
An Analysis of Message Sequence Charts

Peter B. Ladkin Stefan Leue

University of Berne

Institute for Informatics and Applied Mathematics

L�anggassstrasse 51

CH-3012 Bern, Switzerland

ladkin@iam.unibe.ch, leue@iam.unibe.ch

IAM 92-013

June 1992



Abstract

Message (or Time) Sequence Charts (MSCs) are used in telecommunications system speci-

�cation. To investigate the meaning of an MSC speci�cation, we found the need to connect

MSC speci�cations with more precise methods such as temporal logic and B�uchi automata.

Based on an interpretation of a collection of MSCs as a global state automaton, we provide

an explicit semantic connection to temporal logic, enabling properties expressed by tem-

poral logic to be added to MSC speci�cations. Finally, we determine the expressiveness

of MSCs by simulating an arbitrary B�uchi automaton by an MSC speci�cation.

CR Categories and Subject Descriptors: B.4.4 Formal Models [Input/Output and

Data Communications]; C.0 Systems speci�cation methodology; C.2.2 Protocol Veri�-

cation; D.2.1 Requirements/Speci�cations [Software Engineering]; D.2.2 Methodologies

[Software Engineering]; F.1.1 Automata; F.3.1 Specifying and Verifying and Reasoning

about Programs [Logics and Meanings of Programs]; F.4.1 Mathematical Logic

General Terms: Design, Veri�cation, Languages

Additional Key Words: Message Sequence Charts, Temporal Logic, Safety and Live-

ness Properties



Chapter 1

Introduction

System speci�cation methods used in industry can be very di�erent from those investigated

by speci�cation researchers. One might say that common industrial methods are good at

bookkeeping, well-engineered, and are relatively easy to train people in, but can be fuzzy in

stating system properties. In contrast, logic- or automata-based methods are more precise

and expressive, but require greater mathematical or logical skills to use. We believe

there is value in bringing the precision of logic-based speci�cation methods to existing

industrial methods

1

. In this paper we attempt to do that for one industrial speci�cation

method, Message Sequence Charts (MSCs, also called Time Sequence Charts), used in

telecommunications protocol speci�cation.

Amongst general system speci�cations, telecommunications protocol speci�cations dis-

tinguish themselves by an emphasis on communication between processes rather than on

the computation within a process, and also by the relatively simple nature of the messages

exchanged. These are sometimes PDUs, or Protocol Data Units, sometimes ASPs, or Ab-

stract Service Primitives. We shall simply call everything a signal. MSCs focus entirely on

the signals exchanged, and are regarded as a particularly simple, intuitive way of specifying

telecommunications protocols. MSCs are the subject of an international standardisation

e�ort by CCITT [X92]. For use of MSCs in industrial practice, see [AG88], [CCHK91],

[CCI88a], and [CCI88b].

We shall argue that this simplicity is obtained at the expense of precision, and suggest

a remedy, namely that one can add temporal logic statements to an MCS speci�cation via

the connection given in this paper. We shall also show that MSC speci�cations are much

more expressive than they appear, by simulating an arbitrary B�uchi automaton with an

MSC speci�cation.

1

Rigorous speci�cation methods such as Z and VDM for non-distributed systems are already �nding

favor in industry. For distributed systems such as telecommunications systems, LOTOS is being developed.

These methods have all followed a path from academia to industrial research. In contrast, we are taking

a method already in industrial use, and enriching it by providing a more precise and 
exible semantics.

1



aaa

c

b

d

a

!b ?bb

!d

BottomBottomBottom

Top Top Top

?a!a

c

d

!c

?d

?c

Figure 1.1: A simple MSC and its corresponding ne/sig graph

An MSC Example. Figure 1.1 shows a simple MSC (without conditions), and its

syntactic interpretation as a so-called ne/sig graph as in [LL92]. A system with three

processes is speci�ed. The processes are represented by vertical lines, and the signals sent

between processes are represented by horizontal arrows. Communication is asynchronous.

The junction between a vertical process line and a horizontal signal line represents an

event at which a signal of the type speci�ed is sent or received by the process. In each

process axis, the events are temporally ordered from top to bottom. The �rst process

sends a signal of type a to the second process, which upon reception sends a signal of type

b to the third process, a signal of type c to the �rst process, and �nally a signal of type

d to the third process. The system terminates when all processes have terminated. The

ne/sig graph for this example is just syntactic sugar. The basic idea is that the events are

made explicit as nodes, and the process control-
ow edges and signal edges are explicit

relations on the nodes.

