
Message Sequence Chart (MSC) -
A Survey of the new CCITT Language

for the Description of Traces within
Communication Systems

Jens Grabowski

Universität Bern
Institut für Informatik

Länggassstrasse 51
CH-3012 Bern

grabowsk@iam.unibe.ch

Ekkart Rudolph

Siemens AG München
ZFE BT SE 53

Otto-Hahn Ring 6
D-W8000 München 83

rudolph@ztivax.zfe.siemens.de

Abstract: Message Sequence Charts (MSCs) are a widespread means for
description and graphical visualisation of selected system runs within dis-
tributed systems, especially telecommunication systems. Various kinds of
MSCs with similar expressive power are used frequently within industry
and standardisation bodies. Therefore, the CCITT (Comité Consultatif
International Télégraphique et Téléphonique) attempts to harmonise their
use by means of the new standard language Message Sequence Chart (MSC)
in 1992 [Z120]. This paper presents a motivation for the MSC standardisa-
tion. The history of the standardisation process is briefly sketched. The
MSC language is introduced. Some language constructs which may need
further elaboration are pointed out and possible enhancements are proposed.
Finally, an approach towards the definition of a clear MSC semantics is
described.

Keywords: CCITT, Formal Description Technique (FDT), Distributed
System, Message Sequence Chart (MSC), SDL, Trace Language

CR Categories and Subject Descriptors: C.2.1 [Computer-Communica-
tion Networks] Network Architecture and Design, D.2.1 [Software Engi-
neering] Requirements/Specifications, D.2.10 [Software Engineering]
Design, D.3.3 [Programming Languages] Language Constructs and Features

1



1 The motivation for the MSC standardisation
Within the software life cycle increasing attention is paid to the stages of specification and
design since the quality of all following stages essentially depend on them. In particular, in
the field of communication systems this has been taken into account by the development of
standardised formal description techniques (FDTs) like SDL, Estelle, and LOTOS [Hog 89].
An FDT specification, however, is useful only if it is checked with respect to syntactic and
particularly semantic correctness.

Apart from a general correctness proof (e.g. absence of deadlocks) the consistency of a FDT
specification with respect to prescribed requirements has to be checked. A convenient way to
describe such requirements is offered by system traces which are presented suitably in form
of message flow diagrams called Message Sequence Charts (MSCs).

An MSC shows sequences of messages exchanged between entities (such as SDL services,
processes, or blocks) and their environment (cf. fig. 3-2). Formally, an MSC describes the
partial ordering of message events, i.e. message sending and message consumption.

MSCs have been used for a long time within international standardisation bodies (e.g.
CCITT, ISO/IEC) and within industry, following different conventions under various names
such as Arrow Diagrams [Q699], Extended Sequence Charts [GraRu 89], Information Flow
Diagrams [Q65], Message Flow Diagrams [CCHK 90], or Time Sequence Diagrams [ISO
87]. These MSC variants mainly differ with respect to syntax and terminology. There are
only minor semantic differences (cf. [Tog 92]) and therefore a standardisation was feasible.

The main reason for the MSC standardisation was to sustain tool support, to provide feasibil-
ity of MSC exchange between different tools, to ease the mapping to and from FDT specifica-
tions, and to harmonise their use within the CCITT Study Groups. The CCITT developed the
MSC language definition [Z120], which was approved by the CCITT members in May 1992.

The new MSC recommendation defines the MSC syntax and includes an informal semantics.
The informal semantics is given by means of relating MSCs to SDL specifications (cf. section
3.1). This is mainly due to the fact that the CCITT group which provided the MSC language
definition also maintains SDL. Since our work is closely related to this group we also use
SDL to explain the meaning of MSCs.

The new MSC recommendation includes two syntactical forms, MSC/GR as a graphical and
MSC/PR as a pure textual representation (cf. section 3.2). In this paper we mainly rely upon
MSC/GR representation since its symbols offer an intuitive understanding of their meaning.

The remaining part of the paper is organised in the following way: In chapter 2, the history of
the MSC standardisation is described. The MSC language is introduced in chapter 3. Within
chapter 4 and 5 possible language modifications and enhancements are discussed and future
trends in MSC language development are described. In chapter 6 we explain an approach
towards a clear MSC semantics and finally, a brief outlook is given.

2 The History of the MSC standardisation
Within the SDL user guidelines of 1988 [Z100-D] only a short section has been devoted to
MSCs as one of the auxiliary diagrams though within an integrated tool set MSCs may very
well play an important role. This was pointed out at the SDL Forum 1989 in Lisbon within
the paper "Putting Extended Sequence Charts to Practice" by the authors of this article
[GraRu 89].

2



The terminology Extended Sequence Charts (ESC) was used for MSCs enhanced by SDL
symbols and a few further constructs. ESCs were presented as a means for stepwise refine-
ment and enrichment of MSCs from which finally SDL specifications may be derived. The
role of MSCs and ESCs within the whole software life cycle, from requirement specification
until test case specification, was pointed out.

Due to the great interest which MSCs found at this SDL Forum, their standardisation in
graphical and textual representation within the CCITT was suggested. The standardisation
was approved at the CCITT meeting in Helsinki, June 1990, based on a first proposal by one
of the authors (E.R.) who also was appointed rapporteur for MSCs. It was decided there to
first concentrate on the basic language constructs of MSCs, i.e. message flow diagrams with-
out further extensions, e.g. by SDL symbols, and in particular to work out a clear semantics
for them. One of the reasons for this restriction was to avoid too much overlap with SDL.

