure 2). For a connection establishment the Initiator gets a connection

request CONreq from its user, then sends a CR to the Responder and waits for a connection

con�rmation CC in return. After receiving CC the Initiator gives a CONconf to its user

and the connection is established. If a CC does not arrive within some time limit, the

Initiator will retransmit CR for three times. Afterwards, the Initiator indicates the failed

connection establishment by a DISind.

When the Responder receives a CR from the Initiator it gives a connection indication

CONind to its user and waits for a response CONresp in return. Upon arrival of CONresp,

the Responder sends a CC to the Initiator and waits for a �rst data package DT.

After connection establishment data can be transferred. The Initiator User gives a

data request DATreq to the Initiator, which then sends a DT to the Responder and then

waits for an acknowledgement AK. If the AK does not arrive within some time limit the

Initiator retransmits the DT for three times. Afterwards, the Initiator assumes that the

connection is distroyed and indicates this by giving a DISind to its user. If the AK arrives

in time, the next data package, if present, is sent. When the Responder gets a DT form

the Initiator, it acknowledges the DT with an AK and gives a data indication DATind to

its user. Afterwards the Responder waits for the next DT.

A disconnection can be initiated by a DISreq from the Responder User. Upon arrival of

a DISreq the Responder sends a DR to the Initiator which then indicates the disconnection

by an DISind to its user.

Initiator and Responder have to use the Medium service for their communication. The

Medium service can be accessed by a data request MDATreq for transmission and by a

data indication MDATind for reception. The PDUs CR, CC, AK, DT and DR can be

considered as being parameters of MDATreq and MDATind. The MSC in Figure 2 shows a

complete system run including connection establishment, data transfer and disconnection.

2.2 Testing the retransmission of the Initiator

A suitable test architecture for testing the Initiator entity of the Inres protocol might

be the distributed test method [ISO91a] as sketched in Figure 3. The architecture of

the Inres protocol (cf. Figure 1) can be adjusted to the distributed test method. The

Responder is replaced by the lower tester (LT) and the upper tester (UT)

3

plays the role

of the Initiator User. It is assumed that the test architecture is an SDL description which

can be derived from the system speci�cation. LT and UT are modeled as SDL processes

3

UT and LT communicate via so-called points of control and observation (PCOs) with the IUT. For

simpli�cation the PCOs are not mentioned within the test case descriptions (e.g. Figure 4 and 5), but it

is assumed that each tester serves its own PCO.
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DISreqMDATreq(DR)MDATind(DR)DISind

Initiator_User Initiator Medium Responder

MDATreq(CR) MDATind(CR) CONindCONreq

CONrespMDATreq(CC)MDATind(CC)CONconf

DATreq MDATreq(DT) MDATind(DT) DATind

MDATind(AK) MDATreq(AK)

Responder_User

Connection Establishment

Data Transfer

Disconnection

Figure 2: Complete system run of the Inres protocol

Medium

IUT

UT
LT

PCO1

PCO2

Figure 3: Distributed test method

which can send and receive any valid signal at any time

4

. A similar approach is used in

[BRP89]. The system under test (SUT) consists of an Initiator implementation which is

the implementation under test (IUT) and a Medium implementation which is assumed to

work correct.

We want to concentrate on testing a part of the retransmission property. In particular,

we want to test whether it is possible to perform a correct connection establishment after

the third retransmission of the CR.

The MSC in Figure 4 shows a scenario which one may think about in the context of

testing the retransmission property. The UT initiates a connection by CONreq. The LT

waits for three CRs before it answers with CC which will then in return result in CONconf

at the UT. Since the MSC in Figure 4 does not claim to de�ne the entire scenario, it cannot

assumed that MSCs provides complete test information.

2.3 The meaning and the representation of test cases

The method presented in this paper is based on the assumption that an MSC de�nes a

speci�c part of a test case, the so-called test purpose. For explaining this the meaning of

the terms trace, observable and test case has to be introduced, and the representation of

test cases has to be described.

4

For systems with a synchronous communication mechanism exists a simpler approach to de�ne the

behaviour of the tester. The inputs and outputs of the system which can be observed by its environment

are inverted. Inputs become outputs and vice versa. Brinksma [Bri87] uses this technique to de�ne the

canonical tester.
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Initiator Medium

CONreq MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATreq(CC)MDATind(CC)CONconf

MDATind(CR)

MDATind(CR)

UT LT

Figure 4: Connection establishment after the third retransmission of CR

Traces and observables: A trace describes the ordering of events which are performed

during a system run. A trace of an SDL description may include the events tasks, inputs,

outputs, saves, etc. of its processes. An MSC is a possible representation of an SDL trace.

For testing only inputs and outputs of LT and UT are interesting

5

. Therefore, we call a

trace which only includes inputs and outputs of LT and UT an observable.