Our Motivation. We were led to the analysis of MSC semantics whilst trying to de�ne

conformance tests for telecommunications systems by means of MSCs. We found that

we could not tell from the `standard' assumptions which executions were speci�ed by the

MSC speci�cation. For example, we could assume that all send events had to happen, but

did all receive events? Could one process send to another in�nitely often, but the second

not receive any signal at all? (These are both liveness properties.) Was the signal sent the

`same' signal as the one received, or did any signal of the same type su�ce? (This looks

like a requirement on the environment.) These questions led us to de�ne global states and

global state transitions, and thus to interpret an MSC as an !-automaton of global states

(i.e. an automaton that accepts in�nite sequences of events). Details are in [LL92].

2



But we found further questions were not answered by this interpretation, or by the

MSC speci�cation style. The B�uchi automaton

2

we de�ned was underdetermined by the

MSC speci�cation, and the di�erent automata that could be de�ned depended on safety

and liveness properties that were not explicit in that speci�cation

3

.

Safety and liveness properties have been investigated through the use of temporal logic

and !-automata. We saw a need to connect MSC speci�cations with these methods to

exploit the precision in stating system properties that is missing from the pure MSC style.

Synopsis of the Paper. We provide a semantic connection between MSCs and temporal

logic, and discuss some safety and liveness properties of MSCs in terms of temporal logic

formulations. We also show by a simple argument that an arbitrary B�uchi automaton may

be simulated by an MSC speci�cation. We draw two conclusions from these observations.

1. MSCs as they stand are an incomplete speci�cation method, and MSC speci�cations

need to be supplemented by explicit safety and liveness conditions

4

. Our connection

to temporal logic enables this to be done simply by including temporal logic formulae

as part of the MSC speci�cation.

2. Despite their apparent simplicity, MSCs are equally expressive with B�uchi automata

in a precise sense, and more expressive than temporal logic, when communication

matters and computation is ignored.

Background Literature. A thorough exposition of the use of temporal logic in system

speci�cation may be found in [MP91]. Some knowledge of this reference would be help-

ful, since our presentation follows their terminology. Details of the connections between

system properties, temporal logic, and automata are in [MP90]. An introduction to B�uchi

automata may be found in [Tho90], and the use of B�uchi automata to specify properties

of systems may be found in [AS87], [AS89]. B�uchi automata express a more complex set

of properties than pure temporal logic [Wol83], [VW86], [VW88].

2

A B�uchi automaton is an automaton that can accept in�nite sequences. It is similar to a normal

�nite-state automaton, except for the acceptance condition. An in�nite sequence is accepted if some �nal

state is entered in�nitely many times during a computation on this sequence.

3

In [LL92] there is an example which seems to show that MSCs can also make implicit requirements on

the environment, that can not be handled by, for example, making the environment an additional process.

4

In [AS87] it was shown that any property is the intersection of a safety property and a liveness property,

so we are safe in saying that this is all that is needed.

3



Chapter 2

Interpreting MSCs as Automata

In [LL92], we interpreted an MSC speci�cation, which may contain many MSCs linked by

conditions, as a single syntactic structure called a next-event/signal (ne/sig) graph. We

then derived a global state transition graph (GSTG) from the ne/sig graph. A GSTG is

almost a B�uchi automaton, missing only the de�nition of the set of �nal states. Examples

in [LL92] show how the choice of a set of �nal states for the automaton depended on

choices to be made concerning the properties of the communication in the MSCs, which

are not explicit in the MSC speci�cation style itself. We summarise this material in this

section, omitting formal details, using examples which also occur later in the paper.

MSCs to Ne/sig graphs

We represent an MSC speci�cation (a set of MSCs with conditions) by a single graph with

two kinds of edges, next event (ne) and signal (sig) edges, representing the signals and the

progression of processes between events. The nodes represent events, and are labelled with

the event type, and the signal edges are labelled with the signal type. The event node at

the tail of a sig edge labelled a must be labelled with !a (send a message of type a), and

the event node at the head with ?a (receive a message of type a). An ne/sig graph for a

simple MSC has extra start nodes (in the domain but not the range of the ne relation)

labelled Top, and end nodes (in the range but not the domain of ne) labelled Bottom

1

.

