
Simple and E�cient Programming of Parallel Distributed

Systems for Computational Scientists

Karsten M. Decker and Ren�e M. Rehmann

IAM, University of Berne

L�anggassstrasse 51, CH{3012 Berne

SWITZERLAND

October 27, 1992

Abstract

Many problems in computational science can be mapped very e�ciently to parallel

distributed systems like loosely{coupled workstation clusters or more closely{coupled

multicomputer systems. This paper proposes a methodology of parallel distributed

programming and discusses its realization by means of a programming environment to

overcome the notoriously di�cult programming of distributed systems. The environ-

ment centers around a knowledge based system o�ering commonly used algorithmic

skeletons together with extensive interactive guidance from the early design to the

implementation phase and selection methods for skeletons. This programming assis-

tant in the core is supplemented with three di�erent interfaces for high{level design

languages and a graphical user interface allowing the graphical representation of these

languages. An interface to extend the knowledge base is also included. The investi-

gation is part of the SPADE project which aims at the development of an integrated

program and application development environment for problems in computational sci-

ence on parallel architectures with distributed memory.

1 Introduction

The interest in simulation and modeling of complex systems on computer systems has

signi�cantly grown over the last few years. These activities, often of multidisciplinary

nature, de�ne the �eld of computational science. Besides being intensively used in univer-

sities and public research institutes, the basic methods of computational science are now

also spreading rapidly in industrial research and development laboratories.

In the beginning, scienti�c calculations relied exclusively on standard department comput-

ers and mainframe computers in central computing centers. However, only with the advent

of the �rst commercial single{ and multi{processor high performance computer systems in

the second half of the seventies, computational science became a fully recognized discipline

by itself. It can be expected that the nineties, with its nowadays technically realizable mas-

sively parallel (distributed) computer systems, o�ering scalable computing power from the

desk{top workstation up to computer systems with peak computing power in the TFLOPS

range, will probably revolutionize the possibilities of computational science. Since many

1

computational problems in natural science and engineering are characterized by the appli-

cation of local functions to large and homogeneous data structures, the raw performance

of massively parallel computers can often be easily exploited. For the �rst time, these

architectures will allow to simulate and model the most complex systems of basic sciences

and enginnering in the required size, while simultaneously taken into consideration all

their essential properties.

The reason why today massively parallel, or more general, distributed systems, are not

used more often by computational scientists, follows immediately from their pure pro-

grammability. This is especially true from the computational scientist point of view, who

wants to use computers as a tool to solve his computational problem(s), but cannot af-

ford to bother about too many purely technical aspects of computing. Adequate problem

analysis and representation methods and supporting tools which he can understand and

handle are not available. This di�cult programmability of distributed systems is in sharp

contrast to the convenience o�ered by today's commercial multi{processor shared memory

high performance computer systems. Their programming relies not only on a program-

ming model well{known from single{processor systems, but they are also equipped with

auto{vectorizing and auto{parallelizing compilers backed up by a powerful and familiar

operating system.

It is the purpose of this paper to propose a way out of the currently existing dilemma of

computational scientists when they want to use parallel distributed systems: although they

feel heavily attracted, they cannot use them, because they don't know how to program

them e�ectively. Sect. 2 thoroughly investigates what would be required ideally by compu-

tational scientists, what is already available and provided by vendors of parallel distributed

systems, and what is missing most urgently to let them master the steep learning{curve.

Sect. 3 describes the proposed environment for parallel distributed programming. Starting

with an analysis of the principal di�culties of programming distributed systems, we then

describe a model of parallel distributed programs from which the notion of algorithmic

skeletons is derived. These algorithmic skeletons are then used as a building block for the

development of a methodology for parallel distributed programming. We then describe

how a programming environment realizing this methodology can be put into practise,

covering the speci�cation of the functional requirements and major design considerations.

Further topics in this section include a description of the operation of the environment

and a discussion of the conceptual advantages of the system. The section closes with de-

tailed considerations how the programming environment can be realized, i.e., what are the

necessary prerequisites, how we want to proceed, and how the extensibility of the system

is ensured. Our current activities are also indicated. The last section, Sect. 4, summarizes

the paper and sketches the usefulness of our system also as an educational tool for teaching

parallel distributed algorithm design.