At the same meeting also a first contribution on the formalization of MSCs was presented
(updated version [Til 91]). This formalization was focusing on equivalence relations for
MSCs and on merging of instances within MSCs in order to provide a formal relationship
between different levels of abstraction. It was pointed out in this contribution that by merging
of instances a more general time ordering for events was obtained than originally defined for
the basic language of MSCs. These early investigations have influenced the inclusion of
higher level concepts contained in the final MSC recommendation [Z120].

In Helsinki it was not yet decided to prepare a separate recommendation for MSCs. The
standardisation activities for MSCs were intended to be part of the new "SDL Methodology
Guidelines" [Belina 92], which were aiming at a guideline for the effective use of SDL. Soon
it was recognised that the standardisation of MSCs would go beyond the SDL guidelines. It
was also felt that MSCs should not be related only to SDL. Though it was not the intention to
develop a fourth FDT, in addition to SDL, LOTOS, and ESTELLE, MSCs were looked at as
another specification language which may be used in combination with other languages for
system development. Consequently, at the next CCITT-meeting February 1991 in Geneva
MSCs were chosen to become a separate recommendation.

At this Geneva meeting also the inclusion of further language constructs, e.g. conditions
(representing system states), timer constructs and some higher level structural concepts, e.g.
macros going beyond pure MSCs was agreed upon. (All mentioned MSC language elements
are thoroughly explained within chapter 3.) These concepts were elaborated until the CCITT
meeting December 1991 in Recife. The language constructs were adjusted to cover the needs
of other CCITT recommendations employing Message-, Signal-, or Information- Flow Dia-
grams. Particularly involved was recommendation Q.65 [Q65]: "Stage 2 of the method for the
characterisation of services supported by an ISDN" which is the provider for other recom-
mendations in this area.

At the CCITT meeting in Recife, a thorough and critical review by Swedish Telecom con-
cerning the draft MSC recommendation provided the main input. A first selection of higher
level constructs took place, keeping coregion, substructure, macro and postponing the MSC
language constructs for remote procedure calls and grouping of instances to the next study
period. In addition, it was decided to include a create and stop of MSC instances. At this
meeting also the form of the draft MSC recommendation was modified to get in accordance
with the SDL recommendation [Z100].

The final session of CCITT Study Group X Geneva, May 1992 approved the new MSC rec-
ommendations with a few changes. In particular, substructure was renamed to submsc and the
macro concept was found to be not yet mature enough and hence postponed to the next
CCITT study period.

3



3 An introduction to the MSC language
Within this chapter the MSC language is introduced. First the meaning of MSCs is explained
by relating them to SDL specifications, MSC/PR and MSC/GR are described, the basic and
afterwards the structural language constructs are introduced.

3.1 The meaning of MSCs
MSCs show the message flow between entities like blocks, services, or processes. We explain
the meaning of an MSC by relating it to SDL process diagrams (cf. [BHS 91], [Z100]). Let us
consider the MSC in fig. 3-2 (a) which describes a selected trace piece of the connection set-
up in the Inres service specification [Hog 92]. It could equally be represented using SDL
process diagrams with certain additions and modifications (cf. fig. 3-1, dashes stand for not
followed branches, bold arrows indicate the message flow).

The diagram in fig. 3-1 contains at least the same information as the MSC in fig. 3-2 (a).
Within the MSC an Initiator-user sends a connection request (ICONreq) to the Initiator. The
Initiator transmits the request (ICON) to the Responder entity which afterwards indicates the
connection request (ICONind) to its user.

However, obviously the MSC is much more transparent, since it concentrates on the relevant
information, namely the instances (Initiator, Responder) and the messages involved in the se-
lected trace piece (ICONreq, ICON, ICONind). Beyond that, what is even more important, the
relation of MSCs to an SDL specification may be rather sophisticated. The MSC instances
very often represent collections of (SDL) processes on a higher level of abstraction such as
blocks, thus, reflecting the stepwise development of a specification according to refinement
strategies.

DISCONNECTED

WAIT

DISCONNECTED

WAIT DISCONNECTED

DISCONNECTED

ICONreq

IDAT(D)ICONICONIDISind

SET
 (NOW+5,T)

ICONind IDIS

any

Initiator Responder

Figure 3-1: (Non-standard) combined SDL - message flow diagram

4



Generally, the relation between an MSC and an SDL specification can be characterised in the
following way (for ACT cf. [Hog 88]):

"Each sequentialization of an MSC describes a trace from one equivalence class of
nodes to another equivalence class of nodes of an Asynchronous Communication
Tree (ACT) presenting the behaviour of an SDL specification."

In any case the correspondence between fig. 3-1 and fig. 3-2 (a) may serve to give a good
intuitive idea about the meaning of an MSC. It also demonstrates that an MSC describing one
possible scenario can be looked at as an SDL skeleton (cf. [GraRu 89], [Belina 92]).

