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Abstract

Check forms are used by many people in daily life for money remittance.

Surprisingly, the processing of these forms at banks and post o�ces is only

partly automated. In this report, we focus on a particular kind of form, viz.,

the GIRO checks used in Switzerland. We will describe a fully automatic

system which is able to recognise the following items on a GIRO check: the

�nancial institution, the name and address of the receiver and the account

number. The complete analysis and understanding of a GIRO check is per-

formed in two phases. In the �rst phase, the system performs a layout analysis

in order to localise regions corresponding to various items on the check. The

input gray-level image is �rst binarised and segmented using the X-Y-tree de-

composition algorithm. This gives us the atomic parts of a check, for example,

individual characters, special symbols, and formatting lines which are present

on a form. Each entity is then interpreted as a part of an item (e.g., receiver's

name, account number), according to the knowledge about possible layouts of

a form. All atomic entities belonging to the same item are grouped together

and yield the location of that item. In the second phase, the localised items

are separately analysed by a local binarisation and the binarised sub-images

are submitted to an OCR engine to obtain the streams of characters. We have

tested the system on a large number of checks and the results are promising

in terms of both computation time and recognition accuracy.

CR Categories and Subject Descriptors: I.4.6 [Image Processing]: Segmen-

tation; I.4.7 [Image Processing]: Feature Measurement; I.5.1 [Pattern Recognition]:

Models.

Additional Key Words: GIRO check, Optical Character Recognition (OCR),

document image recognition, graph matching.
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1 INTRODUCTION

This report describes the results achieved throughout the second year of the joint

project between the UBS Laboratory (UBILAB) and the University of Berne on

"Document Image Analysis and Understanding". In this project, we focus on a par-

ticular kind of document, viz., the GIRO checks used in Switzerland. The emphasis

has been put on a complete analysis and understanding of the left and bottom parts

of these checks.

Up to the time of writing this report, we have implemented a software system

capable of recognising the following items on a GIRO check: the �nancial institution,

the name and address of the receiver, the account number on the left, and the 'OCR

lines' at the bottom of the check. The obtained results are promising in terms of

both computation time and recognition accuracy.

Section 2 presents the methodology of model-based recognition applied to the

considered problem. Section 3 discusses the segmentation of the input image into

atomic entities and Section 4 the labeling of these entities. Some results are pre-

sented in Section 5 and the last section gives a perspective of future research and

concludes the report.

2 METHODOLOGY

GIRO checks are documents printed according to a set of rules speci�ed by the

Postes Telegraphes et Telecommunications (PTT) of Switzerland. This means that

the recognition process may and should take advantage of these rules to guide the

analysis and understanding phases. In other words, the recognition will be model-

based. In this application, we are mainly interested in two regions of GIRO checks,

namely, the left and bottom ones. For an illustration, see Fig. 1. The left region

contains various kinds of information such as the name and address of the receiver,

account number, etc. On the other hand, the bottom region, also called 'OCR lines'

region, contains numerical codes including few speci�c symbols (e.g., '>', '+'). The

main di�erence between these two regions is that the left one has a exible layout

whereas the structure of the bottom one obeys very strict rules. Therefore, the

analysis of the latter is much easier and in fact can be achieved independently of

the former. Note that there already exist commercial systems that can read the

bottom region. Consequently, we will present only the recognition of the left region

of GIRO checks in this report.

Section 2.1 introduces the document model based on graph representation and

2.2 describes the recognition method.

2.1 Document Model

Graphs are a powerful tool to represent knowledge. A graph is composed of nodes

and edges linking the nodes together. In our application, nodes are associated with
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Bottom RegionLeft Region

Figure 1: A GIRO check form.
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Figure 2: Objects on a GIRO check form.

various objects in the document (e.g., lines, boxes, strings of characters, etc.) and

edges represent spatial relationships (e.g., above, left-to and inside) between objects.

Building a model graph is highly dependent on the particular application. In-

deed, the building process involves 1) the choice of a set of objects and 2) the

de�nition of their relationships. There are usually many possible combinations of

objects and the choice of one over the other is a priori not obvious. Nevertheless,

there exist some basic rules that guide an appropriate choice:

� The total number of objects should not be too large (to limit the time com-

plexity of the matching process). This can be achieved through a hierarchical

organisation.

� The choosen objects should be easily identi�able by some known procedures.

� The way human readers perform the task may sometimes be used as a cue.

Note that the �rst and the second rules may be contradictory under certain circum-

stances and thus can be resolved only by a trade-o�.

In our application, the objects we have choosen to be associated with the nodes

of the model graph can be classi�ed into three categories (see Fig. 2):

� GRAPHICS (Lines and Boxes).
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� TITLE (Prede�ned strings of characters).

� INFORMATION(Financial institution, receiver, account number and amount).

We will see later that this classi�cation helps determining the 'best' order of recogni-

tion. There are three kinds of spatial relationships between the considered objects:

� Above.

� Left-of.

� Inside.