An ne/sig graph corresponding to a simple MSC is syntactic sugar for the MSC. How-

ever, representing entire MSC speci�cations containing MSCs with conditions as a single

ne/sig graph may require branching or looping in an ne/sig graph, which is disallowed in

MSCs. For example, Figure 2.1 contains two MSCs with conditions, represented by the

elongated symbols labelled C spanning the process axes. A condition is like a `joint' for

1

In some ne/sig graph examples in this paper, we also write a lower-case letter in a node to allow us to

refer to that node in the text. These letters do not occur in the ne/sig graph itself. The node labels are

purely event labels.

4



C

C

C

C

a
a

b

a

III

b

a
!a ?a

T1 T2

y

w x

z
!a ?a

T2T1

?b !b
zy

xw

vu

Figure 2.1: MSCs I and II and corresponding ne/sig graphs

MSCs. The system is supposed to behave as though another MSC with an identically-

labelled condition is joined on at the condition label. In Example I, there is a single

condition label C at top and bottom. Thus the MSC may be joined to itself at these

conditions, creating a non-terminating loop in which the �rst process continuously sends

signals of type a to the second. Example II is similar, in which a signals alternate with b

signals in the other direction. Both MSCs are represented by ne/sig graphs in which the

loops are explicit, as shown.

Conditions may also be used to specify non-determined behaviour, as in Figure 2.3. At

the condition C2, the second process may send a CC signal to the �rst, or alternatively

a DR signal, before looping back to the beginning (condition C1). This gives rise to the

branching and looping ne/sig graph in Figure 2.4.

The translation is handled in [LL92] �rst by translating the MSCs with conditions

into ne/sig graphs with conditions (Figure 2.5), which are an extra kind of node on each

process axis, then joining the ne/sig graphs at these nodes and �nally eliminating the

condition nodes. It's straightforward, but requires care in the details.

Ne/sig Graphs Formally. Formally, an ne/sig graph is a tuple

N

M

= (S;C;X;ne; sig; ST; stype; Top;Bottom)

5



S1 S2 S3 S4 S6S5

en(w)

w

ta(w)

en(x)

x

ta(x)

en(z)

z

ta(z)

en(y)

y

ta(y)

en(w)

w

ta(w)

en(x)

x

Figure 2.2: Global State Transition Graph for Example II

where S and C are respectively the sets of send and receive nodes, and X is the set of

nodes used for start and end nodes and conditions. S, C and X are pairwise disjoint. ne

is the ne relation on (S [C [X)� (S [C [X), and sig is the sig relation on S�C ST is

the set of signal types, stype the labelling function for the sig edges, and Top and Bottom

the labels for the start and end nodes.

Ne/sig graphs to GTSGs

The ne/sig graph represents an entire MSC speci�cation by a single graph. In order to

obtain an automaton from an ne/sig graph, we �rst have to de�ne the global states, the

start state, and the state transition function. This triple de�nes the global state transition

graph (GTSG), and is uniquely determined by the MSC speci�cation

2

.

Obtaining the Global States, the Start State, and the Transition Relation.

The global states are certain sets of edges of the ne/sig graph, and the transition relation

between states is obtained by deleting particular edges from the state and adding others.

The start state q

0

is simply the set of edges leading from Top nodes in the graph. We

shall walk through the derivation of the GSTG for Example II (Figure 2.1) given in

Figure 2.2, to illustrate states and the transition relation between states. The start state

q

0

= f(u; w); (v; x)g. The ne edges occurring in a state may be thought of as the set of

positions where control lies in each process, and sig edges occurring in the state may be

thought of as signals sent but not yet received. In state q

0

(labelled S1 in Figure 2.2)

the event of type !a at node w is enabled, because node w represents a send node (a

send node p is enabled in a state S if there is an ne edge with p as second coordinate

in S). Node x is not enabled, because the send corresponding to it has not been taken

in S1. Since w is enabled, the event corresponding to it may be taken, i.e. executed,

next to give a new state S

2

. The triple hS1; w; S2i will be a member of the transition

relation. The new state S2 is obtained by omitting the edge (u; w), and adding the edge

2

To make an automaton from the GSTG, we need to de�ne the set of �nal states

6



(w; y) to the state (to represent the change in location of the `program counter' of the �rst

process), and adding the sig edge hw; xi to represent the a signal sent but not received.

