
Specifying Real-Time Requirements for

Communication Protocols

1

Dieter Hogrefe Stefan Leue

2

University of Berne

Institute for Informatics and Applied Mathematics

L�anggassstrasse 51

CH-3012 Bern, Switzerland

hogrefe@iam.unibe.ch, leue@iam.unibe.ch

IAM 92-015

July 1992

1

Also submitted for publication.

2

The work of this author was supported by the Swiss National Fund.

Abstract

Real-time constraints play an important role in the speci�cation of communication proto-

cols. We present three practical real-time speci�cation methods, SDL, real-time extended

LOTOS and Message Sequence Charts in combination with real-time temporal logic, and

exemplify their application to the speci�cation of real-time aspects in communication pro-

tocols. We discuss their suitability for di�erent types of real-time constraints and observe

that di�erent speci�cation styles are suitable for di�erent application areas.

CR Categories and Subject Descriptors: C.0 Systems speci�cation methodology;

C.2.2 Protocol Veri�cation; C.2.4 Distributed Systems [Computer-Communication Net-

works] C.3 Real-time systems [Special-Purpose and Application-Based Systems]; D.2.1

Requirements/Speci�cations [Software Engineering]; D.2.2 Methodologies [Software En-

gineering]; F.3.1 Specifying and Verifying and Reasoning about Programs [Logics and

Meanings of Programs]; F.4.1 Mathematical Logic

General Terms: Design, Languages

Additional Key Words: SDL, LOTOS, Message Sequence Charts, Metrical Temporal

Logic, Real-time requirements; Temporal Safety and Temporal Liveness Properties

Chapter 1

Introduction

The description of communication protocols requires the description of a class of behaviour

constraints which refer to real-time. The requirements we envisage consist of timeout

requirements, which also occur in the description of conventional communication protocols,

as well as timing requirements which require the timely delivery of some communication

service.

In this paper we restrict ourselves to the consideration of timeout mechanisms. We

consider the investigation of formal description techniques for other kinds of real-time

requirements a task for further investigation. We discuss various practical speci�cation

techniques and their real-time speci�cation mechanisms which we apply to a common

example: the timeout mechanism of the INRES protocol connection establishment phase

(see [Hog91]).

INRES connection establishment. We informally describe the considered example

as follows. We consider three communicating processes, an initiator-user, an initiator and

a responder process. The initiator-user requests the connection establishment from the

initiator by issuing a ICONreq service promitive (SP), which causes the initiator to send a

CR protocol data unit (PDU) to the responder to request connection establishment from

the responder. The responder may respond in two di�erent ways to that request. It may

con�rm the connection establishment by sending a CC PDU to the initiator, which may

in turn signal this by a ICONconf SP to the user. Alternatively, the responder may reject

the connection establishment by sending a DR PDU to the initiator which is indicated

by a IDISind SP to the user. If connection establishment was con�rmed, the responder

will subsequently send a DR PDU to close the connection, which is indicated to the user

by a IDISind SP. We also permit the initiator to spontaneously reject the connection

establishment request to its user by issuing a IDISind, if it does not receive a response

from the responder. At this point real-time comes into play. To avoid an undetermined

waiting of the initiator to signal to its user, that the connection establishment was not

1

successful due to missing response from the responder, we specify a real-time bound for

the time after which he is required to issue the IDISind SP.

Synopsis. Our subsequent considerations will present and discuss real-time speci�ca-

tions of the INRES connection establishment example. We choose three languages for the

formulation of the examples: SDL, LOTOS and Message Sequence Charts (MSCs). Our

choice is justi�ed by the fact that all three techniques are widely used speci�cation meth-

ods in industial practice, as well as in telecomminication standardisation committees. SDL

posesses real-time expressiveness, in the case of LOTOS we discuss two di�erent real-time

extensions. For MSCs, which possess no real-time expressiveness, we combine this tech-

nique with real-time temporal logic. We will �nally compare the associated speci�cation

styles and conclude with directions for further research.

2

Chapter 2

Real-time speci�cations

This section introduces some real-time terminology.