Thus, an object A linked to an object B by an 'above' edge means that A is above

B. Relations between two objects are quali�ed as binary. Unary relations as well as

attributes on the other hand describe intrinsic properties of an object (e.g. length

of a GRAPHICS line, sizes of a GRAPHICS box, contents of a TITLE object, sizes

of characters in an INFORMATION object). Fig. 3 gives the model graph of the

GIRO checks. For simplicity, only binary relations are shown in this �gure; unary

relations and attributes have been omitted.

2.2 Recognition Task

The overall goal of the recognition process is to receive an input image and extract

the INFORMATION objects of interest by using the document model. In this

section, we will discuss how this goal can be achieved in an e�cient manner. More

speci�cally, we will show that the recognition process can be decomposed into a

number of tasks, namely, segmentation, identi�cation of conspicuous objects and

�nally recognition of characters within certain zones of interest.

Given the above model, one possibility is to 1) use an OCR engine to recognise all

possible characters in the image and b) match these characters against the document

model. However, some preliminary tests have shown that there are many drawbacks

associated with this approach:

� Before any OCR engine can be applied, the document image has to be bi-

narised. However, as the image contrast is not uniform - GRAPHICS and

TITLE objects have low contrast whereas INFORMATION objects often have

high contrast - a global binarisation does not yield a satisfactory result and

a local binarisation is di�cult because we do not know where the objects of

interest lie. A local adaptive binarisation could be imagined but would be too

complicated for this application.

� TITLE objects are of small size and can be reliably recognised by an OCR

engine only at very high resolution. Even when this is possible, it is very time

consuming.
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Figure 3: Model graph of GIRO check forms.
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Figure 4: Block diagram of the recognition process.

� The presence of GRAPHICS objects makes the OCR engine work more slowly

and may even disturb the correct localisation of characters.

In summary, this approach is time consuming and not reliable. Therefore, we have

adopted another approach which consists of two phases (see Fig. 4). In the �rst

phase, the whole image is segmented into atomic entities. Based on the document

model, the matching algorithm groups these enties into regions according to the

model objects in decreasing order of conspicuousness. A one-to-one correspondence

between regions and objects is performed thus identifying regions that contain IN-

FORMATION objects. In the second phase, the INFORMATION regions are sepa-

rately binarised again and their binary bitmaps are fed into the OCR engine yielding

the �nal result.

Low-level processing comprises binarisation and segmentation. The binarisation

consists of determining a threshold that separates the graphics and characters (dark)

from the background (bright). This operation reduces the amount of information and

thus eases subsequent operations. The segmentation divides the binary image into

indivisible zones, called atomic entities. Each atomic entity normally corresponds

to a character or a graphics part. Both binarisation and segmentation algorithms

will be discussed in the next section.

High-level processing consists of graph matching and the OCR engine. The

graph matching algorithm in our application is restricted to the identi�cation of

GRAPHICS and TITLE objects, leaving out the INFORMATION ones. In other

words, we use GRAPHICS and TITLE objects as a kind of islands in order to localise

the INFORMATION objects. This is possible because GRAPHICS and TITLE

objects can be identi�ed by using only their intrinsic properties. This observation

allows us to reduce the time complexity of the graph matching process from O(N

P

)

to O(NP ), where N is the number of nodes in the model and P the number of data

items. The graph matching algorithm will be described in Section 4 together with

the application of the OCR engine.

Note that we have de�ned the decreasing order of conspicuousness of objects as:
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GRAPHICS, TITLE and INFORMATION. The GRAPHICS objects are the most

conspicuous ones because they have large size and well-de�ned form. The TITLE

objects are more conspicuous than the INFORMATION ones because they have

�xed contents, although they are smaller in size.

The main advantage of this two-phase approach is that it is less sensitive to

the non-uniform contrast levels encountered in real documents. Additionally, the

separation between segmentation and OCR eases the calibration and tuning of the

whole system.

3 LOW LEVEL PROCESSING

This section addresses two topics. The �rst concerns the binarisation and the second

a segmentation algorithm, called X-Y-Tree decomposition, to which we have added

some improvements leading to a reduction of computation time.

3.1 Binarisation

In this project, we use the automatic threshold selection algorithm proposed by Otsu

[Otsu 79]. This algorithm �rst computes the histogram of the gray-level image and

then determines the binarisation threshold. The threshold determination is based on

the maximisation of the inter-class variance assuming that the image is composed

of only two classes, viz., foreground and background pixels. Since the algorithm

makes use of the histogram alone, it is purely statistical; no spatial information is

taken into account. However, in the context of our application, this approach has

proved su�cient. The details of the implementation of the algorithm may be found

in [Spider 83].

The alternative to automatic binarisation is to use a �xed threshold value. Thus,

all documents would be binarised using the same threshold. It turns out in our

application that the gray-level and contrast of GIRO checks vary over a large range

of values. For instance, the value 150 of a pixel (0 and 255 represent Black and

White respectively) may correspond to the background in a dark document and to

some character in a bright document. Figs. 5 and 6 show the gray-level histograms

of two GIRO checks. It is clear from these histograms that a �xed threshold is not

suitable for our application.