An informal de�nition of test cases: A test case is de�ned in order to prove a speci�c

test purpose. A test purpose might be a set of events which have to be performed, or a set

of states which have to be reached by the IUT. A test case describes a set of observables.

Each observable leads to a test verdict.

The test verdicts are PASS, INCONCLUSIVE and FAIL. PASS is given when the

test purpose is reached, FAIL is assigned when the SUT behaves in an incorrect way and

INCONCLUSIVE is given if neither FAIL nor PASS can be assigned.

A test case can be structured into three parts which are called preamble, testbody

and postamble. The testbody describes observables which indicate that the IUT behaves

according to the test purpose. The preamble drives the IUT from an initial state into

a state from which the testbody can be performed. The postamble checks whether the

testbody ends up in the correct state after it has been performed and drives the IUT back

into an initial state from which the next test case can be applied.

The representation of test cases: Test cases for conformance tests are usually rep-

resented by the Tree and Tabular Combined Notation (TTCN) which is standardized by

the ISO/IEC [ISO91b]. A TTCN test case for an Initiator implementation of the Inres

protocol may look like the table in Figure 5. TTCN describes observables by means of a

tree notation (cf. Behaviour Description in Figure 5).

The tree structure is determined by the ordering and the indent of the events. In

general, the same indent denotes a branching (i.e. alternative events, e.g. lines Nr. 2 and

Nr. 15 in Figure 5) and the next larger indent denotes a succeeding event (e.g. lines Nr. 1

and Nr. 2 in Figure 5).

Events are characterized by the involved instance (i.e. LT or UT), by its kind (i.e. "!"

denotes an output, "?" describes an input) and by the SP which has to be send or received.

5

It should be noted that SUT, LT and UT in general exchange SPs.
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Detailed Comments :

Test Case Name :
Group :
Purpose :
Default :
Comments :

1
2
3
4
5

Test_Case_1
Inres_Protocol/Initiator_Test/Connection_Establishment

(PASS)

LT?MDATind(CR)
LT?MDATind(CR)

LT?MDATind(CR)
LT!MDATreq(CC)

LT!MDATreq(DR)

INCONC

6
7
8
9
10
11
12
13
14
15

LT?MDATind(CR)
LT?MDATind(CR)

INCONC
INCONC

INCONC
INCONC
INCONC

INCONC

Unexpected_Events
Connection Establishment after the third retransmission of a Connection Request

UT!CONreq

UT?CONconf

UT?DISind

UT?DISind
UT?DISind

UT?DISind
UT?DISind

Label Behaviour Desription Comments

Test Case Dynamic Behaviour

Nr. VerdictConstraint Ref.

LT?MDATind(CR)

Figure 5: TTCN test case for the Inres protocol

An example may clarify the notation. The statement UT!CONreq (cf. line Nr. 1 in Figure

5) describes the sending of CONreq to the SUT by the UT. TTCN allows to specify

events with arbitrary SPs by using the OTHERWISE statement (e.g. UT?OTHERWISE

in Figure 6).

Test verdicts are de�ned within a verdict column of the TTCN table. The verdict

column of Figure 5 only includes PASS and INCONCLUSIVE verdicts. In this example

FAIL behaviour is speci�ed by a default behaviour description which is shown in Figure

6. Such defaults have to be referenced in the test case header (cf. Default in Figure 5).

TTCN o�ers much more facilities like Constraints, Labels or Timer which are not

relevant for the understanding of this paper. A tutorial on TTCN can be found in [KW91].

Detailed Comments :

1
2

Label Behaviour Desription Comments

UT?OTHERWISE
LT?OTHERWISE

FAIL
FAIL

Group :

Default Dynamic Behaviour

Test Step Name : Unexpected Events
Inres_Protocol/Initiator_Test/Connection_Establishment

Objective : Handle unexpected Signals
Comments :

VerdictNr. Constraint Ref.

Figure 6: Default behaviour for the TTCN test case in Figure 5
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The role of MSCs and FDT descriptions for test case generation: Up to now,

the complete FDT speci�cation of a protocol hasn't been considered but will have to be

for the following reason. It is assumed that an MSC de�nes the test purpose of a test case.

This means that an MSC de�nes a signal exchange which have to be performed by the

SUT to get a PASS

6

. An MSC does not describe

� the pre- and the postamble of the test case,

� responses of the SUT which lead to a FAIL or an INCONCLUSIVE, and

� the parameter values of the signals which are exchanged.

In order to generate complete test cases the missing information has to be added.

Therefore, an additional FDT description of the test architecture is necessary.

2.4 The observables of a test case

A test case consists of a set of observables. According to the test verdicts we distinguish

between observables which lead to a PASS, observables which lead to an INCONCLUSIVE

and observables which lead to a FAIL.