Real-time control systems. There is no unique de�nition of a real-time system in

literature. Koymans (see [Koy89]) de�nes time-critical systems as systems which are re-

quired to react timely to the stimuli of the asynchronously working environment. Ostro�

(see [Ost89]) talks about real-time discrete event processes as processes which must satisfy

certain hard real-time constraints to ensure safe operation. Their correctness depends

on the timely delivery of results, not only on their logical correctness. Finally, Parnas

(see [FP88]) describes hard-real-time systems as systems which must supply information

according to real-time constraints. We subsume these de�nitions under the term real-time

control systems which we de�ne to perform control functions for the environment under

timing restrictions. Communication protocols are required to supply services under time

constraints, we therefore consider them as real-time control systems of a particular kind.

Types of real-time constraints. There is no generally accepted classi�cation of real-

time requirements in literature, but typical cases are enumerated in di�erent places (see

for example [Koy89, chapter 6], [LV90, p. IX], [Hen91] and [FP88]). We present a subset

of the types of real-time constraints which can be found in literature.

1. A bounded invariance condition requires that once triggered, a condition continuously

holds for a certain amount of time. Conditions of this kind specify for example

general program invariance properties, but their satisfaction is only required over a

limited period of time.

2. A bounded omission condition requires that something `bad' does not happen within

a certain amount of time. This type of requirement is sometimes speci�ed by timer

mechnisms.

3

3. A bounded response (maximal distance) condition requires something `good' to hap-

pen within a certain amount of time. A typical representative of this type is the

bounded response requirement for the timely reply to requested services as it is

speci�ed in many communication protocols.

4. Hard real-time constraints may under no circumstances be violated without invali-

dating the purpose of the system. Examples are real-time control systems like
ight

control or medical live supporting control systems.

5. As opposed to that soft real-time constraints refer moreover to a level of service.

They may be slightly violated without invalidating the system's purpose, and they

are usually coupled to probabilistic values. Examples are audio-video transmissions,

where a certain percentage of late delivery of information is tolerated, or electronic

mail distribution, where timely delivery for `most' messages is guaranteed.

We subsume bounded invariance and bounded omission under the name temporal safety

and bounded response under the name temporal liveness. We would like to point out that

the presented classes are not necessarily disjoint.

4

Chapter 3

Real-time in SDL

Real-time is introduced into SDL (see [XI92]) by providing a timer mechanism

1

. This

mechanism is semantically explained as follows: A timer can be set in the course of a state

transition by the SDL command set. This is accomplished by synchronously reading a

global time value, called now, from a global time process. A time distance value is added

to now, this yields the timeout value. We call a process which sets a timer the timed

process. The set value is kept by a timer process, which is instantiated and activated

by the timed process when setting the timer. The timer process runs independently and

asynchronously from the timed process. The timer process continuously compares its

timer value with the global time value. When the timer value is reached or exceeded, the

timer process communicates the expiry to the timed process by placing a timer signal at

the end of the input queue of the timed process. The timed process may now consume

the timer signal from its input queue and react accordingly. Timers may also be reset in

which case the timer process becomes deactivated and a timer signal, which might already

have reached the input queue, is removed from the input queue (this means that the pure

queue startegy is violated in this case). The reset may be caused explicitly by a reset

command or implicitly by consumption of the timer signal.

Example

In Figure 3.1 we present an SDL speci�cation of the INRES connection establishment

example, in which we make use of the timer mechanism. We consider an initiator and

a responder process, the initiator plays the central role. The behaviour of the responder

seems to be obvious, we therefore omit commenting its behaviour. The initiator transits

from the disconnected state to the wait state upon reception of a ICONreq SP from the

service user. In the course of this transition a DR PDU is sent to the responder and the

timer T is set to the value of the global time now plus the time distance value t. It should

1

For a very instructive presentation of the SDL timer mechanism see [BHS91], p. 168.

5

Disconnected

ICONreq

set(now+t, T)

Disconnected

Wait

Connected

CR

DR

Connected

reset(T) reset(T)

Disconnected

Disconnected

IDISind

DR

Disconnected

T

IDISind

ICONconf

DR

CC DR

Disconnected

IDISind

Wait
PROCESS Initiator

Disconnected

CR

CC

PROCESS Responder

Figure 3.1: SDL speci�cation of the INRES connection establishment

be noted that the state transition from disconnected to wait is considered to be atomic.