Thus S2 = f(v; x); (w; y); hw;xig. In S2, node x is enabled, since it is a receive node and

requires not only that its `program counter' be at the right position (i.e. an ne edge with

x as second coordinate is in the state), but that a sig edge with x as second coordinate is

also in the state (i.e. the signal has been sent). When the action corresponding to node

x is taken, the edges hw; xi and (v; x) are removed from the state S2, and (x; z) is added

to represent advance of the program counter. The resulting state is S3 = f(w; y); (x; z)g.

hS2; x; S3i is in the transition relation. Node z is enabled in S3, and so on. The GSTG in

Figure 2.2 is annotated with the list of actions enabled and taken in each state. Figure 2.6

shows the GSTG for Example I.

GTSGs can be Complicated. It should be no surprise that GTSGs can rapidly be-

come very complicated, for example the GTSG for Example III in Figure 2.7 is given in

Figure 2.8. This is due to the asynchronous communication. For example, Example II

and Example III are similar, di�ering only in that the second message goes in opposite di-

rections. However, in Example II this forces a unique execution sequence, and the GTSG

is correspondingly simple (Figure 2.2). However, in example III, the two sends might

occur before either receive, or alternatively sends and receives might be interleaved.

Thus the GSTG is more complex. However, it is not our intention to recommend explicit

construction of the GTSG for every MSC. We use it formally to relate liveness and safety

properties as expressed in temporal logic or by B�uchi automata to MSCs.

MSC Speci�cations can `Count' Receptions. It may also be instructive to compare

Example I, Figure 2.1, with Example IV, Figure 2.7. Both examples express a non-

terminating send of a signal of type a from the �rst process to the second. We suppose

for this brief discussion that all states are end states, so any path through the GSTG

is accepted by the corresponding automaton. In Example I, taking a ?a action removes

the edge hy; zi from the state, and thus disables a further ?a action until after a further

!a action has put the edge back in the state. Thus there may be no two consecutive

receives, although there may be many consecutive sends. In contrast, in Example IV,

both hw; xi and hy; zi may occur in a state (for example, by �rst performing two send

actions corresponding to nodes w and y), and execution of a receive action corresponding

to node x removes hw; xi from the state, but not hy; zi. Thus, a receive corresponding

to x may be directly succeeded by a receive corresponding to z, but then a further

send must follow before either receive is enabled again. Thus, Example IV allows two

consecutive receives, but no more, and any number of consecutive sends. It should now

be clear how to write down an MSC which enables n consecutive receives of a, but no

more, for any �xed n.

7



C3

C2

established

CC

MSC2

pending

MSC1

C2

C1

CR

idle

pending

C2 pending

MSC3

DR

C1 idle

Figure 2.3: MSC speci�cation with conditions

GTSGs Formally. Formally, a GTSG is a tuple GST G

M

= (Q; q

0

; T

M

) where Q is

the set of states obtained from the start state q

0

in the manner described, and T

M

is the

transition relation, whose elements are triples (G; e;G

0

) where G is a state in Q in which

event e is enabled, and G

0

is the resulting state after e has been taken. Formal details are

in [LL92], along with some discussion of end-state selection to achieve various safety and

liveness properties.

8



T1

!CR ?CR

?CC !CC ?DR

u v

!DR
x yw z

T2

Figure 2.4: `Unfolding' an MSC speci�cation into a single ne/sig graph

C12C11

C22C21

C21 C22

C32C31

C21 C22

C11 C12

!CR ?CR ?CC
u v w

!CC ?DR !DR
x y z

Figure 2.5: ne/sig graphs with conditions

S1 S2 S3 S4

en(y) ta(y)

en(z)

y

y

z

ta(z)

en(y)

y

ta(y)

en(z)