3.2 X-Y-Tree Decomposition

The X-Y-tree decomposition, also called Iterative Projection Pro�le Cuttings method,

is a popular segmentation algorithm in the context of Document Image Analysis

and Understanding [Nagy 84, Srihari 86, Casey 90]. In our application, the X-Y-

tree decomposition is purely considered as a low-level algorithm in the sense that no

high-level knowledge of the document is required to perform the segmentation. Pre-

vious works often, but not exclusively, make uses of high-level knowledge to guide
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Figure 5: Gray-level histogram of a GIRO check.
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Figure 6: Gray-level histogram of another GIRO check.
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Figure 7: Horizontal projection of black pixels.

the decomposition. [Nagy 84] embeds the picture grammar and [Viswanathan 90]

introduces the publication-speci�c knowledge in the segmentation process. This

combination of low- and high-level information results in an elegant solution but

requires that the document layout has a well-de�ned structure. More importantly,

an error in the data due to noise may irremediably lead to a segmentation failure

[Srihari 86]. In the approach where low- and high-level processing are separated, the

problem of noisy data is postponed to the later stage of labeling. The advantage

is that the amount of data to deal with is then much smaller than in the original

representation.

The basic algorithm as it is proposed in literature is presented �rst. Then the

optimisation and the ordering properties of the algorithm are described.

3.2.1 The basic algorithm

The basic idea behind the algorithm is the exploitation of the fact that most doc-

ument images have a vertical and/or horizontal structure. Indeed, a normal text

page is usually composed of di�erent horizontal text lines (see Fig. 7). This obser-

vation immediately leads to the idea of horizontally projecting the black pixels on a

vertical axis (see Fig. 7). The resulting pro�le clearly indicates the line structure of

the page. A simple analysis of the pro�le, like comparison of the projection pro�le

with a threshold, segments the page into blank bands and text bands. A blank band

corresponds to a set of contiguous rows having less than n black pixels and a text

band to a set of contiguous rows having a least n pixel if the comparison's threshold

is set to n. Subsequently, each text band can be vertically projected on a horizon-

tal axis yielding the positions of the characters within this band. Fig. 8 shows the

vertical projection of the �rst band. Thus, in the case of the text page of Fig. 7, the

following procedure can be used for extracting the characters:

1. Compute the horizontal projection pro�le for the entire page.

2. Analyse the projection pro�le to extract the lines.

3. For each line, compute the vertical projection pro�le.

4. Analyse each projection pro�le obtained in step 3 to extract the characters.
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Figure 8: Vertical projection of the �rst line.

More generally, however, it may be necessary to perform more than two pro-

jections to reach the characters. Fig. 9 shows a spatial con�guration (characters

are symbolically represented by boxes) in which some characters are reached only

after the third projection (horizontal). It can readily be seen that more complex

documents may require even more projections to reach the individual characters.

Therefore, in order to be sure that all indivisible zones are reached, the general al-

gorithm should alternatively project the document vertically and horizontally until

two consecutive projections yield the same result.

The natural data structure to store the result of the algorithm is a tree whose

nodes represent rectangular zones. Each node may have many children each repre-

senting a sub-zone of the parent's zone. The terminal nodes (leaf-nodes) are those

which are not further decomposable. They represent the indivisible zones and are

called atomic entities. Fig. 10 shows an example of text where characters are repre-

sented by boxes, and its tree representation.

A scrutiny observation of Fig. 10 reveals that the order in which di�erent atomic

entities are reached by the algorithm is that of Fig. 11. It can be seen that this order

is the same as that of the leaf-nodes in the tree representation (left-to-right). This

suggests a list representation of the result, in the same order. The list representation

has the advantage of providing easier post-processing operations like string match-

ing. Indeed, it is quite complicated to match a string with a tree data structure,

whereas it is much easier to match a string with a list. However, we must be cautious

because the X-Y-tree's order is not necessarily that of the 'natural' order of the text

as illustrated in Fig. 11. For instance, a human reader would rather see zone 1.2.1

following 1.1.1 and 1.2.2 following 1.1.2 in Fig. 10, and not the order depicted in

Fig. 11. This problem will be addressed in Section 3.2.3 where we will establish a

relation between the X-Y-tree's order and the spatial relationship between any two

atomic entities.

Another problem with the X-Y-tree decomposition algorithm arises in the pres-
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Figure 9: Example of a document requiring three projections.
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Figure 10: A document and its tree representation.

Figure 11: Illustration of the X-Y-tree's order.
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Figure 12: Typical forms that cannot be decomposed by the X-Y-tree.

ence of some particular graphics forms. Fig. 12 depicts two typical forms of graphics,

close-form and open-form, that prevent the algorithm from succesful decomposition

of the image. In the presence of such graphics forms in the document, it is necessary

to localise them and apply the connected component analysis [Casey 90]. Another

solution consists of localising these forms and applying the X-Y-tree only to the

regions delimited by them.