When in wait state the initiator may

� receive a CC PDU from the responder, which indicates that the responder accepts

the connection establishment, and it may then transit to state connected,

� or it may receive a DR PDU which indicates a rejection of the connection request by

the responder,

� or it may receive a timer signal T which indicates that neither CC not DR arrived

within t time units after the timer was set.

After the reception of DR or T signals the initiator indicates closing of the connection or

unsuccessful connection establishment respectively by issuing a IDISind service primitive

to the Initiator-user.

Discussion

We critique the following aspects concerning the timer mechanism in SDL.

� The timer mechanism allows specifying temporal safety properties. In our example

we specify the safety property that the initiator does not spontaneously issue a

IDISind SP without having received a DR PDU before the timer expires.

6

� However, processes receive the timer signals through their input queue. No assertion

can be made concerning the time it takes to consume all events in the queue which

arrived earlier than the timer signal.

� The interaction between the input queue and the process is asynchronous. Even if

a timer signal has arrived when the input queue of the timed process was empty it

cannot be guaranteed how long it will take for the timed process to actually consume

the timer signal and react accordingly. However, as the SDL semantics makes a

liveness assumption it is guaranteed that the signal will eventually be consumed.

The above consideration shows that it is not possible to express temporal liveness by the

SDL timer mechnism. It is not possible to express that within a certain time-span an

event, like the issuing of IDISind, is required to happen. SDL is therefore not suited for

the speci�cation of time-critical control systems.

To overcome the disadvantages arising from the asynchronous timer mechanism in SDL

we suggest an interrupt mechanism which ensures synchronous consumption of timer sig-

nals as the timer expires. This implies an elemination of the timer consumption mechanism

via a queue. Though such an extension would render the SDL semantics more compli-

cated it seems necessary to introduce these concepts in order to specify hard real-time

constraints for communication protocols

2

.

2

For a discussion of the need for synchronous interrupt mechanisms in real-time control systems see

[FP88]. A synchronous clock mechanism is also used for the real-time language Conic ([Ost89]).

7

Chapter 4

Real-time extensions to LOTOS

Timed LOTOS

One drawback of standard LOTOS is that there is absolutely no notion of real-time. The

timeout in the INRES protocol is simulated with the i event without specifying any value

for the timer. This disadvantage gave rise to extensions of LOTOS with real-time. Two

of these approaches shall be presented in the following [QAF90], [vHTZ90].

Assignment of time restrictions to the occurrence of events

Quemada introduces time into LOTOS by assigning timing restrictions to the occurrence

of events. This approach gives precise timing to the events of a speci�cation. Each event

happens at one instance of time, which is appended to it as a numerical value. For example

a3 represents that the event shall happen at instance 3. This time value is always relative

to the previous event or the initial instant of a behaviour if there is no previous event. The

operator ";" is used for pre�xing in time an action to a behaviour, thus a2;b3 represents

that a will occur 2 units of time after the initial instant and that b will occur 3 units of

time after a.

The time attribute to an event may also be a set of time values. This allows for example

specifying events with no precise timing but timing from a range of possible time values

as will be shown in an upcoming example.

An implicit global clock exists which keeps track of the current time in the system.

A behaviour generates a transition system. The following example shows graphically a

transition system with a global time count ck.

The interleaving of timed events is not a triviality since proper time merge must be

done. In LOTOS interleaving generates all possible combinations of individual behaviours,

but when timing is added not all the combinations make sense. Moreover, Quemada shows

that di�erent meanings of interleaving are possible in the timed context.

Consider for example the evolution of (a;stop|[]|b;stop) which is shown in Fig. 4.1

8

ck = 0

initial state

a 1 b 4

ck = 4

b 2 c 1 b 6 c 2

ck = 2

ck = 1

ck = 10 ck = 6ck = 3

Figure 4.1: Timed transition system with time count

a

a b

b

a 2 b 3

b 1

a 2

b 1

may-timing must-timingnon-timing

Figure 4.2: Non-timing, may timing and must timing.

for the non-timed case. Let us now assign timing to this behaviour in the following way:

(a2;stop|[]|b3; stop). This composition has the following intuitive meaning: event a,

which must occur 2 units of time after the initial instant, interleaved with event b, which

must occur 3 units of time after the initial instant. Only two of the evolutions given in

Fig. 4.2 make sense, called may timing and must timing.