Possible pass observables: For generating a test case an observable has to be found

which drives the SUT from an initial state back to an initial state, whereby the signal

exchange de�ned within the MSC has to be performed without interrupts. We call an

observable which ful�ls these criteria a possible pass observable

7

.

The observables which drive the SUT from an initial state to a state from which the

MSC is applicable can be interpreted as the preamble of the test case and the observables

which drive the SUT back into an initial state after the MSC has been applied can be

interpreted as postamble.

We explain this by means of our test case example. The connection establishment of

the Inres protocol starts in an initial state. Therefore, no preamble has to be added and

our test case starts with the observable de�ned by the MSC in Figure 4. The MSC ends

in a state where the connection is established and data can be transferred. A possible

postamble is a normal disconnection which starts with the sending of MDATreq(DR) by

the LT and ends with the reception of a DISind by the UT. The MSC in Figure 7 shows

the MSC in Figure 4 enhanced by the disconnection. The TTCN description in Figure 5

describes the observable which is de�ned by the MSC in Figure 7 within the lines Nr. 1 to

Nr. 8. These lines also describe the possible pass observable of this example. The sketched

postamble is speci�ed within the lines Nr. 7 and Nr. 8.

Inconclusive observables: If possible pass observables were found, observables which

lead to an INCONCLUSIVE have to be generated. We call them inconclusive observables.

An inconclusive observable has the same pre�x as a possible pass observable but its last

event is a response of the SUT which leads neither to a PASS nor to a FAIL. In our example

6

From a theoretical point of view an MSC can be interpreted as a liveness property of the FDT descrip-

tion. It must be observable within a system run which leads from an initial state back to an initial state

of the FDT description.

7

In general there may exist more than one possible pass observable for a test case.
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Initiator Medium

CONreq MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATreq(CC)MDATind(CC)CONconf

MDATind(CR)

MDATind(CR)

MDATreq(DR)MDATind(DR)DISind

UT LT

Figure 7: MSC of Figure 7 with a possible postamble

interrupts of the connection establishment by DISind lead to an INCONCLUSIVE. Within

Figure 5 these cases are shown in the lines Nr. 9 to Nr. 15.

Fail observables: FAIL observables are added to the TTCN test case description by

means of the OTHERWISE event and a default behaviour description (cf. section 2.3 and

Figure 6).

Possible and unique pass observables: The possible pass observable of the TTCN

test case in Figure 5 is shown in the lines Nr. 1 to Nr. 8. But this observable does not

ensure that the MSC has been performed during a test run. After the reception of DISind a

test verdict is assigned and the test case is �nished. But according to the SDL description

of the Inres protocol a fourth MDATind(CR) may be on the way. In this case the MSC

in Figure 8 would be performed.

Such problems arise because the SUT is treated as a black box and therefore, LT and

UT only have an incomplete system view. For the tester the SUT behaves in an indeter-

ministic way. In our example the indeterminism is caused by the asynchronous commu-

nication mechanism of SDL. Without seeing all input and output events of Initiator and

Medium, we can not make any assumption about an ordering, or a time relation between

the DISind and a possible fourth MDATind(CR). However, if a fourth MDATind(CR)

arrives, the PASS in Figure 5 has to be overwritten by an INCONCLUSIVE.

The LT does not know how long it should wait for a fourth MDATind(CR) after the

reception of the DISind by the UT and before the assignment of a PASS. Therefore, a test

run according to Figure 7 cannot be distinguished from test runs according to Figure 8 in

all cases. A new postamble has to be found.

A correct postamble of our example is shown within Figure 9. Instead of MDA-

Treq(CR), a data package DATreq

8

is transferred, but the reception by the LT is not

acknowledged. The Initiator retransmits the data package DT three times, indicates af-

terwards the disconnection and goes back into a disconnected state. The FIFO property

8

Data is transported as a parameter of DATreq. Since this parameter does not inuence the behaviour

of the Inres protocol it is omitted.
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MDATreq(CC)MDATind(CC)CONconf

Initiator Medium

CONreq MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATind(CR)

MDATind(CR)

MDATreq(CR) MDATind(CR)

MDATreq(DR)MDATind(DR)DISind

UT LT

Figure 8: MSC describing a not expected system run

of queues and channels in SDL ensures that after the reception of the �rst MDATind(DT)

no fourth MDATind(CR) can be received. Thus, the reception of the DISind allows a

unique assignment of a PASS.

We call a possible pass observable which uniquely ensures that the given MSC was

performed a unique pass observable. The complete and correct TTCN test case which

ensures that the test purpose given in Figure 4 was performed is shown in Figure 10. The

unique pass observable of this example is described in the lines Nr. 1 to Nr. 12.