3.2.2 Optimisation

In terms of computation time, the X-Y-tree decomposition is known to be faster

than the connected component analysis [Casey 90]. Our experiments show that the

computation of the basic X-Y-tree is four to eight times faster than the connected

component analysis, depending on the structure and the contents of the document.

The basic X-Y-tree is our implementation and the connected component labeling

algorithm is from the SPIDER package [Spider 83]. In order to speed the basic

X-Y-tree decomposition algorithm further up, two improvements have been added.

The �rst improvement is based on the observation that in the basic X-Y-tree

algorithm, the projection pro�le is usually analysed by comparing it with a �xed

threshold to separate text from blank bands. For a noiseless document, this thresh-

old is usually very low (one or two). This suggests that it is su�cient to perform the

projections only up to the limit of the prede�ned threshold, i.e., we stop counting

the black pixels as soon as their accumulated number reaches the threshold. This is

a lossless optimisation because the contribution of those pixels above the threshold

is in any case not used by the basic algorithm.

Of course, this modi�ed projection procedure is applicable for both horizontal

and vertical directions. It turns out that this very simple idea saves about 50%

of the computation time with respect to the basic algorithm. The exact reduction

rate depends on the structure and the contents of the document. The denser the

document is the higher is the resulting reduction rate. Indeed, for a totally white

document, the reduction rate is 0% and for a totally black document, the reduction

rate is nearly 100%.

The second idea to speed up the basic algorithm is a kind of sub-sampling of
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the projection pro�le where we skip n channels in the blank bands. Of course, the

horizontal and vertical lines that have less than (n+1) pixels width may be missed,

but it is arguable (for small n) to say that a well scanned document should not

have such elements or they are considered as noise. For the text bands, we keep the

normal pace to avoid the situation in which two adjacent text bands are separated

by a blank band having a width of only n pixels or less. This situation is often

encountered in the vertical projection to separate consecutive characters. This is

a lossy optimisation because of the risk of missing the horizontal and vertical lines

that have less than (n+ 1) pixels width.

The reduction rate of the computational complexity in comparison to the basic X-

Y-tree algorithm has an upper bound of n=(n+1). This maximal rate is obtained for

a blank document, whereas for a non-blank document the rate necessarily decreases

because of the presence of text bands. Therefore the reduction rate varies inversely

with the density of the text in the document. Our experiments on 'normal' texts

yield about 20% reduction rate for n = 1 (skip every other channel).

In summary, with respect to the basic X-Y-tree algorithm, the conditional pro-

jection yields a reduction rate proportional to the density of the text and the line

skipping inversely proportional. Put together, a typical reduction rate of about 60%

is obtained when n = 1 in the line skipping scheme.

3.2.3 Ordering problem

The spatial con�guration in Fig. 10 is seldomly encountered in 'normal' texts. How-

ever, in our application, GIRO checks do have this con�guration and its presence

complicates the graph matching algorithm. Therefore we propose an algorithm to

reorder the atomic entities provided by X-Y-tree decomposition before submitting

them to graph matching. First, we consider the ordering properties from a theoret-

ical point of view and then develop an algorithm for reordering the atomic entities.

By X-Y-tree order, we mean the order in which the atomic entities are reached

by the X-Y-tree decomposition. Let us consider the sequence, or string, s

i

; i = 1::N

of zones obtained by the X-Y-tree decomposition. Each atomic entity s

i

is delimited

by a rectangle R(s

i

) whose edges are either horizontal or vertical. It is obvious that

R(s

i

) ^R(s

j

) = �;8i; j = 1::N; i 6= j (1)

Otherwise, s

i

and s

j

would have been considered as a single atomic entity. We write

a < b i� the atomic entity a is reached before b by the X-Y-tree decomposition, or

equivalently b > a. Let us de�ne the lower domain D

l

(a) of an atomic entity a by

D

l

(a) = f(x; y) 2 R

2

=8(x

a

; y

a

) 2 R(a); (x > x

a

)or(y > y

a

)g (2)

Fig. 13 illustrates the de�nition of D

l

(a). By construction of the X-Y-tree, it follows

that (see Appendix A):

R(a) 6� D

l

(b)) a < b (3)
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: Open boundary

D  (a)l

a

Figure 13: De�nition of the Lower Domain of an atomic entity.

or equivalently

a > b) R(a) � D

l

(b) (4)

The last two formulas link the X-Y-tree's order to the spatial relationship be-

tween any two atomic entities. Given a list of atomic entities and any two entities

a and b such that a < b, Formula (4) implies that R(b) � D

l

(a). Fig. 14 shows the

11 possible spatial con�gurations between a and b. Thus, by using a binary decision

tree, the maximum number of comparison tests to classify b with respect to a is

four.

The proof in Appendix A also shows that Formulas (3) and (4) remain valid if

the algorithm starts with a vertical instead of a horizontal projection. This property

is interesting for processing documents in Chinese and Japanese where it may be

preferable to project the image in the vertical direction �rst.