In "may timing", the �rst branch represents the case where a occurs at instant 2 and

b at instant 1 after a has occured. In the second branch, as a may occur only at instant

2 if b has occured at instant 3, a will never occur.

9

In "must timing", the branch b3 is completely eliminated. Here a is obliged to occur

before b, b will never occur if a doesn't. This interpretation of timing has better composi-

tional properties as the composition of two timed systems evolves as one naturally would

expect. The timeout in the INRES protocol can now be modelled more precisely.

process Example [ICONreq,IDISind,CR,DR,CC,ICONconf] :=

ICONreq;CR;(CC;ICONconf;DR;IDISind;Example

[]DR;IDISind;Example

[]i 5;IDISind;Example)

endproc

The example contains a number actions with no timing assigned to them. This is a

shorthand originally not proposed by Quemada. According to [QAF90] events which are

allowed at any instant of a given time interval have to be labelled with flower limit

... upper limitg. If a given event may occur at any instant in the future f0 ...

no limitg should be assigned to it. Therefore the event ICONrec should be labelled and

read ICONrec f0 ... no limitg in the example above, since it represents a waiting

situation. Similarly all other events except i should be labelled in the same way because

it doesn't matter at which instant exactly they occur. As a shorthand these labels are

omitted in our example.

Extension by clocks

The extension presented in the previous section is particularly suitable for the de�nition

of time distances between successive events. The speci�cation of timing conditions on

nonsuccessive events without timing intermediate events is not possible with this approach

without using additional constraint processes.

An elegant way of handling this situation has been proposed by [vHTZ90]. By the

introduction of clocks it becomes possible to measure durations between ordered, but not

necessarily immediately successive events and to in
uence the occurrence of events.

In Clock Extended LOTOS or CELOTOS as it is called in [vHTZ90] two (prede�ned)

data types are required, one for clock identi�ers and one for durations. In the following

example the clock C is used to measure the time between the CR event and the CC, DR or

i events.

process Example [ICONreq,IDISind,CR,DR,CC,ICONconf] :=

ICONreq;CR<|start(C)|>;

(CC[read(clock(C))<5];ICONconf;DR;IDISind;Example

[]DR[read(clock(C))<5];IDISind;Example

[]IDISind[read(clock(C))�5];Example)

10

endproc

In the example the events CC and DR are only o�ered to the environment if the clock

C is less than 5. The event IDISind is only o�ered if C is greater or equal to 5.

In CELOTOS an implicit clock table is maintained by each process. The table passes

from one behaviour expression to the subsequent behaviour expression. In a similar way

the clock table is handed to a process instantiation, hide expression, local de�nition, etc.

In a choice, the clock table passes to the subsequent behaviour of the selected event.

A bit more complicated is the treatment of parallelism and disabling. Here it is impor-

tant to understand that the only means of communication between independent processes

is via gates. It is undesirable to change this. Therefore there should be no way that a

process can in
uence the clock table of another process.

If the behaviour expression is a parallel expression, both processes get their own copy

of the clock table. These clock tables are independent from there on. If one process

restarts a clock, this in
uences its own clock table only. Thus no means of communication

are provided between the parallel processes.

If a behaviour expression disables another expression as in g;(B1[>B2), both behaviour

expressions B1 and B2 get a copy of the clock table as it is after the event on g. The reason

is that in LOTOS no communication is possible between B1 and B2. If a clock table would

be passed from B1 to B2, starting a timer might be used as a means of communication.

In case of the enabling, B1 � B2, also both processes get their own copy of the clock

table. But in this case values, like duration values can be passed from B1 to B2 and lead

to clock setting in B2. This is possible since the exit in B1 has the full capability of an

interaction. The values de�ned in the exit are associated with value identi�ers in the

accept of B2.

Discussion

Although the clock the two presented real-time extensions for LOTOS does not depend

on arbitrary delay caused by asynchronous signal queues like in SDL the real-time ex-

pressiveness is not greater than the expressiveness of SDL. The epressiveness is restricted

to temporal safety: the IDISind SP is not issued earlier than 5 time units after the CR

PDU is sent unless preceded by the reception of CC or DR PDUs. After the passage of 5

time units the issuing of IDISind is enabled, and the implicit LOTOS liveness ensures its

eventual execution, but nothing can be asserted about how long it takes until IDISind will

actually be issued. We conclude that temporal liveness is not expressible in the presented

variants of LOTOS.