3 A formal interpretation of SDL, MSCs and TTCN

In the previous section the basic ideas of the presented approach are discussed on an

informal level. The central terms of the argumentation are trace and observable. In

section 2 we only provide a more or less intuitive relation between the traces described by

MSCs, SDL descriptions and TTCN. From an abstract point of view our method compares

SDL and MSC traces and writes down certain traces with speci�c properties in TTCN

notation.

To explain the test case generation formally we have to �nd a common representation

for traces and observables of SDL, MSC and TTCN. Moreover, a mathematical model

to generate traces for a speci�c SDL or MSC description is needed (see section 3.1).

Furthermore, SDL, MSCs and TTCN have to be related to the chosen trace representation

and to the mathematical model (section 3.2, 3.3 and 3.4). The used notation is explained

in the appendix.

3.1 Trace representations and mathematical models

Communication systems are composed of several processes, which exchange signals and

execute their statements independently and parallel. There are several possibilities to

represent traces of such systems. They di�er in the following points:

9



MDATreq(CC)MDATind(CC)CONconf

MDATreq(DT) MDATind(DT)

MDATreq(DT) MDATind(DT)

DISind

Initiator Medium

CONreq MDATreq(CR)

MDATreq(CR)

MDATreq(CR)

MDATind(CR)

MDATind(CR)

MDATind(CR)

DATreq MDATreq(DT) MDATind(DT)

MDATreq(DT) MDATind(DT)

UT LT

Figure 9: MSC of Figure 4 with a correct postamble

Detailed Comments :

Test Case Name :
Group :
Purpose :
Default :
Comments :

1
2
3
4
5

Inres_Protocol/Initiator_Test/Connection_Establishment
Connection Establishment

6
7
8
9
10
11
12
13
14
15
16
17
18

Test_Case_3

LT?MDATind(CR)
LT?MDATind(CR)

LT?MDATind(CR)
LT!MDATreq(CC)

PASS

LT?MDATind(DT)
LT?MDATind(DT)

LT?MDATind(DT)
LT?MDATind(DT)

LT?MDATind(CR) INCONC
LT?MDATind(CR) INCONC

INCONC
INCONC
INCONC
INCONC

UT!CONreq

UT?CONconf
UT!DATreq

UT?DISind

UT?DISind
UT?DISind

UT?DISind
UT?DISind

Unexpected Events

Label Behaviour Desription Comments

Test Case Dynamic Behaviour

VerdictNr. Constraint Ref.

Figure 10: TTCN test case description which ensures the test purpose of Figure 4
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� States versus events

A trace can be a sequence of states or a sequence of events. The relation between

these approaches is, that an event is a transition between two states and a state

can be interpreted as a sequence of events. For the generation of test cases only

sequences of events are relevant. Therefore, in the sequel we only consider events.

� Partial order representation versus interleaving representation

In the partial order representation, a trace is a partially ordered set of events. In

the interleaving representation a trace is a sequence of events. The relation between

these representations is, that a partially ordered set of events can be described by a

set of sequences, where every sequence is compatible with the partial order.

� Linear time representation versus branching time representation

In the linear time representation traces are described as a set of sequences. In the

branching time representation a set of traces is described as a tree. The relation

between these representations is, that every path in the tree is an element of the set.

� Di�erent notions of atomicity

Usually an event is atomic. But also certain sequences of events can be atomic.

Atomicity means, that atomic sequences of events can not inuence and can not be

inuenced from parallel executed atomic sequences of events.

Figure 11 classi�es SDL, MSC, TTCN and Automata theory according to the used

trace representation.

1. In SDL a trace can be de�ned as a sequence of events, where a sequence of events,

which leads from one SDL state to the next SDL state is atomic. Furthermore, a

linear time representation can be used.

2. An MSC describes a partially ordered set of events. Every event is atomic and a

linear time representation is used.

3. TTCN describe traces by trees. Every node of the tree is an event and the events

are atomic.

4. Automata theory [HU79] is a mathematical model, which works with sequences of

atomic events. Furthermore, a linear time representation is used.

Our approach. In order to relate the traces of SDL descriptions, MSCs and TTCN we

choose an automata theoretic approach and represent traces as sequences of atomic events.

There are several reasons, why we choose automata theory as mathematical model.

� The trace representation of automata theory does not �x to the trace representation

of MSCs, SDL and TTCN, but there are only a few changes necessary to adapt it.

For MSCs the partial order has to be translated to a set of sequences. For SDL the

atomicity has to be adapted and for TTCN the tree has to be translated into a set

of sequences.

11
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Time
Branching

Time
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atomic
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of events

Partial order Interleaving

AutomataMSC
Theory

SDL

TTCN

Figure 11: Classi�cation of trace representation

� Automata theory is a well founded mathematical model, which provides a large

number of useful theorems, e.g. theorems about decidability.

� Automata are easy to implement and therefore suitable for generating traces.