These properties have been used to derive an e�cient reordering algorithm. This

algorithm consists of breaking down the links between atomic entities that are not

in 'natural' order and then grouping them again in 'natural' order. The algorithm

will be illustrated through a typical example where the reordering is necessary for

further processings like string matching.

Let us consider the characters in Fig. 15. It is easy to see that the X-Y-Tree

decomposition yields the result in the following order:

� c a d b e F G H

whereas a human reader would prefer the order 'a b c d e F G H'.
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Figure 14: Possible spatial con�gurations for b > a.

a b F G Hc d e

Figure 15: Text example for illustration of the reordering algorithm

The reordering algorithm consists of three steps. In the �rst step, characters that

have already appeared in 'natural' order will be grouped together whereas those that

are in 'wrong' order will be broken apart. This can be done by considering all pairs

of consecutive characters. For each pair, if the second character lies to the right of

the �rst and they are on the same line (up to some threshold) then they are grouped

into the same string; otherwise the second character becomes the �rst character of

a new string. The result of this step is a list of strings:

� c

� a

� d

� b

� e F G H

In the second step, strings that are in 'natural' order will be concatenated. Two

strings are in 'natural' order i� the �rst character of the second string lies to the

right of the last character of the �rst string and these two characters on the same

line (up to some threshold). The result of this step is:

� c d e F G H
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� a b

In the last step, strings are reordered. Two strings have to be exchanged if any

character of the second string lies above some character of the �rst string. The �nal

result is:

� a b

� c d e F G H

The properties implied by Formulas (3) and (4) have been implicitly used in

the �rst step of the algorithm. In this step, the grouping of characters already

in 'natural' order is performed in O(n) operations whereas it would have required

O(n

2

) or at least O(nlog(n)) steps if pairs of characters that are in 'natural' order

had not been produced in the correct order by the segmentation algorithm (for

example, by the connected components analysis algorithm). The reduction is due

to the fact that we consider only pairs of consecutive characters provided by the

X-Y-Tree decomposition (there are n � 1 pairs in a list of n characters). Now, we

will show that the �rst step truly groups together characters already in 'natural'

order. Let us consider a pair (a; b) where b immediately follows a. It is clear that

b > a which implies (Formula (4)) that b belongs to D

l

(a) and takes one of the

eleven possible relative positions with respect to a as shown in Fig. 14. Moreover,

if a and b are more or less on the same line (position 0,1,2 or 3) then (a; b) is in

'natural' order (there can not be anything else in between because b would not have

immediately followed a).

In the second and third steps, such reasoning is not valid anymore because we are

dealing with strings instead of characters. However, the time complexity is limited

because the number of strings is usually much smaller than that of characters.

4 HIGH LEVEL PROCESSING

High-level processing comprises two modules: graph matching and OCR engine. We

will �rst describe the graph matching algorithm (Section 4.1) and then the OCR

engine together with some post-processings (Section 4.2).

4.1 Graph Matching

In general, graph matching consists of establishing a correspondence between the

model graph and the data graph. In our application, the model graph is represented

in Fig. 3 whereas the data graph is represented by the reordered list of atomic

entities. (Since each element of the list contains information about its position,

the relative positions - binary relations of the data graph - between elements can

be computed whenever the needs arise.) More speci�cally, the correspondence es-

tablishment refers to the assignment to each node of the model graph a subset of
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atomic entities. All subsets are disjoint, i.e., each atomic entity corresponds to at

most one node of the model graph. Those atomic entities that do not have a node

correspond to data lying outside of the region of interest (Fig. 1). For each node of

the model graph, the assignment process will be called identi�cation. As mentioned

in Section 2, the graph matching algorithm in our application is restricted to the

identi�cation of GRAPHICS and TITLE objects, leaving out the INFORMATION

objects. The algorithm performs as follows:

1. Identify GRAPHICS objects (vertical and horizontal lines as well as boxes).

2. Eliminate those atomic entities that lie outside of the region of interest (see

Fig. 1), i.e., to the right of the vertical line or above the horizontal line found in

step 1.

3. Identify the following TITLE objects:

� Einzahlung f�ur/Versement pour/Versamento per

� Zugunsten von/En faveur de/A favore di

� Konto/Compte/Conto

� Fr. c.

4. Identify INFORMATION objects according to the following rules:

� Financial Institution: all atomic entities lying between the �rst and second

TITLE objects.

� Receiver: all atomic entities lying between the second and the third TITLE

objects.

� Account Number: all atomic entities lying to the right of the third TITLE

object and above the fourth TITLE object.