11

Chapter 5

Real-time properties for MSC

speci�cations

Message Sequence Charts (MSCs) are widely used in industry as a speci�cation method

for systems of asynchronlusly communicating processes. MSCs focus on the description of

the message and control
ow of the considered processes, data and real-time aspects are

not directly speci�ed. In previous work ([GHL

+

92], [LL92b]) we formalised this method

by providing an automaton semantics. We also showed how additional safety and liveness

properties for the speci�ed systems could be formulated by the application of temporal

logic (see [LL92b]). We will now present a speci�cation of the considered INRES example

and we will thereafter use real-time extended temporal logic to speci�y the required real-

time behaviour. This means that we do not intend to present a real-time extension to

MSCs but that we suggest the combination of well known speci�cation techniques to

obtain the desired result, the speci�cation of real-time constraints for a system speci�ed

by MSCs.

Example

In �gure 5.1 we present a speci�cation of our INRES connection establishment example

by means of MSCs. The speci�cation is divided into four MSCs. MSC1 describes the

connection request by the initiator-user and the emission of a CR PDU to the responder.

MSC1 ends with a label, namely C2, which indicates possible continuations of the control

ow of the involved procecsses. We call those labels conditions. MSCs may be continued

at conditions with the same name. We observe that there are three possible continuations

from this point on:

� MSC2 describes a successful connection establishment and a regular disconnect af-

terwards. A continuation is possible at condition C1 of MSC1.

12

C1

C2

user
Initiator-

MSC1
Initiator Responder

CR

ICONreq

user
Initiator-

Initiator Responder

C2

C1

MSC3

DR

IDISind

user
Initiator-

Initiator Responder

C2

C1

user
Initiator-

Initiator Responder

MSC2

CC

DR
ICONconf

IDISind

C2

C1

IDISind

MSC4

Figure 5.1: MSC speci�cation of INRES connection establishment

� MSC3 describes the situation in which the responder rejects the connection estab-

lishment, a continuation is possible at condition C1 of MSC1.

� Finally MSC4 describes the situation in which the initiator does not receive an an-

swer upon his connection request and therefore indicates the unsuccessful connection

establishment by a IDISind service primitive.

Real-time constraints

As already mentioned we previously introduced an operational model as semantics for MSC

speci�cations. In this model we translate MSCs to global state automata which generate

all possible interleavings of the communication events speci�ed by an MSC speci�cation.

In [LL92a] we showed how temporal logic is well suited to specify liveness properties for

MSC speci�cations. We will now suggest a temporal logic based method to specify real-

time properties for MSCs. We will �rst informally introduce some terminology which is

in much more detail explained in [LL92a].

Computations and state predicates The global state automaton S which we obtain

from the MSC speci�cation transits between global system states

1

. Its transitions are

1

Manna and Pnueli use the term Basic Transition System in [MP91] to describe these systems.

13

labeled by the systems communication events, for a message of type p we denote the

corresponding send event by !p and the receive event by ?p. Communication in MSCs

is asynchronous, therefore sending and receiving are distinct events. We interpret the

system's behaviour over in�nite state sequences � = s

0

; s

1

; : : :. We refer to s

i

as the i-

th position of �. A state sequence � is called a computation of a considered System S,

i� s

0

is an initial state of S and every consecutive pair s

i

; s

i+1

corresponds to a state

transition in S. We say that a transition a is taken at position i of some computation if

the corresponding system S transited from s

i�1

to s

i

by a. We de�ne the state predicate

ta(a) to be true at position i if a is taken at that position.

Propositional Temporal Logic. We de�ne a Propositional Temporal Logic (PTL) in

the usual way, following [MP90]. The language has the state predicate ta(a) as its only

basic assertion, includes the Boolean connectives (we use just : and _ for simplicity),

and the temporal operators 3 (eventually), 2 (henceforth) and S (since). As syntactic

abbreviations we introduce the notations 2p

4

= :3:p and 3

�

p

4

= true S p. The semantics

are as usual, for a de�nition we refer the reader to [MP90].