3.2 Speci�cation and Description Language (SDL)

An SDL speci�cation can be modeled by a labeled transition system, which can be inter-

preted as an automaton, where all states are end states. There are di�erent methods to

derive a labeled transition system from an SDL speci�cation. One method is described in

[Nah93].

Labeled transition system. A labeled transition system is a tuple LTS = (Q;E;R; q

0

),

where

� Q is a set of states,

� E is a set of labels resp. events,

� R � Q� E �Q is a transition relation and

� q

0

2 Q is the initial state.

Relation between an SDL speci�cation and a labeled transition system. In-

tuitively Q denotes the global system states, which are determined by the control state

of the processes, the content of the signal queues and the values of the variables. The

state q

0

is the initial state of the SDL speci�cation. The transition relation R determines

for every state q 2 Q and for every event e 2 E the corresponding next global state of

the SDL system. The events

9

E are determined by E = f�g [ ([

n

i=1

(I

i

[ O

i

)). � is an

internal event and I

i

and O

i

are the inputs and outputs of the i-th process. The inputs

and outputs are also called communication events .

9

SDL processes perform transitions from one SDL state to the following SDL state. Every transition

consists of a sequence of actions e.g. input, output, task, or decision. We consider actions as events of the

labeled transition system.
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Observable events. Since SUT, UT and LT are speci�ed in one SDL description and

since a test case only includes the communication events of UT and LT, we de�ne

� OI = I

UT

[ I

LT

to be the observable inputs,

� OO = O

UT

[O

LT

to be the observable outputs and

� OE = OI [ OO to be the observable events.

Traces and observables of a labeled transition system. A trace is a sequence of

events and an observable is a sequence of observable events. We de�ne the traces of a

labeled transition system LTS = (Q;E;R; q

0

) from a state in M � Q to a state in N � Q

by:

Tr(LTS;M;N) = fhe

0

; : : : ; e

n

i 2 E

�

j

9hs

0

; : : : ; s

n+1

i 2 Q

�

: (s

0

2M ^ s

n+1

2 N ^ 8i 2 0 : : :n : (s

i

; e

i

; s

i+1

) 2 R)g

We de�ne the observables of a labeled transition system LTS from a state in M � Q to a

state in N � Q by:

Ob(LTS;M;N) = OE
c
Tr(LTS;M;N)

The traces of a labeled transition system LTS with an observable o are:

Tr(LTS; o) = ft 2 Tr(LTS; fq

0

g; Q) j o = OE
c
tg

3.3 Message Sequence Chart (MSC)

An MSC describes a partially ordered set of events. It can be interpreted as a �nite

automaton. The automaton accepts traces, which contain the communication events of

the MSC and which are compatible with its partial order.

Finite automaton. A �nite automaton is de�ned by a tuple FA = (S;E; �; s

0

; F ), where

� S is a �nite set of states,

� E is a set of events,

� � � S �E � S is a transition relation,

� s

0

2 S is the initial state and

� F � S is a set of �nal states.

Traces and observables of a �nite automaton. A �nite automaton FA = (S;E; �; s

0

;

F ) can be interpreted as a labeled transition system (S;E; �; s

0

). Thus, the traces and

observables of a �nite automaton are de�ned by the traces and observables of the corre-

sponding labeled transition system.

13



Relation between an MSC and a �nite automaton. The relation of the MSC and

the �nite automaton is explained in two steps by means of the example in Figure 12. The

automaton described in the �rst step accepts exactly the sequences of events, which are

de�ned by the partial order of the MSC ( cf. Figure 12b). In a second step we extend the

�nite automaton by additional events (cf. Figure 12c).

� Step 1: The Automaton 1 in Figure 12 accepts exactly the sequences of events,

which are compatible with the partial order of the MSC MSC 1. One way for the

translation of an MSC into a �nite automaton is described in [GHL

+

92]. MSC 1

consists of two instances P1 and P2, which exchange the signal CR two times. It

describes a partial ordered set of communication events, which allows the traces

<P1!CR,P1!CR,P2?CR,P2?CR> and <P1!CR,P2?CR,P1!CR,P2?CR>. Automaton 1 ac-

cepts these traces by transiting from the initial state s

0

to the �nal state f .

� Step 2: An MSC describes a part of the signal exchange of an SDL run by a

partially ordered set of events. Our approach compares traces of a �nite automaton

representing an MSC and traces of a labeled transition system representing an SDL

description. In order to do this, the �nite automaton must also be able to accept

events of the labeled transition system, which are not explicitly mentioned by the

MSC.

For this aim the �nite automaton is extended by Null transitions, which consume

arbitrary events of the labeled transition system without changing the state. For the

test case generation we require, that the signal exchange of the MSC is performed

without interrupts, i.e. between two communication events on an instance axis the

corresponding process is not allowed to perform further communication events

10

.

To ensure this, for some states the Null transitions are restricted by certain events,

which should not cause a Null transition.