2 Programming Parallel Distributed Systems: The Compu-

tational Scientist's Point of View

The requirements of computational scientists on the ideal programming environment for

parallel distributed systems can be derived immediately from the often implicit assump-

tions and concepts used in training their programming skills: single processor hardware

2

with single, unique address space, existence of suitable libraries providing reusable and

e�cient building blocks for their applications, and invariance of program performance be-

haviour with respect to the chosen computer architecture. In more technical terms this

means that the majority of computational scientists would like to have and actually would

need completely transparent parallel distributed programming, libraries containing e�-

cient parallel building blocks and a portability platform fully preserving parallel e�ciency.

At the moment, none of these expectations can be ful�lled.

In contrast, the current situation is as follows. Vendors still need to concentrate on the

provision of basic functionality, and cannot invest time and e�orts in the provision of

su�cient machine abstraction. In the past few years, a lot of work has been spent into the

development of vendor{independent uni�ed message{passing interfaces like, for example,

PVM [1], PARMACS [2, 3], Express [4], and Trollius [5]. Some of these interfaces have

been e�ciently implemented on several di�erent hardware platforms, thus providing some

quasi{portability. Nevertheless, they still o�er only the �rst step towards the speci�cation

of a virtual machine. A major obstacle of these interfaces is that they are in general too

complicated to handle for the average computational scientist. Another line of research

consists of the development of so{called harnesses which abstract to some extend from

speci�c applications [6]. Tools to assist parallelization and tuning of already parallelized

sequential code are now emerging, e.g., [4], [7]. Further, in the last few years, major e�orts

have been put into the de�nition and development of parallel languages like, for example,

Fortran D [8], Vienna Fortran [9], HPF [10] and Kali [11]. These languages are designed

to capture �ne{grain data parallelism and enhance the existing Fortran standards with

a rich set of data decomposition speci�cations. Whether they can e�ciently handle the

natural grain{size of parallelism inherent to most problems in science and engineering is

questionable.

From the practical point of view, real high{level programming tools ensuring good parallel

e�ciency are missing most urgently. We believe that the latter is best guaranteed, if these

tools are conceptually based on a programming model relying on explicit message{passing.

There exist several research e�orts into this direction. For example, the program template

project by J. Dongarra [12], is targeted at understanding basic algorithmic features, and

should allow some customization, retaining delicate numerical details. It is currently only

in its infancies. However, the average (so{called) high{level programming tool proposed

today does not really operate on a high level of abstraction; in general it has insu�cient

degree of abstraction to appropriately handle the natural level of granularity, and aspects

of usage and reusability of programs or program components are insu�ciently addressed.

Currently, a real e�ort on algorithm design languages and tools supporting them does not

exist.

3 An Environment for Programming Parallel Distributed

System

3.1 Di�culties in Programming Distributed Systems

E�cient exploitation of the inherent parallelism of an algorithm necessarily requires a care-

ful and detailed analysis of the data
ow, i.e., the data dependencies. The crucial point

3

is that the data
ow analysis needs to be done to an extend far beyond that required for

sequential programming and thus can in general not su�ciently addressed by computa-

tional scientists, in particular when the analysis is not method based and tool supported.

Another basic di�culty of parallel programming based on the message{passing paradigm

is the programmer's responsibility for the memory management. This follows immediately

from the distributed nature of the non{uniform address space of a distributed system and

implies that the decision whether data is available locally or needs to be communicated,

is also o�oaded to the programmer.

Further di�culties in programming distributed systems depend on the selected computa-

tional model:

The Master{Slave Model (MSM) introduces two distinct types of processes, a single

master{process coordinating many slave{processes which perform the actual computa-

tional work in a synchronized fashion. The distribution of the data is such that the data

structures are partitioned at the beginning of an application, and distributed to the slave{

processes. Each slave{process executes the same sequential program on his part of the

physical domain to be processed, interleaved with slave{slave communication steps. The

master{process coordinates the computational activities on all the slave{processes. Di�-

culties in parallel distributed programming based on the MSM include the programmer's

responsibility for the selection of the (most e�cient) decomposition topology, the parti-

tioning and the distribution of his data structures, and data coherence for communicated

data and shared variables. All these di�culties often cannot appropriately be addressed by

programmers which have no or only rudimentary experience in programming distributed

systems.

The Farmer{Worker Model (FWM) also has two distinct types of processes, a single

farmer{process which distributes the not necessarily identical computational tasks, and

many worker{processes which do the work and return the results to the farmer. Besides

the data to be processed, the workers can also receive the code required to process the

data. A characteristic feature of a computational task is that it requires only the data

provided by the farmer. It never relies on data which are simultaneously modi�ed by other

workers. Di�culties in parallel distributed programming based on the FWM include the

coordination of computational tasks, i.e., proper synchronization and reduction of data

returned from the workers to the farmer{process, and reasonable handling of the trade{o�

between balance of computational load and communication requirements.