Real-Time Temporal Logic Real-Time extended temporal logic has been suggested in

various places as a suitable tool for the speci�cation of real-time systems (see for example

[Hen91], [Koy89] and [Ost89]). We apply a variant of these logics called metrical temporal

logic (MTL) to our example

2

. PTL is a proper subset of MTL. MTL contains formulas

of the form 3

I

� which assert that one of the following states within the time-interval

described by expression I is a state which satis�es �. Formulas of the form 2

I

� assert

that all states in the time-interval described by I satisfy �. It is straightforward to de�ne

a satisfaction relation for timed computations and MTL formulas. A computation which

does not satis�y a set of MTL formulas given as speci�cation is not a computation of the

speci�ed system. If such a computation is the trace of some implemented system, then

the implementation is not conform to the speci�cation.

Real-time constraint for INRES connection establishment. We restrict the set

of possible computations for the INRES system as it is speci�ed in example 5.1 in the

following way. Any behaviour of the system as it is speci�ed by the MSCs is acceptable.

However, considering the behaviour of the initiator we want to require the following real-

time behaviour. We anchor the real-time requirements at the point where the initiator

sends the CR PDU. At �rst we require that if within t time units after sending CR the

2

Our introduction will be rather informal and we will not present all possible operators, we restrict

ourselves to a minimal subset of the language which we need to carry out our example. For a complete

formal de�nition of the syntax and semantics of MTL we refer the reader to [Hen91, chapter 3.4]

14

initiator will issue a IDISind SP only if preceded by a the reception of a CC or a DR PDU.

2(ta(?ICONreq) � 2

�t

(ta(!IDISind)� 3

�

(ta(?CC) _ ta(?DR))))

We call this requirement a temporal safety requirement. Furthermore we require, that if

the initiator has not received a CC or a DR PDU within t time units it will eventually issue

a IDISind PDU to indicate unsuccessful connection establishment.

2(ta(?ICONreq) � ((2

�t

:(ta(?CC) _ ta(?DR)) � 3(ta(!IDISind))))

The above requirement can be classi�ed as temporal safety combined with a general live-

ness assumption for the occurrence of !IDISind.

Discussion

The above speci�cation describes the system beahviour in pretty much the same way like

the SDL and the LOTOS speci�cations. It is speci�ed that when the point of time t has

not yet been reached, the initiator does not issue a IDISind SP without being explicitly

requested to do so by receiving a DR PDU. Once t time units have expired, we require

the eventual issuing of a ISIDind SP without specifying how long it will take untill it is

issued.

As opposed to SDL and LOTOS the expressiveness of real-time temporal logic is not

restricted to temporal safety requirements. In addition to the above speci�cation we may

also require, that the IDISind SP is issued after t

0

> t time units if no CC or DR PDU has

been received beforehand.

2(ta(?ICONreq) � ((2

�t

:(ta(?CC) _ ta(?DR)) � 3

<t

0

(ta(!IDISind))))

The above requirement can be classi�ed as a temporal liveness requirement.

15

Chapter 6

Discussion and concluding

remarks

We presented real-time speci�cations of the INRES protocol connection establishment

phase using three di�erent practical speci�cation methods: SDL, real-time extended LO-

TOS and MSCs in combination with real-time temporal logic.

We investigated the real-time expressiveness of the di�erent speci�cation methods and

found out that both real-time extensions of LOTOS and the timer mechnism of SDL are

equally expressive. Both allow expressing temporal safety properties but not temporal

liveness. We then considered MSCs which do not posses real-time expressiveness. We

provided that expressiveness by using real-time temporal logic in combination with the

MSC speci�cation. It was then possible to express temporal liveness by means of real-time

temporal logic formulas. The combination of real-time temporal logic on the one hand

side and SDL and LOTOS on the other hand side in order to express temporal liveness is

a topic for further research.

We also observe that there are two speci�cation styles associated with the speci�cation

techniques used.

� SDL and real-time extended LOTOS are mechanism oriented. They specify real-

time behaviour by describing the mechanisms which guarantee timely behaviour. In

SDL the timeout mechanism is implicitly anchored in the semantics and explicitly

speci�ed in the syntax. The variants of LOTOS we considered use global clocks or

process depending clocks in the semantics, and explicit timing restrictions for events

or clock access operations in the syntax.

� As opposed to the mechanism oriented speci�cation style we consider the MSC speci-

�cations in combination with the real-time temporal logic to represent a requirement

oriented speci�cation style. We showed that operational semantic models can easily

be obtained from MSC speci�cations. Based on these temporal logic based real-time

16

requirements can be formulated.