The identi�cation of GRAPHICS objects is quite straightforward. After seg-

mentation, horizontal and vertical lines as well as boxes are identi�ed by looking for

atomic entities that satisfy some size constraints. The elimination of atomic entities

that are out of the region of interest is based on tests of their position with respect

to the lines identi�ed as GRAPHICS objects. TITLE objects in this application

are prede�ned strings of characters. Their identi�cation (or localisation) will make

use of all knowledge explicitly and implicitly provided by the PTT. We will only

consider the �rst three of them since the fourth one has �xed spatial relations to

the boxes (see Fig. 2) and can be easily identi�ed by looking for atomic enties that

lie just above the boxes. The next two sub-sections will describe TITLE objects

knowledge and how to use it.
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First FormBounding Region : Second Form

Einzahlung/Versement pour/ Versamento per Einzahlung/Versement pour/
Versamento per

Figure 16: Two possible forms of the bounding region of the �rst TITLE object.

4.1.1 TITLE Objects Knowledge

In our application, the �rst three TITLE objects have the same basic properties and

di�er from each other only by their speci�c values. For instance, all three have �xed

contents but each has its own string of characters. Therefore, we will take only the

�rst one as an example and explain it in detail.

The TITLE object knowledge is divided into two parts: structural and statistical.

Structural knowledge comprises the size of characters, the total length of the string

and various possible forms of the rectangular bounding region (see Fig. 16) Statistical

knowledge characterises information contained in the string of characters. More

speci�cally, we will use the histogram values of the vertical projection of black

pixels (also called vertical pro�le) as statistical features (Fig. 17). In order to make

the vertical pro�le invariant with respect to the variation of inter-character spaces,

we eliminate these spaces before histogram computation, see Fig. 17. Since the

font of the characters does not change from one check to another, the form of the

vertical pro�le remains the same. Their size is also �xed and thus no normalisation

is needed. Note that instead of the vertical pro�le, we could have used the string

of characters as feature, the OCR engine for character recognition and performed

a string comparison. However, after some preliminary tests, we found that this

approach is very time consuming and decided to use it only if the vertical pro�le is

not su�cient. Fortunately, it turned out that (see Section 5) the vertical pro�le is

su�ciently discriminant for our application.

In order to deal with small variations and noise, each structural feature is con-

sidered with a tolerance value, usually equal to 10 or 20% of the absolute value.

As for the statistical feature, i.e., vertical pro�le, the tolerance is expressed by the

variance of the distance (considered as a random variable) between an actual pro�le

and the reference pro�le. We have used the Euclidean distance and found that it

was su�ciently discriminant for our purpose.

Finally, let us note that the structural features may be directly obtained from

the speci�cations of the PTT whereas the statistical features (reference pro�le) is

extracted through a training phase. The reference pro�le is de�ned as the arithmetic

average of a set of training pro�les.
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Figure 17: Computation of the vertical pro�le of a string of characters.

4.1.2 TITLE Objects Identi�cation

In Section 4.1.1, we presented the TITLE object knowledge which consists of a

structural and a statistical part. Next, we will propose an approach which combines

the two parts in a hybrid algorithm. This algorithm consists of identifying a TITLE

object in the reordered list of atomic entities provided by the segmentation module.

In order to appropriately use structural and statistical knowledge, we will �rst study

their relationships and then derive an e�cient algorithm.

Let us notice that the two parts of the knowledge are not independent from each

other. Indeed, a pattern that does not satisfy the structural constraints is unlikely

to satisfy the statistical ones. Conversely, a pattern that satis�es the former is more

likely to also satify the latter although there exist practical cases where it does not.

In our application, we require that a pattern (set of atomic entities) is accepted as a

TITLE object if and only if it sati�es both structural and statistical constraints. By

de�nition, the statistical features can be extracted and tested only if the location

of each atomic entity of the set is known. As location is part of the structural

knowledge, we �rst perform the structural test. The hybrid identi�cation algorithm

is straighforward (see Fig. 18). It contains two tests which will now be described in

more detail.

The test structure is correct comprises two parts, namely, search and testing of

the bounding region (Fig. 19). The �rst part in turn contains two procedures which

work as follows. The procedure update total length adds the length of the new entity

to total length and update bounding box extends the sizes of the bounding box to

include the new entity. In the �rst part, the algorithm receives an entity which has
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detected = FALSE;

FOR i=1 TO number of atomic entities DO BEGIN

/* Hypothesise that the current entity is the

starting character of the searched object */

IF test structure is correct THEN

IF test statistics is correct THEN BEGIN

detected = TRUE;

BREAK;

END;

END;

IF detected THEN output the location;

Figure 18: Hybrid algorithm.

/* Search a string of characters up to the object length */

total length = 0;

bounding box = bounding box of the starting entity;

WHILE (total length < minimal length) AND NOT(end of list) DO

IF (the next entity satis�es size constraints) THEN BEGIN

update total length;

update bounding box;

END;

/* Test the form of the bounding box */

structure is correct = FALSE;

IF (bounding box satis�es form 1) OR

(bounding box satis�es form 2) THEN BEGIN

structure is correct = TRUE;

output the location;

END;

Figure 19: Test structure is correct algorithm.
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statistics is correct = FALSE;

compute vertical pro�le;

compute distance(current pro�le, reference pro�le);

IF (distance < threshold) THEN

statistics is correct = TRUE;

Figure 20: Test statistics is correct algorithm.

been hypothesised as the starting character of the searched object. The algorithm

successively tests the entities that follow, up to the minimal length of the searched

object. It is clear that if the hypothesis is correct, the starting atomic entity and

those following it correspond to the characters in the searched object, and the �rst

part of the algorithm stops before the end of the list at an approximately correct

place. The resulting bounding box is then a good approximation of the correct one.