z

z

Figure 2.6: Global State Transition Graph for example I

9



C

C

a

c

a

c

III

C

C

a

a

IV

a

a

T1 T2

!a ?a

?c!c

u v

x

y z

w

T1 T2

?a!a

!c ?c

u v

w x

y z

Figure 2.7: MSCs III and IV and corresponding ne/sig graphs

10



S3

S5

S14

S11 S9

S15 S12 S13

S22

S18

!a

!c

!a ?a

!c

?a

!c

?c!a

?a

?c

?a

!c
?a ?c

!a

!a !a

!a
?c

!c

!c

!a

?a

?a

?a

!a

!c

!a?a!c

?c

!c

!a
?a

S7

S10

S21S16

S17

S19S20

S4

S2

S1

S6

S8

Figure 2.8: Global State Transition Graph for example III

11



Chapter 3

GTSGs, Transition Systems, and

Temporal Logic

Let N

M

= (S;C;X; ne; sig; ST; stype; Top; Bottom) denote the ne/sig graph of some MSC

speci�cation M and let GST G

M

= (Q; q

0

; T

M

) denote the corresponding GSTG. First,

we relate the GTSG to a basic transition system as de�ned in [MP91]. Then we consider

state predicates, computations and �nally the syntax and semantics of temporal logic.

Basic transition system. BT S

M

4

= (�;�; T ;�) is a basic transition system corre-

sponding to GST G

M

, where

� � denotes a set of state variables, which is empty in the case of MSC speci�cations

since they do not contain data

1

,

� � denotes the �nite set of states, so � = Q.

� T denotes a set of transitions, � : � ! 2

�

, for � 2 T . For s; s

0

2 � let �(s)

4

= fs

0

j

(s; �; s

0

) 2 T

M

g (the symbol � now has, harmlessly, both a GSTG syntax and a BT S

syntax). For MSCs transitions are events of type !a or ?a, where a is a signal type.

� � denotes an initial condition, in our case simply that the initial state is the initial

state q

0

in GST G

M

.

The states of BT S

M

correspond to global system states of GST G

M

(they are sets of edges

of the ne and sig relations), and the transitions � of BT S

M

correspond to communication

events of the MSC speci�cation.

1

The only data in MSC speci�cations is signal type information, which is encoded in state information.

12



State Predicates. Manna and Pnueli introduce an assertion which they call the transi-

tion relation

2

of the form �

�

: C

�

(�)^ (�y

0

= �e) describing the change of the values of state

variables in state s to their values in state s

0

into which the system transits from state s

by taking transition � . Since � = ; for MSCs, C

�

is a constant, denoting the enabling

condition which describes the condition under which the state s may have a successor

state by taking the � transition. (�y

0

= �e) stands for a conjunct which expresses the values

of a sequence of state variables after the transition has been performed. Since there are

no state variables in an MSC speci�cation, this conjunct is vacuous, and so the transition

relation �

�

is equivalent to the enabling condition C

�

(which is just that there is some

�

0

2 �(s)) thus �

�

holds in a state s for some transition � i� there exists s

0

2 � such that

s

0

2 �(s).

Thus a transition � is enabled in some state s i� �(s) 6= ;. Conversely, � is disabled in

s i� �(s) = ;. Mapping this to our MSC de�nitions we have that � is enabled in state s i�

there is some state s

0

such that hs; �; s

0

i 2 T

M

. Consequently, the Manna-Pnueli enabling

condition for an action � is true in precisely those GSTG states in which � is enabled in

the sense of Section 2.

Computations and State Predicates en and ta. An in�nite state sequence � =

s

0

; s

1

; : : : is a computation [MP91], i�

� s

0

j= �, which means just s

0

= q

0

, and

� for all consecutive pairs s

i

; s

i+1

2 � there exists � 2 T such that s

i+1

2 �(s).

The indices i of � are positions. Transition � is enabled (disabled) at position i of some

computation � i� it is enabled (disabled) in s

i

. We say that transition � is taken at

position i+ 1 i� s

i+1

2 �(s

i

). We de�ne the predicate en(�) to hold in state s

i

2 � i� � is

enabled at position i and we de�ne the predicate ta(�) to hold in state s

i

2 � i� � is taken

at position i

3

. As noted, these de�nitions cohere with our former GSTG de�nitions. In

Figures 2.2 and 2.6, we annotate each state with the instances of en and ta that are true

in that state.