We claim that the operational speci�cation style is more geared towards providing sup-

port for the implementation phase of the communication protocol engineering process, as

the semantics of these speci�cation techniques explain how real-time systems could be

implemented. The requirement oriented approach on the other hand is better suited to

enhance veri�cation, validation and testing of communication protocols

1

. Model theoretic

semantics for real-time temporal logics allow describing a system by the set of traces it

generates. A system generating a trace which is not in this set is therefore not a conforming

implementation of the speci�cation.

Further work will also lead us to a more detailed analysis of real-time requirements

typical for high performance communication protocols. This analysis will include the in-

vestigation of the relation of real-time requirements and other non-functional requirements

like quality of service or throughput requirements. On these grounds we will devise one

or more suitable speci�cation styles for the speci�cation of high performance protocols.

1

For veri�cation and validation see for example [Hen91], for testing see for example [RG89].

17

Bibliography

[BHS91] Ferenc Belina, Dieter Hogrefe, and Amardeo Sarma. SDL with Applications

from Protocol Speci�cation. Prentice Hall International, 1991.

[FP88] S. R. Faulk and D. L. Parnas. On synchronisation in hard-real-time systems.

Communications of the ACM, 31(3):274{287, mar 1988.

[GHL

+

92] J. Grabowski, D. Hogrefe, P. Ladkin, S. Leue, and R. Nahm. Conformance

testing - a tool for the generation of test cases. Project Report, project contract

no. 233, funded by Swiss PTT, University of Berne, may 1992.

[Hen91] Thomas A. Henzinger. The Temporal Speci�cation and Veri�cation of Real-

Time Systems. Report no. STAN-CS-91-1380, Stanford University, Department

of Computer Science, aug 1991.

[Hog91] Dieter Hogrefe. OSI formal speci�cation case study: The INRES protocol and

service. Technical Report IAM-91-012, University of Berne, 1991.

[Koy89] Ron Koymans. Specifying Message Passing and Time-Critical Systems with

Temporal Logic. PhD thesis, Technical University of Eindhoven, 1989.

[LL92a] P. B. Ladkin and S. Leue. An analysis of message sequence charts. Technical

Report IAM 92-013, University of Berne, Institute for Informatics and Applied

Mathematics, 1992. Also submitted for publication.

[LL92b] P. B. Ladkin and S. Leue. An automaton interpretation of message sequence

charts. Technical Report IAM 92-012, University of Berne, Institute for Infor-

matics and Applied Mathematics, 1992. Also submitted for publication.

[LV90] P. B. Ladkin and F. H. Vogt. Proceedings of the Berkeley workshop on tem-

poral and real-time speci�cation. Technical Report TR-90-060, International

Computer Science Institute, Berkeley, California, 1990.

[MP90] Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Proceedings

of the 9th Annual ACM Symposium on Principles of Distributed Computing,

pages 377{408. ACM Press, aug 1990.

18

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems, volume 1, Speci�cation. Springer-Verlag, 1991.

[Ost89] J. S. Ostro�. Real-time temporal logic decision procedures. In IEEE Real-Time

systems Symposium, pages 92{101, 1989.

[QAF90] J. Quemada, A. Azcorra, and D. Frutos. TIC: A timed calculous for LOTOS.

In S. T. Vuong, editor, IFIP Formal Description Techniques, II, pages 195{209.

Elsevier Science Publishers B. V. (North Holland), 1990.

[RG89] Rami R. Razouk and Michael M. Gorlick. A real-time interval logic for rea-

soning about executions of real-time programs. In Proceedings of the ACM

SIGSOFT'89 Third Symposium on Software Testing, Analysis and Veri�ca-

tion, pages 10{19, dec 1989.

[vHTZ90] Wilfried H. P. van Hulzen, Paul A. J. Tilanus, and Han Zuidweg. Lotos ex-

tended with clocks. In S. T. Vuong, editor, Formal Description Techniques, II,

pages 179{191. Elsevier Science Publishers B. V. (North-Holland), 1990.

[XI92] CCITT SG XI. Recommendation Z.100: Speci�cation and Description Tech-

nique. CCITT, 1992. Geneva.

19