3.2 MSC/PR and MSC/GR
Analogous to the SDL recommendation [Z100] the new MSC recommendation includes two
syntactical forms, MSC/PR as a pure textual and MSC/GR as a graphical representation. An
MSC in MSC/GR representation can be transformed easily into a corresponding MSC/PR
representation. The other way round the same problems arise as in SDL since MSC/PR (and
SDL/PR) include no graphical information like height, width, or alignment of symbols and
text. An example of the MSC/GR and the corresponding MSC/PR representation is shown in
fig. 3-2.

Initiator:
process ISAP-
Manager-Ini

Responder:

ICONreq

ICON

ICONind

process ISAP-
Manager-Resp

msc Partial_Connection_Set-up
msc Partial_Connection_Set-up;

inst Initiator, Responder;

instance Initiator: process ISAP-Manager-Ini;

in ICONreq from env;

out ICON to Responder;

endinstance;

instance Responder: process ISAP-Manager-Resp;

in ICON from Initiator;

out ICON to env;

endinstance;

endmsc;

(a) MSC in MSC/GR representation (b) MSC of (a) in MSC/PR representation

Figure 3-2: MSC in MSC/PR and in MSC/GR representation

3.3 Basic language constructs of MSCs
The basic language of MSCs includes all constructs which are necessary in order to specify
the pure message flow. For MSCs these language constructs are instance, message, action,
set→reset (time supervision), set→time-out (timer expiration), stop, create and condition.

3.3.1 Instance and message

The most basic language constructs of MSCs are instances, e.g. entities of SDL systems,
blocks, processes, or services, and messages describing the communication events. In the

5



graphical representation instances are represented by vertical lines or alternatively by columns
(fig. 3-2 (a)). Within the instance heading an entity name, e.g. process type, may be specified
in addition to the instance name.

The message flow is presented by horizontal arrows with a possible bend to admit message
overtaking or crossing (e.g. fig. 3-3 (a)). The head of the message arrow denotes the message
consumption, the opposite end the message sending. In addition to the message name, mes-
sage parameters in parentheses may be assigned to a message.

Along each instance axis (column) a total ordering of the described communication events is
assumed. Events of different instances are ordered only via messages, since a message must
be sent before it is consumed.

3.3.2 System environment

Within an MSC the system environment is represented by the frame symbol which forms the
boundary of an MSC diagram (cf. fig. 3-2, 3-3). Contrary to instances, no ordering of com-
munication events is assumed.

3.3.3 Actions and timer constructs

Within one MSC it is possible to indicate actions and timer handling. An action is represented
by a rectangle containing an arbitrary text. The timer handling contains two constructs: the
setting of a timer and a subsequent time-out (timer expiration) or the setting of a timer and a
subsequent timer reset (time supervision).

The setting of a timer is represented by a small rectangle, whereas time-out and reset are
described by special timer arrows. A timer arrow starts at a corresponding set symbol
(rectangle) and ends below at the same instance. A textual timer description (e.g. name and
duration) may be associated with the arrows. To each set a corresponding time-out or reset
has to be specified and vice versa. Action and timer constructs are shown within fig. 3-3.

3.3.4 Instance stop and instance creation

Creation and termination of instances within communication systems are quite common
events. This is due to the fact that most communication systems are dynamic systems where
instances appear and disappear during system lifetime. Consequently, a system designer needs
features to describe such events.

The corresponding MSC language elements are shown in fig. 3-3 (d). The create symbol is a
dashed arrow which may be associated with textual parameters. A create arrow originates
from a father instance and points at the instance head of the child instance. The termination of
an instance graphically is represented by a cross (stop symbol) at the end of the instance axis.

3.3.5 Conditions

A condition either describes a global system state referring to all instances contained in the
MSC (global condition) or a state referring to a subset of instances (nonglobal condition).
Conditions can be used to emphasise important states within an MSC or for the composition
and decomposition of MSCs (see chapter 5).

In the MSC/GR representation global and nonglobal conditions are represented by hexagons
covering the involved instances (cf. fig. 3-3 (c), (e)). In fig. 3-3 (e) the instance

6



Medium_service is not covered by the condition Disconnected and therefore it is not involved
in the state to which the condition refers.

In the MSC/PR representation conditions are introduced at two different places: on the level
of MSCs in form of global conditions and on the level of instances referring to an arbitrary
set of instances. In the second case the condition may be local, i.e. attached to just one in-
stance. If the condition refers to several instances then the keyword shared together with an
instance list denotes the set of instances to which the condition is attached. By means of the
keywords shared all, also in the second case a condition referring to all instances may be
defined. However, for a clear structuring of an MSC in MSC/PR representation, the syntax
for global conditions may preferably be put at the beginning and at the end of an MSC.

Responder:

ICONreq

ICON
ICONind

process ISAP-
Manager-Resp

Initiator:
process ISAP-
Manager-Ini

IDISreq
IDIS

T(p)

IDISind

msc Message-crossing/Timer-reset

Responder:

ICONreq

ICON
ICONind

process ISAP-
Manager-Resp

Initiator:
process ISAP-
Manager-Ini

T(p)

IDISind

msc Time-out

(a) MSC with message crossing (IDIS, ICON)
and set→reset (time supervision)

(b) MSC with set→time-out (timer
expiration)

Responder:

ICONreq ICON

ICONind

process ISAP-
Manager-Resp

Initiator:
process ISAP-
Manager-Ini

T(p)

IDISind

msc Local/Global-Conditions

Inres_disconnected

Disconnected Wait_resp

Control_Mgr:

CONreq

CONind

process 
controller

Call_Mgr:
process 
call_controller

DISind

msc Process-creation/termination

(ctrl_data)
ctrl_data

(identifier)

ALERT
(failure)

(failure)

FAILURE
(failure)

(c) MSC with global and local conditions (d) MSC with create and stop

7



ICONreq

MDATreq

msc Conditions_and_Action

block 
Ini_Station

Medium_service:
block Medium block 

Res_Station

Disconnected

Initiator: Responder:

Connected

MDATind
(CR)

(CR)
ICONind

Counter =1

ICONresp

(CC)
MDATind
(CC)

ICONconf

Idle

Wait_for_resp

MDATreq

(e) MSC with conditions and action

Figure 3-3: MSCs with basic language constructs

3.4 Structural language elements of MSCs
The structural language elements of MSCs include all constructs which can be used to specify
more general MSCs or to refine MSCs. Therefore the current MSC recommendation offers
the coregion and the submsc.

3.4.1 The coregion

Along an MSC instance message events are totally ordered. This may be not appropriate for
instances referring to a higher level than SDL processes. Therefore a so-called coregion is
introduced. A coregion denotes a piece of an MSC instance where the specified communica-
tion events are not ordered. Within one coregion only sending (origins of message arrows) or
only consumption events (arrow heads) may be specified. Examples containing coregions are
given in fig. 3-4 (a) and fig. 4-4 (b).

3.4.2 Refinement of MSCs (submsc)

An MSC instance can be refined by another MSC, which than is called submsc. A submsc is
attached to the refined instance by means of the keyword decomposed. The submsc represents
a decomposition of this instance without affecting its observable behaviour. The messages
addressed to and comming from the exterior of the submsc are characterised by the messages
connected with the submsc border (frame symbol). Their connection with the external in-
stances is provided by the messages sent and consumed by the corresponding decomposed
instance, using message name identification. It must be possible to map the external behav-
iour of the submsc to the messages of the decomposed instance. The ordering of message
events specified along the decomposed instance must be preserved in the submsc. Actions and
conditions within a submsc may be looked at as a refinement of actions and conditions in the

8



decomposed instance. Contrary to messages, however, no formal mapping to the decomposed
instance is assumed, i.e. the refinement of actions and conditions need not obey formal rules.
In fig. 3-4 (b) the refinement of the instance Inres_service (fig. 3-4 (a)) is shown.

Inres_service

msc Structural_language_elements

decomposed

ICONreq
IDISreq

ICONind
IDISind

Responder:

ICONreq
ICON

ICONind

process ISAP-
Manager-Resp

Initiator:
process ISAP-
Manager-Ini

IDISreq
IDIS

T(p)

IDISind

submsc Inres_service

(a) MSC with coregions (b) Refinement of Inres_service in (a)

Figure 3-4: MSCs with structural language elements

4 Modifications and possible enhancements of MSCs
Within this chapter, we propose some modifications and enhancements of the MSC language.
Some of the proposals are very specific and some are rather general. However, this chapter
reflects our ideas concerning the future development of MSCs.

4.1 Modifications of the MSC language
The proposed modifications of the current MSC language concern timer handling and
conditions.

4.1.1 Timer handling

Within the MSC recommendation the timer handling contains two constructs: setting of a
timer and subsequent timer expiration (time-out situation) or setting of a timer and subse-
quent timer reset (time supervision).

Contrary to SDL, currently there are no separate language constructs for timer set, reset, and
time-out for MSCs. This is in agreement with the common practice in industry where usually
the complete time-out situation or the time supervision is specified.

For an extensive use of MSC composition mechanisms (cf. chapter 5) this kind of timer
handling, however, may be too narrow. Within one MSC e.g. it may be desirable to specify
only the timer setting. There is no problem in MSC/PR to split the present MSC timer
constructs into separate timer actions. In the graphical representation the rectangle symbol

9



may represent a separate timer set if timer name and (optionally) timer duration is assigned. A
separate timer expiration may be represented by an message arrow where the origin is not
connected to a timer set rectangle. Correspondingly, a separate timer reset may be indicated
by a dashed arrow where the origin is not connected to a timer set rectangle. An example of
this proposal is given in fig. 4-1.

Instance

T
(duration)

T(duration)

T
(duration)

Instance

T(duration)

(a) Separate set and corresponding time-out
construct

(b) Separate set and corresponding reset
construct

Figure 4-1: (Non-standard) separate set, time-out, reset constructs

4.1.2 Conditions

The MSC/PR representation distinguishes between global and nonglobal conditions (cf.
section 3.3.5), although it is possible to describe global conditions by means of nonglobal
conditions and although there exists only one graphical symbol for conditions. In this case the
MSC/PR and the MSC/GR representation are somehow divergent, because there are two
MSC/PR concepts for the same MSC/GR symbol. The reason for introducing this redundancy
was to shorten the textual description of MSCs by means of global conditions.

In order to avoid the mentioned redundancy without loosing the elegance of global condi-
tions, we propose to replace the global condition in the MSC/PR representation by intro-
ducing an optional condition declaration area before the instance descriptions. Within the
condition declaration area all nonlocal conditions (conditions which must be known by more
than one instance) have to be declared. Within the instance description the declared condi-
tions can be referred to.