All these considerations clearly imply that programming of distributed systems is much

more demanding than sequential programming.

3.2 A Model of Parallel Distributed Programs

Although algorithms may in general di�er considerably with respect to their computational

action, it turns out that whole classes of algorithms have similar communication and

coordination requirements, or have other meta{structures in common. This suggests to

model parallel distributed programs by means of conceptual separation of the new, di�cult

4

features of parallel distributed programs from known features of single, unique address

space programs, i.e., programs for shared memory architectures.

More speci�cally, the model describes a parallel distributed program as consisting of:

� An algorithmic skeleton, serving as an integrating framework for sequential compu-

tational components, and

� Sequential computational components, suitably determined from the shared memory

model{based sequential algorithm.

To illustrate this model, we consider the algorithmic skeleton for a problem of the Single

Program, Multiple Data (SPMD) type which is useful for all those problems that can be

handled by (static) domain decomposition. Problems of this type can be conveniently

modeled with the Master{Slave computational Model introduced above. In this special

case, the algorithmic skeleton reduces to a communication and coordination skeleton.

Problems of another type might require to farm (not necessarily identical) computational

tasks to independently operating worker{processes. Problems of this type can be modeled

with the Farmer{Worker Model also introduced in the previous section. Here the key

part of the parallel distributed algorithm is to dynamically distribute the data at run{

time, to start new worker{processes and to properly synchronize and combine the data

returned from the workers to the farmer{process. The algorithmic skeleton for this class of

algorithms clearly di�ers from the simple communication and coordination skeleton that

is su�cient for the MSM.

3.3 The Notion of Algorithmic Skeletons

Founding parallel distributed computing on the notion of algorithmic skeletons bears a

number of advantages:

Good parallel e�ciency. This is certainly one of the desirable goals in parallel dis-

tributed programming, at least from the computational scientist's point of view. Experi-

ence tells that the achievable parallel e�ciency is deeply rooted in the communication and

coordination structure. It will thus already be decided in the early stages of the algorithm

design phase { unfortunately in that part of the software development cycle in which in

general we cannot count on the computational scientist's expertise as explained above.

Here carefully designed algorithmic skeletons can help.

Reusability. This is an important issue for economic software development. Prefab-

ricated algorithms to the disposal of the programmer can help again, since they nicely

introduce reusability of the critical parts of parallel distributed programs.

Conceptual reduction of parallel programming complexity. Since algorithmic

skeletons help to reduce the e�orts required to program a distributed system to those

required to program a shared memory system with a single, unique address space, skeletons

also reduce the complexity of programming parallel distributed system to a task which is

surely manageable by computational scientists.

5

3.4 A Methodology for Parallel Distributed Programming

All these considerations suggest to prefabricate algorithmic skeletons, and to make them

available to the programmer. To make the notion applicable, a methodology is required.

The starting point for our discussion is a basic methodology which has been proposed

independently by Cole [13] and Burkhart [14]:

3.4.1 A Basic Methodology for Parallel Distributed Programming

The methodology consists of the following three steps:

Step 1: Take a suitable prefabricated algorithmic skeleton.

Step 2: Re�ne the algorithmic structure.

Step 3: Integrate suitably fragmented computational part into re�ned algorithmic skele-

ton.

Although being conceptually very clean and appealing on the �rst view, problems occur

in all three steps of this programming methodology:

Selection of most suitable algorithmic skeleton (Step 1): Even the selection of

very crude, qualitatively di�erent algorithmic skeletons is only manageable for the experi-

enced parallel programmer who has knowledge of basic parallel computational models, like

the Master{Slave Model or the Farmer{Worker Model discussed above. Problems involved

are how skeletons should be characterized and presented to the programmer, and how it

can be ensured that he selects the correct or at least the most appropriate one.

Re�ne algorithmic structure (Step 2): Crude skeletons require a big gap to be

closed between the prefabricated, reusable skeleton and the desired parallel distributed

algorithm. To close this gap is conceptually a very di�cult task. This necessarily requires

a suitable environment which supports the re�nement process.

Fragmentation and integration of computational part (Step 3): This necessarily

requires a suitable environment which supports the optimal disintegration of the shared

memory model{based sequential algorithm.