The example in Figure 12 may clarify the extension. Automaton 2 is gained from

the Automaton 1 by introducing Null transitions for every state. Since we do not

allow further communication events of an instance i between two communication

events on its instance axis, we disallow its outputs O

i

and its inputs I

i

for some

states. E.g. in state s

1

the instance P1 has already performed the communication

event P1!CR and should perform the communication event P1!CR. Therefore, in

state s

1

we exclude the outputs O

1

and inputs I

1

of the instance P1 from the Null

transitions. This fact is stated by the arrow inscription E�I

1

�O

1

. In same manner

the Null transitions of state s

2

, s

3

and s

4

are constructed. In the start state s

0

and

in the �nal state f all possible communication events E are valid. These are events

of the preamble and postamble.

3.4 Tree and Tabular Combined Notation (TTCN)

A test case in TTCN describes a tree, where the nodes are observable events. We express

a tree as a set of observables. The observables of a test case can be grouped into three

disjoint sets - the observables, which cause a PASS , a FAIL or an INCONCLUSIVE

verdict. We call them pass, fail and inconclusive observables.

10

This restriction may be weakened to allow optional signals or abstractions in the MSC description.
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Figure 12: MSC and corresponding �nite automata

De�nition. A test case is de�ned by a triple TC = (Pass;Fail; Inco), where

� Pass � OE

�

are pass observables,

� Fail � OE

�

are fail observables and

� Inco � OE

�

are inconclusive observables

Constraints. There are restrictions on the set of observables of a test case.

� A test verdict must be unique. There is no observable, which cause two verdicts at

once. Formally, this is expressed by:

Pass;Fail; Inco are pairwise disjoint

� After deriving a test verdict, it is assumed, that the test case is �nished and could

not be continued. This can be expressed by:

8v; w 2 Pass[ Fail[ Inco : v 6< w

� The tree of a test case can not have arbitrary branching. UT and LT perform a

sequence of �xed outputs, and afterwards they have to wait for the reaction of the

SUT. Then UT and LT again can perform a sequence of �xed outputs. This means

for outputs a test case has a branching of size 1 and for inputs a test case can

have arbitrary branching. We express that by the notion of alternative observables.

Formally, this is expressed by

8v; w 2 Pass [ Fail[ Inco : v altto w

We introduce two notations of alternative observables.
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� An observable v is alternative to an observable w, if they have a pre�x p in common

and the �rst elements, in which they di�er is an input. Formally, this is denoted by

v altto w i�

9p; v

0

; w

0

2 OE

�

; a; b 2 OI : v = p � a � v

0

^ w = p � b � w

0

^ a 6= b

� An observable v is minimal alternative to an observable w, if v is an alternative to w

and v is only one element longer than the common pre�x. Formally, this is denoted

by v altto w i�

9p; w

0

2 OE

�

; a; b 2 OI : v = p � a ^ w = p � b � w

0

^ a 6= b

Test verdicts for a test case. An implementation I is driven according to the test case

TC = (Pass;Fail; Inco) and performs the observable w. Whether an observable proves the

test purpose is de�ned by the test verdict verdict(w; TC). We give a PASS, if a pre�x of

w is a pass observable, we give a FAIL, if a pre�x of w is a fail observable and we give

an INCONCLUSIVE, if a pre�x of w is an inconclusive observable or the implementation

does not respond during test time and w is a pre�x of a pass observable. Formally the test

verdict is de�ned by verdict(w; TC) =

� PASS i� 9v 2 Pass : v v w

� FAIL i� 9v 2 Fail : v v w

� INCONCLUSIVE i� (9v 2 Inco : v v w) _ (9v 2 Pass : w < v)

4 Formalizing the test case generation

Now we know that a TTCN test case consists of three disjoint sets of observables and each

set corresponds to a test verdict. In this section we de�ne the relation between observables,

representing a test case, a labeled transition system representing an SDL description and

a �nite automaton representing an MSC.

4.1 Informal relation between SDL descriptions, MSCs and test cases

An implementation gets a PASS verdict, if we can assume, that it performs a trace from

its initial state to its initial state and executes the communication events of the MSC.

It gets an INCONCLUSIVE verdict, if the performed observable is speci�ed by the SDL

description but the communication events of the MSC are not performed or the initial

state is not reached again. Finally, it gets a FAIL verdict, if it presents an observable,

which is not speci�ed by the SDL description. This means, that we are calculating three

sets of observables - the pass, fail and inconclusive observables.

� A pass observable is an observable, from which we can conclude, that the labeled

transition system representing the SDL description performs a cycle from its initial

state back to the initial state and the �nite automaton representing the MSC transits

from the initial state to a �nal state.
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� An inconclusive observable is an observable of the labeled transition system, which

has a pre�x with a pass observable in common, but the �rst event, in which they

di�er is an input.