As an example for our proposal we translate the MSC in fig. 3-3 (e) which includes global
and nonglobal conditions into MSC/PR according to the MSC recommendation (fig. 4-2 (a))
and into a variant according to our proposal (fig. 4-2 (b)).

4.2 Enhancements of the MSC language
In this section we propose some new MSC language elements which may be included later in
the MSC recommendation. The proposed MSC constructs concern macros, synchronous
communication, instance grouping, coregion, and data types.

10



msc Conditions_and_Action;

inst Initiator, Medium_service, Responder;

instance Initiator: block Ini_Station;

condition Disconnected shared Responder;

in ICONreq from env;

action Counter=1;

out MDATreq(CR) to Medium_service;
endinstance;

instance Medium_service: block Medium;

condition Idle;

in MDATreq(CR) from Initiator;

out MDATind(CR) to Responder;
endinstance;

instance Responder: block Res_Station;

condition Disconnected shared Initiator;

in MDATind(CR) from Medium_service;

out ICONind to env;
endinstance;

condition wait_for resp;

instance Initiator: block Ini_Station;

in MDATind(CC) from Medium_service;

out ICONconf to env;

condition Connected shared Initiator;
endinstance;

instance Medium_service: block Medium;

in MDATreq(CC) from Responder;

out MDATind(CC) to Initiator;
endinstance;

instance Responder: block Res_Station;

in ICONresp from env;

out MDATreq(CC) to Medium_service;

condition Connected shared Initiator;
endinstance;

endmsc;

msc Conditions_and_Action;

inst Initiator, Medium_service, Responder;

condition Disconnected shared Initiator, Responder;

condition Wait_for_resp shared all;

condition Connected shared Initiator, Responder;

instance Initiator: block Ini_Station;

condition Disconnected;

in ICONreq from env;

action Counter=1;

out MDATreq(CR) to Medium_service;

condition Wait_for_resp;

in MDATind(CC) from Medium_service;

out ICONconf to env;

condition Connected;
endinstance;

instance Medium_service: block Medium;

condition Idle;

in MDATreq(CR) from Initiator;

out MDATind(CR) to Responder;

condition Wait_for_resp;

in MDATreq(CC) from Responder;

out MDATind(CC) to Initiator;
endinstance;

instance Responder: block Res_Station;

condition Disconnected;

in MDATind(CR) from Medium_service;

out ICONind to env;

condition Wait_for_resp;

in ICONresp from env;

out MDATreq(CC) to Medium_service;

condition Connected;
endinstance;

endmsc;

(a) MSC/PR description of fig. 3-3 (e)
according to [Z120]

(b) (Non-standard) MSC/PR description of
fig. 3-3 (e)

Figure 4-2: Standard and non-standard MSC/PR descriptions of fig. 3-3 (e)

4.2.1 Structuring and modularisation of MSCs (macros)

Macros may be introduced as a means for structuring and modularisation of MSCs and for the
reusability of sections of MSCs. A macro definition is a section of an MSC which is defined
outside of the MSC, yet within the MSC document, and which is inserted at the places where
it is called. The macro definition essentially has the structure of an MSC. Apart from the
keyword macro, in the graphical representation (MSC/GR) the macro definition symbol looks
like the MSC frame symbol. The macro call may be indicated graphically by an SDL macro
call symbol attached to the instances which are involved (cf. fig. 4-3). A system analysis of
MSCs containing macros is possible without macro expansion (as long as the macro is not
contained in a submsc) if the syntax definition excludes messages leaving and entering the
macro to and from (macro-)external instances.

11



IDATreq

msc Successful_data_transfer

block 
Ini_Station

Medium_
service:
block Medium block 

Res_Station

Initiator: Responder:

Data_request_transmission

Data_request_transmission

IDATind

(data)

(data)
IDATreq
(data)

IDATind
(data)

macro Data_request_transmission

block 
Ini_Station

Medium_
service:
block Medium block 

Res_Station

Initiator: Responder:

MDATreq
(DT,data,num)

MDATind
(DT,data,num)

MDATreq
(AK,num)MDATind

(AK,num)

T(P)

(a) MSC with macro call (b) Macro definition of the macro call in (a)

Figure 4-3: (Non-standard) MSC macro call and corresponding macro definition

4.2.2 Synchronous Communication (remote procedure calls)

Corresponding to SDL, a remote procedure call (RPC) may be introduced in order to indicate
that a client instance calls a procedure within another instance. Graphically, it may be repre-
sented by an SDL procedure call symbol, attached to the client instance and connected with a
message arrow pointing to the server instance. The RPC employs a synchronous communica-
tion mechanism.

Independently of RPCs, a construct for synchronous communication is demanded by users
that in contrast to RPCs, may be graphically represented by a bi-directional arrow.

4.2.3 Instance Grouping

Further hierarchical or functional structuring of MSCs by means of instance grouping is
required (cf. [Q65]). In particular, it may be helpful to indicate the assignment of process
instances to blocks within an MSC. Graphically, instance grouping can be denoted by a hori-
zontal bracket.

4.2.4 Weakening the time ordering along MSC instances (coregion)

Within the present MSC language the total ordering along one instance axis can be weakened
by using the coregion construct. Yet this construct presents only one possibility for weak-
ening the event ordering along an MSC instance. In Time Sequence Diagrams (TSDs) [ISO
87], which can be looked at as a special kind of MSCs and which are frequently used to de-
scribe OSI services, another possibility is offered.