Temporal Logic. We de�ne a temporal logic in the usual way, following [MP90]. The

language has state predicates en(�) and ta(�) as basic propositions, includes the Boolean

connectives (we use just : and _ for simplicity), and the temporal operators 3 (eventu-

ally), 2 (henceforth), 3

�

(sometime in the past), 
� (previous) and S (since).

2

We will show that this notion is simpli�ed for MSCs, so there will be no confusion with our notion of

transition relation for GTSGs.

3

In order to avoid notational confusion with our de�nitions for MSCs we distinguish our notation slightly

from the notation used in [MP91].

13



The semantics are de�ned as usual. A temporal logic formula p is interpreted over

state sequences �, and we de�ne (�; i) j= p, i.e. that formula p is satis�ed in position i of

sequence �.

� If p is a basic assertion, then (�; i) j= p i� p is true in s

i

as de�ned above.

� (�; i) j= :p i� not (�; i) j= p

� (�; i) j= p _ q i� (�; i) j= p or (�; i) j= q

� (�; i) j= 3p i� for some j � i (�; i) j= p

� (�; i) j= pSq i� for some k; 0 � k � i; (�; k) j= q,

and for every j such that k < j � i; (�; j) j= p

� (�; i) j=
� p i� i > 0 and (�; i� 1) j= p

As syntactic abbreviations we introduce the following notation.

� 2p

4

= :3:p

� 3

�

p

4

= true S p

We say that a formula p holds on sequence � i� (�; 0) j= p, that it is satis�able i� it holds

for some computation, and valid i� it holds for all computations.

14



Chapter 4

Logical Properties of MSC

speci�cations.

We can now state some examples of properties in temporal logic which can characterise

MSC speci�cations. The classi�cation of properties as safety, recurrence, etc, refers to the

classi�cation in [MP90].

Properties Satis�ed by all MSC Speci�cations. The following properties are sat-

is�ed by all computations derived from MSC speci�cations, as may be seen by inspection.

We omit proofs.

1. Enabling of a send event (a safety property): If a send event is taken, it must

have been enabled previously. However, the enabling does not have to persist until

the event is disabled, because a send event may also be disabled by a nondeterminis-

tic behaviour alternative (some branch is taken rather than another) in the process's

control 
ow.

2(ta(x) � 3

�

en(y))

where hx; yi 2 sig.

2. Persistent enabling of a receive event: (a safety property) A receive event

may only be taken if it has been previously enabled by a send event of the same type.

Additionally, the enabling of a receive event can only be disabled by a receive

event, therefore an enabling of a receive event persists up until the state when it

is taken.

2(ta(y) � 
� (en(y) S ta(x)))

where hx; yi 2 sig.

15



Some Potential Requirements on MSC Speci�cations. Some liveness properties

are not automatically ful�lled by an MSC speci�cation M. In [LL92] it was noted that

some of these properties were de�nable by making di�erent selections of the set of �nal

states of a B�uchi automaton de�ned on GT SG

M

. Therefore, the MSC speci�cation method

may be enhanced by requiring explicit statements of which liveness properties are to be

satis�ed in a given speci�cation. The most well-known examples of such properties are

1. Weak fairness (a recurrence property): it is not the case that any transition �

is enabled continuously without ever being taken.

23(:en(�) _ ta(�))

2. Strong fairness (a reactivity property): if an arbitrary transition � is enabled

in�nitely many times, then it is taken in�nitely many times.

23en(�) � 23ta(�)

It is known (and should be clear) that strong fairness implies weak fairness. We note

that since receive events are persistently enabled, strong fairness and weak fairness just

for receive events are equivalent statements. However, since a send event may be disabled

without being taken, strong fairness and weak fairness are not equivalent for send events.

A Proposal for Enhancing MSC Speci�cations. By means of our explicit connec-

tion between MSC speci�cations and temporal logic semantics, we propose reducing the

imprecision in MSC speci�cations by allowing explicit statements in temporal logic of

required properties, for example fairness properties, as part of the MSC speci�cation.

Axiomatising the Logic of MSCs. The question naturally arises, what is the ex-

pressive power of MSCs? Since temporal logic has shown its use for de�ning properties

of systems, we could attempt to answer this question by axiomatising the temporal logic

formulas satis�ed by all MSC speci�cations. However, we answer this question in what we

believe is a more relevant way in the next section, so we do not pursue such an axiomati-

sation here.