� A fail observable is not an observable of the labeled transition system. It is an

arbitrary sequence of observable events, which has a pre�x with a pass observable in

common. The �rst event, in which they di�er, is an input.

For de�ning the three sets of observables formally, we need the notion of possible and

unique pass observables.

4.2 Possible and unique pass observables

A possible pass observable is an observable, where the labeled transition system LTS can

perform a cycle from the initial state to the initial state and the �nite automaton FA

transits form the initial state to a �nal state. We de�ne the set of possible pass observables

PPO by :

PPO = Ob(LTS; fq

0

g; fq

0

g) \ Ob(FA; fs

0

g; F )

A possible pass observable does not ensure, that every corresponding trace leads the labeled

transition system from its initial state back to its initial state and the �nite automaton

transits from its initial state to a �nal state. For this aim we de�ne so called unique pass

observables UPO by:

UPO = fw 2 PPO j Tr(LTS; w) � [Tr(LTS; fq

0

g; fq

0

g) \ Tr(FA; fs

0

g; F )]g

Since we only consider the maximal corresponding traces of an observable w: Tr(LTS; w),

this de�nition works only if the initial state of the labeled transition system is a stable

state, i.e. only observable events can cause progress in the initial state.

4.3 Pass, Fail and Inconclusive observables

Now we de�ne a test case TC = (Pass;Fail; Inco) for a labeled transition system LTS and

a �nite automaton FA .

� Pass. For the pass observables of the test case Pass we take a subset of the shortest

unique pass observables UPO (see 1.). Each element of the pass observables must

be alternative to each other element (see 2.) and there is no further shortest unique

pass observable, which is not alternative to all pass observables (see 3.).

1. Pass � UPO ^

2. 8v; w 2 Pass : (v 6= w! v altto w) ^

3. 8v 2 UPO : (v 2 Pass_ 9w 2 Pass : :(v altto w))

� Inco. For the pass observables Pass we de�ne the shortest inconclusive observables

of the test case Inco. Inco denotes the minimal alternative observables of Pass.

Inco = fv 2 Ob(LTS; fq

0

g; Q) j 9w 2 Pass : v altto wg � pref(Pass)

� Fail. The fail observables Fail are the minimal alternatives of the pass and incon-

clusive observables.

Fail = fv 2 OE

�

j 9w 2 Pass : v altto wg � pref(Pass[ Inco)
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4.4 Calculation of a test case

Within the previous section a test case for a given labeled transition system and a given

�nite automaton is de�ned, but there is no algorithm to calculate it. By calculating a

test case we have to solve a typical reachability problem, i.e. sometimes a certain event is

executed or a certain state is reached.

For �nite automata the reachability problem is solved and there exist e�cient algo-

rithms to calculate shortest traces, which lead to a certain state or contain a certain event

[HU79]. But the decidability of the reachability problem of the labeled transition system

depends heavily on its design. In [BZ83] it is proved, that the reachability problem for

communicating �nite state machines, which communicate by means of unbounded FIFO

bu�ers is undecidable. Subsequently the reachability problem for a labeled transition sys-

tem, which represent asynchronously communicating processes e.g. like SDL descriptions,

is undecidable.

One way to search for observables with required properties is to simulate the labeled

transition system and the �nite automaton in parallel. There are di�erent search methods,

like depth search and breadth search. Breadth search is not usable, since it is impossible to

store all states

11

. Also depth search is not applicable, since it is not possible to guarantee

termination.

Therefore, we use a k-bounded depth search. A k-bounded depth search evaluates all

possible traces of length k. If no trace with required properties is found, then the search

may be repeated with a higher bound or stopped the search without results.

The procedure of generating test cases. The procedure for generating a test case

based on an SDL description and an MSC can be structured in four steps:

� Step 1: In a k-bounded depth search with increasing bound k possible pass observ-

ables are calculated.

� Step 2: Based on the possible pass observables we calculate the unique pass observ-

ables . If there are no unique pass observables we go back to step 1.

� Step 3: We choose a subset of the shortest unique pass observables , which are

alternative to each other. This are the pass observables of our test case. Based on

the pass observables we calculate the corresponding inconclusive observables.

� Step 4: The pass observables and the inconclusive observables have to be trans-

formed into TTCN. Furthermore the fail observables have to be added by means of

the default behaviour.

Open problems. In this paper the problem of generating test cases from SDL descrip-

tions and MSCs is transformed into a search problem. The expense of the search heavily

depends on the SDL description, which represents the test architecture (cf. section 2.2).

The test architecture is derived from a system speci�cation by omitting parts, which are

not tested and by adding SDL processes for LT and UT. LT and UT are modelled as

processes, which can receive and send any valid signal at any time.