3.4.2 Improved Methodology for Parallel Distributed Programming

The improved methodology is a re�nement of the basic 3{step methodology proposed by

Cole and Burkhart, addressing and solving the problems indicated above. The key features

of our methodology are as follows:

6

Foundation on hierarchically organized algorithmic skeletons. Each hierarchy

level delivers algorithmic knowledge on a di�erent level of abstraction/detail. Such an

organization requires an ordering principle which can be deduced from practical experience

in parallel distributed programming. This addresses the problem in step 2 of the basic

methodology.

Careful and extensive guidance through the program development cycle, i.e.,

from the early design phase throughout the detailed design and the implementation phase.

The existence of guiding methods is of central importance and compensates for the non{

familiarity of computational scientists with most technical aspects of distributed systems

and parallel distributed programming. It supports the identi�cation of the most suitable

grain{size. Continuous guidance also ensures improved exploitation of the performance

relevant features of distributed systems. Guiding methods thus guarantee in general im-

proved e�ciency as compared to parallelizing compiler approach. This addresses the

problem in step 1 of the basic methodology.

Selection methods incorporated and tailored to the needs of computational scien-

tists. This also addresses the problem in step 1 of the basic methodology.

High{level problemdescription and design methods, abstracting away from purely

implementation language dependent details. The improved methodology logically sepa-

rates between the application{ and system{oriented programmer. It matches more closely

the natural requirements of computational scientists who avoid (and cannot a�ord) to get

involved into too many technical aspects of computing. This addresses the problems in

steps 2 and 3 of the basic methodology.

3.4.3 Foundation of Methodology

Most importantly, the user aspects and requirements have been derived from a profound

knowledge of research characteristics of computational scientists and a thorough analysis

of their needs. The algorithmic skeletons have been abstracted from practical experiences

collected during the design and implementation of various parallel distributed algorithms

addressing problems in the computational sciences. It represents practical experiences

collected over the last two years. Since we believe that from a practical point of view, a

methodology becomes especially powerful and handy if it is supported by a tool environ-

ment, tool support is anticipated.

3.5 The Programming Environment: Turning the Methodology into

Practise

The key feature of the programming environment is interactivity, as suggested by the

methodology. In more detail, we propose to successively solve the di�culties of parallel

programming for distributed systems by means of combining the complementary strengths

7

of human intelligence and machine{based knowledge. We want to achieve this by reinforc-

ing the strengths of a human programmer who provides the global algorithmic picture by

means of a powerful programming assistant, carefully watching and analyzing the activi-

ties of the programmer, making clever design suggestions on the grounds of his knowledge

base, and asking intelligent questions all along the way from the demanding early de-

sign phase down to the completion of the implementation in a high{level programming

language.

Structurally, we model the proposed program development environment as an interactive

programming assistant that is supplemented with suitable programming assistant inter-

faces , completed by a graphical user interface. This environment provides tool support for

the improved programming methodology described in the previous section. The program-

ming assistant assures careful interactive guidance, from the early program design phase

up to the implementation phase. The interfaces to the programming assistant support the

algorithm design in a hierarchical fashion, based on formal languages. They thus naturally

support the optimal fragmentation of the computational part of the parallel distributed

algorithm, i.e., the shared memory model{based sequential algorithm. The graphical user

interface allows to diagrammatically and textually represent the formal design languages.

To fully cope with the user requirements on the programming assistant, we envisage dif-

ferent types of interfaces that strongly vary with the application area: Assuming the

message{passing paradigm, in the most general case a program for a distributed system

can be modeled by a collection of communicating (software) processes. This process graph

with processes and interprocess communications corresponding to the nodes and edges of

the graph, respectively, represents the
ow of control of the underlying application. Such

a process graph may be highly irregular. A good example where such a representation is

most appropriate is given by a real{time system. On the one hand the processes handle

measuring devices to control temperature, pressure, etc. On the other hand they handle

machine parts which operate as demanded by the measuring instruments. This kind of

parallelism is called algorithmic parallelism, and is characterized by asynchronously oper-

ating processes with often small{grained parallelism and largely varying connectivities.

In contrast, many problems in numerically intensive computing belong to the class of

data parallel applications which are characterized by highly regular process structures,

operating synchronously or loosely{synchronously with medium to large grain{sizes and

low{ to medium{connectivity. In these kind of applications, rather than focusing on

the
ow of control, it is more appropriate to represent the data and their dependencies.