16



Chapter 5

Abstraction of Automata

Informally, an abstraction of a B�uchi automaton A is an automaton A

0

whose states are a

subset of the states of A, and whose transitions occur not on letters from the alphabet of

A, but on sequences of such letters (i.e. words). In other words, the abstraction retains

information only on some states, and how one gets from these particular states to others

by treating a sequence of transitions of A as a single transition

1

.

An Example. The GSTG for the MSC speci�cation in Figure 2.3 is shown in Figure 5.1.

We can form an abstraction of the GSTG, by retaining information only about the global

states denoted by conditions C1, C2, and C3, which correspond to the state sets fS0; S6g,

fS2g, and fS4g. The abstraction is shown in Figure 5.2

2

.

The point of abstractions is that they are in an intuitive sense a summary, a less

complex version, of the automaton that they abstract. We show below that an arbitrary

B�uchi automaton is an abstraction of the automaton of some MSC speci�cation, and

therefore that MSC speci�cations are in this sense equally as complex as B�uchi automata,

and therefore much more expressive than temporal logic [Wol83], under our semantics.

Abstractions Formally. hA

0

; I; hi is an abstraction of A i�

� I is a mapping of the state set of A

0

into the set of state sets of A, i.e. I picks out

a subset of the states of A which correspond with a particular state of A

0

;

� h maps the alphabet of A

0

into words in the alphabet of A, i.e. transitions among

states in A

0

are translated into sequences of transitions of A;

1

Abstraction is related to notions in Statecharts [Har87], which can in some sense be regarded as a

hierarchy of abstractions. However, we don't need all the details of Statecharts for our purposes

2

This particular abstraction was called the composition graph in [LL92], and is used in the formal

de�nition of the `unfolding' of a set of ne/sig graphs with conditions into a single ne/sig graph.

17



S7

S1

S2

S3

S4

S5

S6

S0

y

u

v

w

x

v

u

z

Figure 5.1: Global State Transition Graph

� there is a transition from s to s

0

on p in A

0

i� h(p) is a path from some state in I(s)

to some state in I(s

0

) in A,

It is well-known that such an h can be extended into a homomorphism of the words of A

0

into the words of A. We shall abuse terminology and refer to A

0

alone as an abstraction

of A.

A particularly important kind of abstraction is the one-to-one abstraction, in which

every I(s) is required to be a singleton, i.e. there is only one state of A corresponding

to each state in A

0

. The abstraction in Figure 5.2 is not a one-to-one abstraction. We

categorise the expressiveness of MSCs by the following theorem.

Theorem 5.0.1 Every B�uchi automaton is a one-to-one abstraction of an automaton

derived from an MSC speci�cation involving just two processes.

Proof Sketch. Consider the MSC expressed in Example V in Figure 5.3. It is easy

to see that there is only one possible sequence of events, as shown in the GTSG. The

following lemma may easily be proved by recursion, and by inspection of the transition

between states S1 and S5 in the GSTG.

18



MSC1

MSC2

MSC3
!CR, ?CR

!DR, ?DR

{S2}

{S4}

{S0, S6}

!CC, ?CC

Figure 5.2: An Abstraction Graph

S1 S2 S3 S4 S5

V

C.s

a.T

b.T

C.s’

C3 C4

C2C1

b.T

a.T
x.Tw.T

y.T z.T

w.T x.T z.T y.T

Figure 5.3: Example V and its GSTG

19



Lemma 5.0.2 Let B be a B�uchi automaton based on the GSTG of Example V, which

additionally satis�es weak liveness. If B attains the state represented by the beginning

condition C:s, it will later attain the state represented by the terminal condition C:s

0

.

To each pair of states s and s

0

of an arbitrary B�uchi automaton A

0

, and transition T

between them, we associate a copy of Example V, with conditions C:s and C:s

0

, and signals

a:T and b:T . This de�nes an MSC speci�cation M, with GSTG GST G

M

. We de�ne

I(s) = C:s and h(T ) =!a:T?a:T !b:T?b:T , and �nally the global states of the automaton A

derived from GST G

M

are fC:s j s is a �nal state of A

0

g. Using the lemma, it follows that

A

0

is an abstraction of A.