Note that this part is independent of which of the two forms in Fig. 16 the actual

object takes because they are equivalent after reordering. In the second part, the

form of bounding box is checked. Its conformity with either one of the two possible

forms is su�cient to validate the hypothesis as structurally correct.

The test statistics is correct on the other hand receives a list of atomic entities

that already satisfy the structural test (Fig. 20). It computes, by concatenation and

projection, the vertical pro�le and the distance to the reference pro�le. The test is

considered as correct if the distance is smaller than a prede�ned threshold.

Note that as it is presented, the hybrid algorithm will accept the �rst occurence

of a pattern that satis�es both kinds of constraints and stop. This limitation has

proved su�cient for our application. A more general algorithm could be easily

derived by testing all hypotheses that satisfy the constraints and put them in a list

of potential candidates together with a con�dence level.

The proposed algorithm is very e�cient because of the nested structure of the

two tests. The test structure is correct procedure is much faster than the

test statistics is correct one since the former involves only the testing of the sizes of

atomic entities whereas the latter requires the computation of the vertical pro�le

prior to the statistical test. Therefore, the majority of candidates are ruled out by

the faster test and only few of them have to go through the slower test.

In order to derive the computational complexity of the matching algorithm, let

us notice that the bulk of computation burden is concentrated in the identi�ca-

tion of TITLE objects (Step 3 of the matching algorithm) and de�ne the following

quantities:

� N

t

= number of TITLE objects in the model graph.

� P = number of atomic entities produced by X-Y-tree decomposition.

� M = length of the longest string among TITLE objects.
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� S = maximum area of an atomic entity (in pixels).

For simplicity purpose, we will consider only the worst case. The counting unit

is operation which is bounded by a small constant integer (less than ten). For

instance, the test of whether the height of an atomic entity is within some inter-

val requires one substraction to compute the height and two comparisons with the

minimal and maximal values, but is counted as only one operation. The iden-

ti�cation of N

t

TITLE objects requires N

t

applications of the hybrid algorithm.

Each application forms at most P hypotheses (Fig. 18). For each hypothesis,

one test structure is correct and one test statistics is correct are performed. Thus

the computational complexity is N

t

P (#operations in test structure is correct) +

N

t

P (#operations in test statistics is correct). In the test structure is correct pro-

cedure, the search part requires at most M operations whereas the test of bounding

region is negligible. In the test statistics is correct procedure, there are two parts,

namely, the computation of vertical projection and of the distance. For vertical

projection, the complexity is proportional to the total area of all atomic entities and

is performed only once for each. It requires PS operations for the whole matching

algorithm and thus is not multiplied by N

t

P . The computation of the distance

requires M

p

S operations where

p

S represents the average number of channels

in the vertical pro�le of an atomic entity. The total computational complexity is

(N

t

PM) + (PS +N

t

PM

p

S) = P (N

t

M(

p

S+ 1)+ S). Typical values in our appli-

cation are P = 200; N

t

= 3;M = 50 and S = 400 at the resolution of 200 dots per

inch (dpi) which yield 710000 operations. For large values, the time complexity of

the matching algorithm is O(N

t

PM

p

S).

4.2 OCR and Post-Processing

OCR is one of the most important aspects in document image analysis and un-

derstanding. It has been studied since many decades and nowadays commercial

products are widely available at reasonable prices. In the context of our application

(Fig. 4), the OCR engine is a module which reveives an input binary bitmap of a

text region and outputs a stream of characters. The post-processing refers to the

correction (mostly substitution) brought by the speci�c knowledge of the application

and does not interfere with the OCR engine at all.

4.2.1 OCR Engine

The OCR engine used in this application is a commercial product provided by Xerox

Imaging Systems. To our knowledge, this product is the best open software package

on the market at the time of purchase. Here, we will present the main features of

the package.

� Omnifont: the system is able to recognise characters independently of any

speci�c machine-printed font (fancy fonts are excluded). This property is per-

fectly suited to our application since we are not interested in font recognition.
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� Separated multilingual capabilities: there are ten language packs, all Euro-

pean. The weak point is that the system does not accept any mixture of

languages for the time being. However, we expect that Xerox will remedy this

problem soon.

� Training capability: apart from the language packs, the system can be trained

with new characters or symbols. However, the recognition is speci�c to the

trained resolution, i.e., the same symbol at another resolution will not be

recognised.