The ordering between message events at two service access points (SAPs) of one service
provider can be indicated by diagonal lines (fig. 4-4 (a)). Each SAP is modelled by a single
axis and along this axis the message events are totally ordered. Without going into details it
should be noted that in general it is not possible to translate one TSD into one MSC (cf. fig.
4-4), since there is no construct, equivalent to the synchronisation primitive (diagonal line) of
TSDs in the MSC language. If MSCs should be used for the specification of OSI services, the
next CCITT study period must examine further features for the weakening of the total order-
ing of message events along one MSC instance.

12



ICONreq

ICONind

service-user1
INITIATOR-user

service-user2
RESPONDER-user

service-provider
Inres-service

ICONresp

IDISind

(a) TSD describing an unsuccessful connection establishment of the Inres service

block
Inres-system

Inres-service:

ICONreq

IDISind

ICONind

ICONresp

msc connection_set-up_fail1

block
Inres-system

Inres-service:

ICONreq

IDISind ICONind

ICONresp

msc connection_set-up_fail3

block
Inres-system

Inres-service:

ICONreq

IDISind

ICONind

ICONresp

msc connection_set-up_fail2

(b) Three MSCs describing the same traces as the TSD in (a)

Figure 4-4: TSD and three corresponding MSCs which describe the same traces.

4.2.5 Inclusion of data types

Within the present MSC recommendation no formal data description is provided. This is ap-
propriate for the employment of MSCs in early stages of system development in order to
provide a semiformal specification of communication.

However, for the usage of MSCs within later stages of design and implementation, in particu-
lar for system simulation and validation, and for selection and specification of test cases a
formal data description by means of ADTs or ASN.1 is necessary. The formal data descrip-
tion may refer to conditions, actions, and to parameters of messages, macros, and timers.

5 Composition and decomposition rules for MSCs
The already mentioned MSC language enhancements increase the expressive power within
one MSC. Since one MSC only describes a partial system behaviour, it is advantageous to
have a number of simple MSCs that can be combined in different ways. To determine possi-
ble combinations the already introduced (global and nonglobal) conditions can be used em-
ploying certain composition and decomposition rules.

13



5.1 The meaning of composition and decomposition of MSCs
MSCs can be composed by name identification of final and initial (global or nonglobal)
conditions. The other way round, MSCs can be decomposed at intermediate (global and
nonglobal) conditions.

Initial conditions denote the starting states, final conditions represent end states, and inter-
mediate conditions describe arbitrary states within MSCs. The terms initial, intermediate and
final conditions are only used in order to simplify this description, they are not introduced
within the MSC recommendation. An example of an MSC composition by means of global
conditions is shown in fig. 5-1. The MSC Complete_system_run (c) is a composition of the
MSCs Connection_set_up (a) and Data_transfer/connection_release (b).

Composition and decomposition of MSCs obey the subsequent rules for global and nonglobal
conditions, whereby global conditions refer to all instances involved in the MSC whereas
nonglobal conditions are attached to a subset of instances (cf. section 4.1.2).

Responder:

ICONreq
ICON

ICONind

process ISAP-
Manager-Resp

Initiator:
process ISAP-
Manager-Ini

T(p)

ICONconf

msc Connection_set_up

Inres_disconnected

Inres_connected

ICONresp
ICONF

(a) Successful connection set up of the Inres
service

Responder:

IDATreq
IDAT

IDATind

process ISAP-
Manager-Resp

Initiator:
process ISAP-
Manager-Ini

msc Data_transfer/connection_release

Inres_disconnected

Inres_connected

(data)
(data)

(data)

IDISreq
IDIS

IDISind

(b) Data transfer and normal disconnection
of the Inres service

Responder:

ICONreq
ICON

ICONind

process ISAP-
Manager-Resp

Initiator:
process ISAP-
Manager-Ini

T(p)

ICONconf

msc Complete_system_run

Inres_disconnected

Inres_connected

ICONresp
ICONF

IDATreq
IDAT

IDATind

Inres_disconnected

(data)
(data)

(data)
IDISreq

IDIS
IDISind

(c) Composition of (a) and (b)

Figure 5-1: MSC composition by means of global conditions

14



5.2 Composition of MSCs

5.2.1 Composition by means of global conditions

Two MSCs MSC1 and MSC2 can be composed if both MSCs contain the same set of
instances and if the initial condition of MSC2 corresponds to the final condition of MSC1
according to name identification (cf. fig. 5-1). The final condition of MSC1 and the initial
condition of MSC2 become an intermediate condition within the composed MSC.
Symbolically:

(1) MSC1 = MSC1' Condition

(2) MSC2 = Condition MSC2'

(3) MSC1 * MSC2 = MSC1' Condition MSC2'

Equation (1) shall denote that MSC1 can be written as an MSC section MSC1' and a subse-
quent final condition Condition. The second equation (2) denotes that MSC2 starts with the
initial condition Condition which is followed by the MSC section MSC2'. Equation (3)
denotes the composition of MSC1 and MSC2 (using the asterisk symbol for composition).
The composed MSC can be written in form of a starting MSC section MSC1', an intermediate
condition Condition and a subsequent MSC section MSC2.