Moreover, it is in general su�cient to model and design the behaviour of one instance

of the entity of identical processes. Finally, in the extreme case of all those numerical

methods based on iterative relaxation type of techniques, the computational scientist

even would like to concentrate on some abstract speci�cation of his computational stencil

(pictorially representing the relaxation operation), expecting that both the design and

the implementation of his problem is covered largely transparently by the programming

environment.

8

To summarize, we shall provide three di�erent interfaces to the programming assistant,

� An interface for the generic case of parallel distributed programming,

� An interface for the special case of data parallel programming, and

� An interface for the particular case of programming stencil based problems.

3.5.1 Speci�cation of Functional Requirements

To practically support the improved methodology, the functionality of the programming

assistant should be as follows:

ProgrammingAssistant (PA). The programming assistant should have the capability

to

� Interpret programming activities,

� Analyze programming activities,

� Provide design suggestions,

� O�er prefabricated algorithmic skeletons on di�erent levels of abstraction,

� Call for additional information to be provided by the programmer,

� Provide support for automatic program synthesis.

Here automatic program synthesis techniques will continue where the high{level problem

description and design methods that are part of our improved methodology end. They

might �nally lead to parallel distributed programming in a completely implementation

language independent way.

Supplementary capabilities, ensuring real, e�ciency preserving portability within the class

of multicomputer systems include

� Support for optimization of individual communication steps (low level optimization

of communication),

� Support for improved communication hiding, i.e., improved overlapping of commu-

nication and computation steps (higher level optimization of communication).

Generic Programming Assistant Interface (GPAI). This component interfaces

the programming assistant for the generic case of parallel distributed programming. It

supports the design and implementation of data parallel and also more general applications

in a hierarchical fashion. It expects that the computational scientist can formulate his

problem in a process graph representation.

The generic programming assistant interface should have the capability to

� Parse the generic process graph design language.

9

Data Modeling Programming Assistant Interface (DMPAI). This component

interfaces the programming assistant and provides additional support for the particular

case of programming data parallel problems. It supports the partitioning of large regular

data structures. It expects that the computational scientist can model data structures

and their decomposition.

The data modeling programming assistant interface should have the capability to

� Parse the data structure representation language.

Stencil Modeling Programming Assistant Interface (SMPAI). This component

interfaces the programming assistant and provides special support for the particular case of

programming stencil{based problems. It supports the speci�cation of the computational

grid and the data structure at each grid element (points, edges, etc.), the grid decom-

position scheme, the boundary conditions of the grid, the data structure decomposition

scheme (coloring), and the properties of the relaxation stencil (geometry, weights, etc.).

The stencil modeling programming assistant interface should have the capability to

� Parse the stencil speci�cation language.

Graphical User Interface (GUI). The graphical user interface should have the capa-

bility to

� Graphically and textually represent the speci�cation and design languages, and

� Graphically and textually edit the speci�cation and design languages.

3.5.2 Design Considerations

Basic design considerations concern the design methods. After careful investigation, we

decided to use a bottom{up approach for all components of the programming assistant

PA. The three design languages that become available to the programmer via the three

interfaces to the programming assistant will be based on the object{oriented programming

paradigm. The design of the graphical user interface will also rely on the object{oriented

approach to programming.

The bottom{up approach for the PA provides a natural framework to gradually extend the

range of algorithmic generality covered by the programming environment. In a �rst phase,

we shall focus on support for data parallel applications; later, this will be generalized

successively according to the needs and the obtained feedback when the system is in

productive use.

Founding the design languages on the object{oriented paradigm has the advantage that

by providing carefully designed and implemented object class libraries we can hide most

parts of the communication structure from the user by encapsulating the communication

structures within the class methods. Additionally, performance enhancements and tuning

10

for speci�c hardware platforms can be incorporated in the class libraries without any

in
uence of the user program.

Object{oriented design for complex graphical user interfaces has already proven to be

most adequate in the context of other projects with similar goals and thus needs no

further justi�cation.

Further design considerations include the following:

Algorithmic skeletons. For each place of an algorithmic skeleton where a sequential

computational component can be integrated, an interface speci�cation must be provided

which de�nes the interaction between the algorithmic skeleton and the computational

component. Depending on the abstraction level used for the skeleton, this interface speci-

�cation can consist either of a formal speci�cation, a function de�nition with a prede�ned

name and parameter list, or prede�ned variable names which can be used within a code

block.

Hierarchically organization of algorithmic skeletons. The important point is to

choose an intelligent storage concept that ensures optimal reusability of human knowl-

edge of parallel distributed programming, once a formal encapsulation of (part of) this

knowledge in the skeletons has been achieved.