A crucial step in this proof is the de�nition of the endstates of the automatonA derived

from the MSC speci�cation. We are able to do this as we please, only because the end

state set is not determined by a pure MSC speci�cation. If some additional requirement

on the MSC speci�cation technique is made, for example some fairness requirement for

all MSC speci�cations, then the choice of end state set for the automaton A will be

restricted by this requirement, and we may no longer be able to simulate an arbitrary

B�uchi automaton. However, we have suggested introducing requirements explicitly in

individual MSC speci�cations as temporal logic statements, so we see no need to make

additional implicit requirements on the MSC speci�cation method as a whole. One could

further argue that it would be preferable to have as much semantics as possible explicit in

speci�cations.

20



Chapter 6

Concluding remarks

We have concluded in other work [LL92] that MSCs as currently used are an incomplete

speci�cation method, requiring additional statements of safety and liveness assumptions.

In this paper, we have provided a formal semantic connection between MSCs and tempo-

ral logic, enabling MSC speci�cations simply to be supplemented by explicit safety and

liveness conditions expressed in temporal logic. We have recommended enhancing MSC

speci�cations by such temporal logic statements.

We have also shown by a simple argument that an arbitrary B�uchi automaton may be

simulated by an MSC speci�cation. Hence, despite their apparent simplicity, MSCs are

as expressive as B�uchi automata in a precise sense (hence more expressive than temporal

logic) when only communication acts, and not computation, are considered.

Acknowledgements

Part of this work has been supported by Contract No. 233 of the Swiss PTT to the

University of Berne, Project Head Professor D. Hogrefe. We wish to thank the PTT and

Professor Hogrefe for their support.

21



Bibliography

[AG88] Siemens AG. EWSD Softwareentwicklungshandbuch (Software Development

Handbook), Kapitel B, Register 6, SDL Diagramme. Siemens AG, M�unchen

(Munich), 1988.

[AS87] B. Alpern and F.B. Schneider. Recognizing safety and liveness. Distributed

Computing, 2:117{126, 1987.

[AS89] B. Alpern and F.B. Schneider. Verifying temporal properties without temporal

logic. ACM Transactions on Programming Languages, 11(1):147{167, jan 1989.

[CCHK91] A.A.R. Cockburn, W. Citrin, R.F. Hauser, and J. K�anel. An environment for

interactive design of communication architectures. In Protocol Speci�cation,

Veri�cation and Testing, volume 11 of Proceedings of the IFIP WG 6.1 11th

Symposium on Protocol Speci�cation, Veri�cation and Testing. North Holland,

1991.

[CCI88a] CCITT. Recommendation Q.65: Stage 2 of the method for the characterization

of services supported by ISDN. Technical report, CCITT, 1988.

[CCI88b] CCITT. Recommendation Q.699: Interworking between the digital subscriber

system layer 3 protocol and the signaling system no. 7 ISDN user part. Tech-

nical report, CCITT, 1988.

[Har87] D. Harel. Statecharts: A visual formalisation for complex systems. Science of

Computer Programming, 8:231{274, 1987.

[LL92] P. B. Ladkin and S. Leue. An automaton interpretation of message sequence

charts. Technical Report IAM 92-012, University of Berne, Institute for Infor-

matics and Applied Mathematics, 1992. Also submitted for publication.

[MP90] Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Proceedings

of the 9th Annual ACM Symposium on Principles of Distributed Computing,

pages 377{408. ACM Press, aug 1990.

22



[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent

Systems, volume 1, Speci�cation. Springer-Verlag, 1991.

[Tho90] W. Thomas. Automata on in�nite objects. In Handbook of Theoretical Com-

puter Science, chapter 4, pages 132{191. Elsevier Science Publisher, 1990.

[VW86] M. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-

gram veri�cation. In IEEE Symp. on Logic in Computer Science, pages 332{

344, 1986.

[VW88] M. Y. Vardi and P. Wolper. Reasoning about in�nite computation paths.

Research Report RJ 6209, IBM Almaden Research Center, apr 1988.

[Wol83] P. Wolper. Temporal logic can be more expressive. Information and Control,

56:72{99, 1983.

[X92] CCITT SG X. Draft recommendation Z.120: Message sequence chart. Sub-

mitted to CCITT, mar 1992.

23