5.2.1 Composition by means of nonglobal conditions

Two MSCs MSC1 and MSC2 can be composed by means of nonglobal conditions if for each
instance (I) which both MSCs have in common MSC1 ends with a nonglobal condition and
MSC2 begins with a corresponding nonglobal condition. In addition each nonglobal condition
of MSC2 must have a corresponding nonglobal condition in MSC1. If I(MSCi) (i = 1,2) de-
notes the restriction of an MSCi to the events of instance I, this can be written symbolically:

(1) I(MSC1) = I(MSC1)' Condition

(2) I(MSC2) = Condition I(MSC2)'

(3) I(MSC1) * I(MSC2) = I(MSC1)' Condition I(MSC2)'

An example is given in fig. 5-2. The MSC Connection_failure (c) is a composition of the
MSCs Response_failure (a) and Request_failure (b) via the local condition Disconnected. The
MSC Response_failure contains two instances Initiator and Responder. The MSC
Request_failure contains only one instance Initiator to which the initial local condition
Disconnected is attached. The composition of MSC Response_failure with MSC
Request_failure only refers to the instance Initiator, i.e. MSC Response_failure is continued
along instance Initiator by MSC Request_failure. This also shows the usefulness of nonglobal
conditions which makes a composition with respect to a subset of the instances involved in
the MSCs possible. Finally, it should be noted that conditions with identical names are dis-
criminated by the instances to which they are attached.

5.3 Decomposition of MSCs
Corresponding to the MSC-composition, MSCs can be decomposed due to intermediate
conditions.

15



5.2.1 Decomposition by means of global conditions

An intermediate condition defines a possible MSC decomposition by splitting an MSC MSC1
at the intermediate condition Condition into MSC2 and MSC3, the intermediate condition
being converted into a final condition for MSC2 and an initial condition for MSC3:

(1) MSC1= MSC2' Condition MSC3'

(2) MSC2= MSC2' Condition

(3) MSC3= Condition MSC3'

Responder:

ICONreq
ICON

ICONind

process ISAP-
Manager-Resp

Initiator:
process ISAP-
Manager-Ini

T(p)
IDISind

msc Response_failure

Disconnected Disconnected

ConnectedDisconnected

ICONresp

(a) Erroneous transmission of a connection
response within the Inres service

ICONreq

process ISAP-
Manager-Resp

Initiator:

T(p)

IDISind

msc Request_failure

Disconnected

Disconnected

(b) Erroneous transmission of a connection
request within the Inres service

ICONreq

process ISAP-
Manager-Resp

Initiator:

T(p)
IDISind

msc Connection_failure

Disconnected

Responder:

ICONreq
ICON

ICONind

process ISAP-
Manager-Ini

T(p)
IDISind

Disconnected Disconnected

ConnectedDisconnected

ICONresp

(c) Composition of (a) and (b)

Figure 5-2: MSC composition and decomposition by means of nonglobal conditions

16



5.2.2 Decomposition by means of nonglobal conditions

A subset of intermediate nonglobal conditions allows a decomposition of an MSC MSC1 into
MSC2 and MSC3 if all nonglobal conditions of this subset refer to different instances and no
message is cut into pieces by means of the decomposition, i.e. both message input and the
corresponding output belong to either MSC2 or MSC3:

(1) I(MSC1) = I(MSC2)' Condition I(MSC3)'

(2) I(MSC1) = I(MSC1)' Condition

(3) I(MSC2) = Condition I(MSC2)

E.g. the MSC Connection_failure (fig. 5-2 (c)) can be decomposed into the MSCs
Response_failure (fig. 5-2 (a)) and Request_failure MSC (fig. 5-2 (b)) at the local condition
Disconnected.

6 Towards a formal MSC semantics
Within this section one possible approach towards a formal semantics is sketched. The ap-
proach has been worked out at University of Berne within the research project "Conformance
Testing - A Tool for the Generation of Test Cases", funded by Swiss PTT (F&E project,
contract no. 233). The approach uses an interleaving model and is based on finite automata
(cf. [GHLLN 92], [LL 92-1], [LL 92-2]).

6.1 An automaton semantics for MSCs
Formally, a single MSC can be interpreted as a graph with two sorts of edges. The nodes rep-
resent communication events, e.g. message sending and message consumption. The edges de-
note the next-event and the signal relation. The next-event relation describes the order of the
communication events along the instance axis. The signal relation represents the order be-
tween sending and consumption of a message. This graph is called a next-event/signal (ne/sig)
graph.

The ne/sig graph of an MSC can be interpreted as a global state transition graph (GSTG),
containing all possible global states specified by the MSC. The GSTG corresponds to an
automaton without explicitely defined end states. In our case the automaton must accept all
event traces which are consistent with the partial order of the communication events within
the MSC. The semantics of the MSC is given by the behaviour of the constructed automaton.

6.2 Semantics for MSCs with composition mechanisms
Defining end states for the automata in the above case is trivial. But by means of composition
rules (cf. chapter 5), a set of MSCs (with conditions) may describe potentially non-termi-
nating sequences. In this case, the whole set of MSCs is translated into a single ne/sig graph,
which may contain event loops and nondeterministic choices.

To find proper end states a termination criterion from ω-automata theory, due to Büchi [Tho
90], is used. Unfortunately there is no unique suitable end-state set that turns a GSTG into a

17



Büchi automaton. Instead, various possible end-state sets correspond to liveness properties of
MSCs. Examples of such sets are given in [GHLLN 92] and [LL 92-2].