There exist three qualitatively distinct options:

� The library approach,

� The data base approach, and

� The knowledge{based approach.

The simple library approach has been suggested previously as a means to assist parallel

programming. Although it includes some ordering principle, it is too crude and error prone

for unexperienced parallel distributed programmers. A selection mechanism is missing

completely. If the library is large, even an experienced user does might �nd the best

skeleton for his algorithm. Most signi�cantly, representation of 'deep' knowledge is not

possible.

The more advanced data base approach contains more advanced ordering principles but

has only a primitive selection mechanism which requires exact matching. There is no real

representation of 'deep' knowledge possible.

The knowledge{based approach not only provides elaborate ordering principles and selec-

tion methods, but allows in particular genuine representation of 'deep' knowledge. The

knowledge base can be naturally decomposed into two parts, a static knowledge base, stor-

ing the knowledge encapsulated in the algorithmic skeletons, and the dynamic knowledge

base, storing the deep, conceptual knowledge together with practical experience of par-

allel distributed programming. In particular, the knowledge{based approach also allows

meta{representation of algorithmic skeletons by means of algorithmic skeleton fragments

combined with rules from the dynamic knowledge base.

11

e
d
g

e

e

n

e

i
g

n
g
i
n
e
e
r
i

k
n
o
w
l

n

Graphical User Interface (GUI)

GPAI

n
E

e
c
n
e
r
e
f
n
I

g

algorithmic
skeletons

Hardware

static KB

dynamic
knowledge

base

DMPAI

synthesis

IE SMPAI

Database
(problem representation)

Task
Libs.

program

Figure 1: Design of the Program Development Environment, consisting of the program-

ming assistant PA, the three interfaces to the PA, and the graphical user interface. The

PA itself is structured into the data base, the knowledge base, the inference engine, the

knowledge engineering interface, and the code generator.

Comparing the three di�erent options, the knowledge{based storage concept is certainly

the most advanced and powerful one. It is therefore the system of our choice. An important

point of any such system is how the required formal knowledge is acquired. We shall

pay particular attention to it (cp. sect. 3.8). To cope with the problem of knowledge

engineering, a knowledge engineering interface will be incorporated into the over{all design

of the system. To acquire formal knowledge, for the time being, we anticipate expert

interviews as the only approach of practical importance. This method is known for its

subjectivity and often incomplete exploitation of the available human knowledge. Less

subjective and more complete methods like automated learning might be investigated

later. Given the knowledge engineering interface, a very signi�cant design feature of our

system is that experienced users can enlarge the static and dynamic knowledge base by

themselves. They can thus adapt and tune the entire system according to their speci�c

needs.

Guiding mechanism. One of the advantageous features of the knowledge{based ap-

proach chosen for the intelligent storage concept is that the guiding mechanism required

by our programming methodology is naturally provided.

12

Selection methods. They can also be incorporated into the entire system by natural

extension of the intelligent storage concept. Powerful selection methods are absolutely

essential and necessarily required by the existence of algorithmic skeletons on several

levels of abstraction/detail and their hierarchical organization.

Problem description and design methods. The question is whether problem de-

scription and design methods should be based exclusively on textual or graphical repre-

sentations, or a combination of both. Careful investigation of the issues involved showed

that both have their advantages and appear to be more naturally and powerful in di�erent

phases of problem description and design. The system will hence rely on a combination

of both representation techniques.

Interfaces to the programming assistant. The general programming assistant in-

terface GPAI will be developed in a step{wise fashion. At the beginning, only methods

assisting problems in the domain of numerically intensive computing will be supported.

This phase will be followed by successive generalization to the generic case. This evolution

of the GPAI will go hand in hand with the successive enlargement of the knowledge base

of the programming assistant.

The overall design re
ecting the system speci�cation is illustrated in Fig. 1.

3.6 Operation

In this section we present a short description how the programming assistant and the

other components of the programming environment will be used in practise. For the

time being, we assume that the PA already has been '�lled' with static and dynamic

knowledge; how we are going to do this is explained later in sect. 3.8. According to the

programming problem at hand, the programmer selects the most suitable programming

assistant interface, i.e., the SMPAI for all stencil{based problems, the DMPAI for all data

parallel problems, and the GPAI for all other problems. The programmer then speci�es

his problem in a diagrammatic way via the graphical user interface using the method

that is supported by the selected programming assistant interface and its corresponding

problem design language. Then the programming assistant interface transforms the design

of the problem solution into a common (internal) problem representation. Once this has

been achieved, the inference engine tries to map the internal problem representation to an

algorithmic skeleton contained in the static knowledge base of the programming assistant.