� Possibility to emphasize on 'alpha', 'numeric' or 'alphanumeric' modes: this

feature may help to resolve certain ambiguities like between an 'l' (el) and

a '1' (one). In our application, the regions corresponding to the Institution

and Receiver INFORMATION objects are fed into the OCR engine in the

alphanumeric mode and the region corresponding to the Account Number in

numeric mode. It is important to understand that the mode setting helps

resolving ambiguities. It does not exclude the other symbols.

4.2.2 Post-Processing

At the present time, the post-processing in our application aims at correcting sub-

stitution errors of the OCR engine. The correction is based solely on the expected

results. In the Account Number, we know that there can only be numerals and

therefore the following corrections have been included:

�

0

?

0

!

0

7

0

.

�

0

g

0

!

0

9

0

.

which constitute the most often encountered errors. As for the other INFORMA-

TION objects, there is no evident correction in view.

Of course, post-processings could include more sophisticated operations. For

instance, we can think of a veri�cation phase in which the name of the receiver is

searched through a database. If any inconsistencies arise, the system could go back

to the segmentation phase and restart the analysis of the regions of interest by using

some modi�ed scheme.

5 RESULTS

In this section, all the processing steps will be presented for one typical GIRO form.

Starting with the input gray-level image (Fig. 21), the global binarisation is per-

formed (Fig. 22). The binary image is then segmented using the X-Y-Tree decom-

position algorithm yielding a list of atomic entities (Fig. 23). The graph matching

algorithm identi�es all the present objects, in particular the INFORMATION ones

(Fig. 24) whose bounding regions are fed back to the binarisation procedure. These
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regions are separately binarised (Fig. 25) again and the binary bitmaps are input to

the OCR engine. The �nal results are three streams of ASCII characters (Fig. 26).

We plan to test the system at various resolutions, namely, 200, 300 and 400 dots

per inch (dpi). According to the size of characters in our documents, we think that

200 dpi is the lowest possible resolution. On the other hand, a resolution higher than

400 dpi does not provide any additional information. So far, we have experimented

with the lowest resolution and the results are as follows.

The size of left part of GIRO check forms is 3 x 3 inches. The computation time

on a Sun SparcStation 2 (30 MIPS) is about 0.2 second for the �rst phase and 0.7 to

2.0 seconds for the second phase depending on the contents of the GIRO form. The

most time consuming part is the OCR engine which operates at an average rate of

100 characters per second. If a faster version is to be implemented, there are two

possible solutions. The �rst is to use another OCR engine with dedicated hardware

and the second, simpler solution consists of using a faster workstation.

As for the overall recognition rate, tests on 40 checks show that segmentation

and graph matching algorithms perform with no error. Note that the reference

pro�les of TITLE objects are trained and tested using the same set of samples. In

the future, we should use a test set that contains also samples not belonging to the

training set. There are approximately 2300 characters on these 40 checks and the

correct recognition rate is 96%. At higher resolutions, it is reasonable to expect a

higher correct recognition rate but also more computation time. The question of

how the results vary versus resolution will be investigated in the near future.
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Figure 21: Input image.
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Figure 22: Globally binarised image.
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Figure 23: Result of the segmentation.
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Figure 24: Regions corresponding to INFORMATION objects.
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Figure 25: Locally binarised image.
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Figure 26: Output streams of characters.
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6 FUTURE RESEARCH AND CONCLUSIONS

In this report, we have presented a system that can recognise various parts of a

GIRO check form. The system comprises two modules: low- and high-level. The

low-level module performs automatic binarisation and segmentation based on X-Y-

Tree decomposition. The high-level module contains a graph matching procedure

and the OCR engine. The particular connection between di�erent procedures yields

a very fast and accurate system.

To complete the investigation on GIRO checks recognition, two additional prob-

lems should be addressed in the future. First, hand-written numerals recognition

should be considered. Indeed, these entities appear quite often in real documents and

have been so far voluntarily ignored (see Fig. 2). Scienti�c research on this problem

has been intensive since at least two decades and a recognition rate as high as 95%

has been reported lately [Nishida 92]. Second, more sophisticated post-processing

techniques should be added to the present version of the system, including the search

of the name and address in a database to con�rm the recognition result.
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Figure 27: Relative positions between two atomic entities.

A Proof of The Ordering Formula

Let us consider any two atomic entities a and b resulting from the X-Y-tree decom-

position such that R(a) 6� D

l

(b), obviously we can distinguish 3 possible spatial

con�gurations as shown in Fig. 27.

Since a and b are two distinct atomic entities, there must be exactly one projec-

tion that gives rise to their separation during the decomposition. It is obvious that

in

� Case 1: it must be a horizontal projection and since the analysis order is

downward, a is reached before b.

� Case 2: it must be a vertical projection and since the analysis order is left-to-

right, a is reached before b.

� Case 3: it can either be a horizontal or a vertical projection, but in both cases,

due to the corresponding analysis order, a is reached before b.

Thus, in any case, a is reached before b, i.e., a < b.

Moreover, it can be seen that the proof does not assume which projection (hor-

izontal or vertical) the algorithm starts with. Therefore, Formula (3) remains valid

in the case the algorithm starts with a vertical projection.
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