11

Note a state represents a global state of the SDL system, e.g. the control states, contents of the queues

and the values of the variables.
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An open problem is the optimal modelling of the test architecture, especially of LT

and UT, since this may decrease the search expense. The optimization of LT and UT

may include restrictions on the sequences of signals, which can be sent and received, and

restrictions on the values of signal parameters.

5 On the implementation of the presented method

The presented method for generating test cases is developed and implemented at the

University of Berne within the research project

12

'Conformance Testing - A Tool for the

Generation of Test Cases'.

Figure 13 presents the architecture of the implemtation. The test case generation

tool is structured in the three parts SDL simulator, MSC simulator and test case gener-

ator. Both simulators consist of a transformator and an interpreter. The transformators

read descriptions in phrase representation of SDL (SDL/PR) and MSC (MSC/PR) and

transform them into internal representations. Afterwards the internal representations are

simulated by the interpreters. The test case generator is structured in four modules:

� Calculation of possible Pass observables.

� Calculation of unique Pass observables.

� Calculation of Inconclusive observables.

� Generation of the corresponding TTCN/MP

13

code.

The tool is implemented on Sun workstations. Its inputs are MSC/PR and SDL/PR de-

scriptions [CCI92a, CCI92b], and its output is a TTCN/MP description [ISO91b]. Front-

and backends of the tool are commercial SDL, MSC and TTCN editors.

6 Summary and outlook

A method for the generation of test cases based on SDL descriptions and MSCs is pre-

sented. The approach assumes that the purpose of a test case is given by at least one

MSC. Furthermore, the problem of assigning unique test verdicts is discussed and a solu-

tion by de�ning unique pass observables is presented. The whole approach is formalized

by relating the traces of a labeled transition system representing an SDL description to

the traces of a �nite automaton representing an MSC. The method is implemented and

its applicability for real systems will be proven within a following case study. Although

this paper presents the approach by means of SDL and MSCs, it may be possible to apply

it to any speci�cation which can be represented by a labeled transition system and to any

test purpose which can be represented by a �nite automaton.

12

F & E project, no. 233, funded by Swiss PTT.

13

TTCN/MP denotes the machine processable form of TTCN.
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Generation of TTCN/MP code

TTCN - Backend

Test case generator

MSC Interpreter SDL Interpreter 

SDL Simulator MSC Simulator

Tool

MSC - FrontendSDL - Frontend

SDL Transformator MSC Transformator

Calculation of possible pass observables

Calculation of unique pass observables

Calculation of inconclusive observables

Figure 13: The tool architecture
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A Sequences

Set of sequences. Let A be an arbitrary set, then we de�ne the following three sets

� A

�

are the �nite sequences over A,

� A

!

are the in�nite sequences over A and

� A

1

= A

�

[A

!

are the �nite and in�nite sequences.

Operations on sequences. Let S � A

1

, t; u; v 2 A

1

and a; b; c; d; a

0

; : : : ; a

n

2 A

� hi is the empty sequence,

� ha

0

; : : : ; a

n

i is the �nite sequence consisting of the elements a

0

; : : : ; a

n

,

� t � u denotes the concatenation of t and u (Note, if t is in�nite the t � u = t),

� t < u "t is a strict pre�x of u" holds, i� 9v 6= hi : t � v = u,

� t v u "t is a pre�x of u" holds, i� 9v : t � v = u,

� #t denotes the length of t (Note, if t is in�nite then #t =1),

� a
c
t denotes the �ltered trace of t, which contains only the element a,

e.g. a
c
 < a; b; a; c >=< a; a >. As a generalisation of this �lter operation, the �rst

operand may also be a set,

� f : A! A

0

can be canonically extended to sequences, by

f(< a

0

; : : : ; a

n

; : : : >) =< f(a

0

); : : : ; f(a

n

); : : : >,

� f : A

1

! A

01

can be canonically extended to sets of sequences by

f(S) = ff(t) j t 2 Sg,

� pref(S) = ft j 9u 2 S : t v ug, is the set of pre�xes of S,

� S = ft 2 S j :9u 2 S : t < ug are the maximal sequences and

� S = ft 2 S j 8u 2 S : #t � #ug are the shortest sequences.
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B Abbreviations

CCITT Comit�e Consultativ International T�el�egrahique et T�el�ephonique

ETSI European Telecommunications Standards Institute

FDT Formal Description Techniques

ISO/IEC International Organisation for Standardisation/International Elec-

tronical Commission

IUT Implementation Under Test

LT Lower Tester

MSC Message Sequence Chart

MSC/PR MSC Phrase Representation

OSI Open Systems Interconnection

PCO Points of Control and Observation

PDU Protocol Data Unit

SDL Speci�cation and Description Language

SDL/PR SDL Phrase Representation

SP Service Primitive

SUT System Under Test

TTCN Tree and Tabular Combined Notation

TTCN/MP Machine Processable TTCN

UIO Unique Input Output sequences

UT Upper Tester
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