If the problem representation is incomplete, or if the PA's dynamic knowledge is insu�cient

to establish the map, the inference engine queries the programmer for further information.

If the inference engine �nds a suitable algorithmic skeleton with the characteristics de�ned

in the problem representation, it returns it to the programmer. If no algorithmic skeleton

can be found, the inference engine tries to create one with the help of the rules de�ned

in the dynamic knowledge base. If no skeleton can be found or created, the programmer

can specify a new one and can insert the necessary entries and rules in the static and

dynamic knowledge base via the knowledge engineering interface. Once the design phase

is �nished and the algorithmic skeleton is supplemented with computational components,

13

the program synthesis component of the PA supports the actual implementation and code

generation phase.

3.7 Conceptual Advantages

There are several signi�cant advantages that can be related to our speci�c approach to-

wards a powerful programming environment for parallel distributed programming. The

knowledge{based approach guarantees successive and rapid extensibility of the entire sys-

tem. It provides an intelligent medium to store and conserve algorithmic knowledge in

a reusable and, most importantly, implementation language independent way. Reusabil-

ity of (even abstract) algorithmic knowledge itself is ensured by su�cient guiding and

selection methods also for the unexperienced parallel programmer such as the typical

computational scientist at present. A nice feature of the programming assistant is that

it conserves algorithmic knowledge on a high abstraction level and actively supports its

e�cient exploitation.

3.8 Realization

There are two necessary requirements to realize such an ambitious project: close familiar-

ity with the needs and programming knowledge of computational scientists and extensive

experience in parallel distributed programming. The former becomes particularly impor-

tant for the design of the interfaces to the programming assistant and the graphical user

interface, because these components de�ne the look and feel of the entire programming

environment. The latter is absolutely mandatory to �ll the static and dynamic knowl-

edge base. Both forms of knowledge and expertise have been necessary on the whole to

even design the entire system. We believe that our interdisciplinary research team fully

accomplishes both requirements.

Our strategy to realize the system is as follows. To begin with, we started to provide

the required functionality for stencil{based problems. These are toy problems of practical

importance since they cover an important class of applications. From the technical point of

view, they have low demands on the capabilities of the knowledge{based system. They thus

serve simultaneously as a learning environment for the more di�cult steps to be covered

later for more di�cult types of applications. This approach also ensures fast usability

by computational scientists, i.e., short 'time{to{market' of our system. In turn, valuable

information on the usefulness of the system under conditions of practical importance is

quickly fed back to the developers of the system.

Speci�cally, in a �rst phase, we shall implement a set of algorithmic skeletons for solving

two{dimensional grid{type problems with stencil{based operations. This amounts to pro-

vide programming support for �nite di�erence methods in two dimensions. At the time

of writing this document, activities include the development of formal stencil speci�cation

methods [15] and the implementation of a prototype of the programming assistant. We

plan to �nish this �rst phase with the preparation of a demonstrator application within the

next four months. The demonstrator application should serve to demonstrate the func-

tionality of the entire system. Once this has been achieved, we shall extend the capabilities

to cover also three{dimensional problems.

14

As already mentioned in sect. 3.5.2, the �lling procedure of the knowledge base deserves

special attention. We shall extend the static and dynamic knowledge base in a step{

wise fashion. In a �rst step, we intend to evaluate the experience gained in realizing the

class of toy problems by means of the programming assistant prototype mentioned above.

In further steps, we shall successively exploit and transform our algorithmic knowledge

collected over the last years into a suitable formal, machine{accessible form. It is important

to note that easy extensibility is ensured by the very nature of the knowledge{based

concept underlying our system.

In the realization phase of the system, particular attention will be paid to intermediate

proofs of the usefulness of the di�erent components under realistic conditions. Testing

will bene�t from the fact that the research work will be conducted at the Swiss Scienti�c

Computing Center Centro Svizzero di Calcolo Scienti�co (CSCS). Selected users of the

CSCS environment will provide valuable information on the practical usefulness of our

improved programming methodology and its realization by means of the programming

environment both described in this paper. We believe that CSCS users will also make a

signi�cant contribution to further improvements.