6.3 Remarks on the sketched MSC semantics
The main advantage of the sketched semantics approach and the here upon based MSC se-
mantics is its flexibility. According to the chosen set of end states it is possible to analyse
MSCs under various points of view. Other approaches towards a formalization of MSCs, like
[Til 91] or [CCHK 90], do not provide a semantics for MSCs and are not able to handle
MSCs with composition rules.

Finally, we like to mention that the ne/sig graph presents a general abstract syntax for com-
municating processes. It can be interpreted in many ways. Within the mentioned research
project, a subset of SDL, powerful enough to specify examples like the Inres service [Hog
92], is also translated into a ne/sig graph which is then interpreted as a queue automaton. As a
result a simple and compact SDL semantics is obtained.

7 Outlook
The MSC activities during the 1989-1992 study period have concentrated on the elaboration
of the syntax and informal semantics for basic MSCs. Experience with other languages (e.g.
SDL) has shown that language maintenance, tool support and determining the relationship be-
tween different languages are significantly enhanced by the availability of a formal semantics.
Therefore, additional work will be necessary for an elaboration of a formal MSC semantics
that in particular will help to establish a formal relationship between MSCs and SDL.

Consequently, MSC activities during the study period 1993-1996 will concentrate on a formal
semantics definition, resulting in a revision of Z.120 [Z120]. Enhancements, however, will
not be included before 1996. One major step towards an FDT can be seen in the inclusion of
formal data description. Further possible enhancements of MSCs refer to abstraction, struc-
turing, modularisation and composition concepts and to object oriented modelling.

Acknowledgements
The authors would like to thank Prof. Hogrefe, University of Berne, for the support of this
work and P. Graubmann, Siemens Munich, for valuable suggestions and comments.

Literature
[Belina 92] Belina, F. (ed.): SDL Methodology Guidelines, Appendix I to CCITT Recom-

mendation Z.100, Geneva, 1992

[BHS 91] Belina, F.; Hogrefe, D.; Sarma, A.: SDL with Applications from Protocol
Specification, Prentice Hall, 1991

18



[CCHK 90] Cockburn, A.A.R.; Citrin, W.; Hauser, R.F.; von Känel, J.: An Environment
for Interactive Design of Communication Architectures, IBM research divi-
sion, Zurich Research Laboratory, 1990

[GGR 91] Grabowski, J.; Graubmann, P.; Rudolph, E.: Towards an SDL-Design-
Methodology Using Sequence Chart Segments, in SDL'91 Evolving Methods -
O. Faergemand and R. Reed (editors), North-Holland, 1991

[GraRu 89] Grabowski, J.; Rudolph, E.: Putting Extended Sequence Charts to Practice,
SDL'89 The Language at Work - O. Faergemand and M. M. Marques (editors),
North-Holland, 1989

[GHLLN 92] Grabowski, J.; Hogrefe, D.; Ladkin, P.; Leue, S.; Nahm, R.: Conformance
Testing - A Tool for the Generation of Test Cases, Interim report of the F&E
project contract no. 233, funded by Swiss PTT, University of Berne, May 1992

[Hog 88] Hogrefe, D.: Automatic Generation of Test Cases from SDL Specifications,
CCITT SDL Newsletter 12, 1988

[Hog 89] Hogrefe, D.: Estelle, LOTOS und SDL - Standard Spezifikationssprachen für
verteilte Systeme, Springer Verlag, 1989

[Hog 92] Hogrefe, D.: OSI Formal Specification Case Study: the Inres Protocol and
Service (revised), Technical report IAM-91-012, University of Berne, 1991,
Update May 1992

[ISO 87] ISO TC97/SC21: OSI Service Conventions, Technical Report ISO/TR 8509,
1987

[LL 92-1] Ladkin, P.; Leue, S.: An Automaton Interpretation of Message Sequence
Charts, Technical report IAM-92-012, University of Berne, 1992,

[LL 92-2] Ladkin, P.; Leue, S.: An Analysis of Message Sequence Charts, Technical re-
port IAM-92-013, University of Berne, 1992,

[Q65] CCITT Recommendation Q.65: Stage 2 of the Method for the Characterisation
of Services Supported by an ISDN, CCITT, 1988

[Q699] CCITT Recommendation Q.699: Interworking between the Digital Subscriber
System Layer 3 Protocol and the Signalling System No. 7 ISDN User Part
CCITT, 1988

[Tho 90] Thomas, W.: Automata on Infinite Objects, in Handbook of Theoretical Com-
puter Science, chapter 4, pages 132-191, Elsevier Science Publisher, 1990

[Til 91] Tilanus, P.A.J.: A formalisation of Message Sequence Charts, SDL'91
Evolving Methods - O. Faergemand and R. Reed (editors), North-Holland,
1991

[Tog 92] Toggweiler, D.: TTCN-Testfallgenerierung für mit Sequence Charts spezi-
fizierte verteilte Systeme, University of Berne, Diploma thesis, March 92

[Z100] CCITT Recommendation Z.100: Specification and Description Language
(SDL), Geneva, 1992

[Z100-D] CCITT Recommendation Z.100: Specification and Description Language
(SDL) - Annex D: SDL User Guidelines, 1988

[Z120] CCITT Recommendation Z.120: Message Sequence Chart (MSC), Geneva,
1992

19