4 Summary and Conclusions

Computational scientists present an important user group for the rapidly developing par-

allel distributed computer architectures. Despite of the still increasing investments made

by parallel computer vendors and research institutes into software that e�ciently allows

to exploit the promising performance potential of these systems, existing programming

support does not address the speci�c needs of computational scientists. In this paper, we

have addressed this problem. We have presented in detail a model of parallel distributed

programs, and a programming methodology based on it. This methodology provides the

conceptual foundation of a corresponding programming environment that is also discussed

in the paper. After presenting the speci�cation of the functional requirements of such an

environment and fundamental design considerations, we have discussed how the system

can be used in practise. A section on the conceptual advantages and a detailed plan how

we are currently realizing the project completes the paper.

The programming environment and its underlying programming methodology will be-

come part of the SPADE system, an integrated Scienti�c Program and Application

Development Environment. It supplements SPADE's application development environ-

ment ADE and run{time environment RTE (where the latter is currently only realized

rudimentarily and in a non{portable way). With the help of the programming environment

introduced in this paper, SPADE will thus provide support for the complete application

development cycle.

An interesting feature of our approach to parallel distributed programming is that reusabil-

ity is addressed on several levels of abstraction. It is realized on the conceptual level by

means of abstract algorithmic knowledge, stored in the form of rules in the dynamic knowl-

edge base. And it is also realized on the meta{algorithm level by means of algorithmic

skeletons, stored in the static knowledge base. It can be imagined that this knowledge

can also be used to teach parallel distributed algorithm design and programming in gen-

eral. Thus our approach to parallel distributed programming does not only support the

15

programming of parallel distributed systems, but also assists education in this �eld of key

importance for the future of computational science.

Acknowledgement. The work presented in this paper is part of the SPADE project

which is supported by Grants 20{31057.91 and 20{33949.92 from the Swiss National Sci-

ence Foundation.

References

[1] V. S. Sunderam. PVM: A Frameworks for Parallel Distributed Computing. Concur-

rency: Practice & Experience, 2(4):315{339, December 1990.

[2] J. Boyle, R. Butler, B. Glickfeld, T. Disz, E. Lusk, R. Overbeek, J. Patterson, and

R. Stevens. Portable Programs for Parallel Processors. to be published, 1987.

[3] L. Bomans, D. Roose, and R. Hempel. The Argonne/GMD Macros in Fortran for

Portable Parallel Programming and their Implementation on the Intel iPSC/2. Par-

allel Computing, 15, 1990.

[4] ParaSoft Corporation, Pasadena, CA 91107, USA. Express User's Guide, 3.0 edition,

1990.

[5] Moshe Braner. Trollius User's Manual. Cornell Theory Center, Ithaca, NY, 1988.

[6] Lyndon Clarke and Greg Wilson. Tiny: An E�cient Routing Harness for the INMOS

Transputer. Technical report, Edinburgh Parallel Computing Center, Edinburgh,

1990.

[7] T. Bemmerl. The TOPSYS Architecture. In H. Burkhart, editor, Proceedings CON-

PAR 90 - VAPP IV, volume 457 of Lecture Notes in Computer Science, pages 732{743.

Springer, 1990.

[8] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, U. Krem, C-W. Tseng, and M-

Y. Wu. FORTRAN D Language Speci�cation. Technical report, Rice University,

Department of Computer Science, January 1992.

[9] Hans P. Zima and Barbara Chapman. Supercompilers for Parallel and Vector Com-

puters. Addison-Wesley (ACM), 1990. ISBN 0-201-17560-6.

[10] High Performance Fortran Forum. High Performance Fortran Language Speci�cation.

Draft, Version 0.4, November 1992.

[11] Charles Koelbel, Piyush Mehrotra, Joel Saltz, and Harry Berryman. Parallel Loops

on Distributed Machines. Proceedings of the Fifth Distributed Memory Computing

Conference, II, Architecture Software Tools, and Other General Issues:1097{1104,

April 1990.

[12] J.J. Dongarra. Library Issues in Open Systems: Portability, Scalability. In Highly

Parallel Computing Systems, IBM Europe Institute 1992, 1992.

16

[13] Murray Cole. Algorithmic Skeletons: Structured Management of Parallel Computa-

tion. Research Monographs in Parallel and Distributed Computation. The MIT Press,

Cambridge, Massachusetts, 1989. ISBN 0-262-53086-4.

[14] H. Burkhart. Einfaches Programmieren paralleler Systeme mittels Algorithmen-

klassen. Swiss National Science Foundation Project SNF 21-31171.91.

[15] M. Roth. Generation of Algorithmic Skeletons from Stencil Speci�cations. Master's

thesis, IAM, University of Bern, 1993.

17

