
An Automaton Interpretation of Message Sequence Charts

Peter B. Ladkin Stefan Leue

University of Berne

Institute for Informatics and Applied Mathematics

L�anggassstrasse 51

CH-3012 Bern, Switzerland

ladkin@iam.unibe.ch, leue@iam.unibe.ch

IAM 92-012

June 1992

Abstract

We give a precise semantics to Message Sequence Charts (MSCs), by interpreting MSC

speci�cations by B�uchi automata. The state transition graph is uniquely determined by

the speci�cation, but di�erent automata may be de�ned to accept di�erent sets of traces

allowed by the speci�cation. The precise automaton chosen therefore depends on reliability

properties of communications assumed by the speci�cation.

CR Categories and Subject Descriptors: B.4.4 Formal Models [Input/Output and

Data Communications]; D.2.1 Requirements/Speci�cations [Software Engineering]; F.1.1

Automata; F.3.1 Specifying and Verifying and Reasoning about Programs [Logics and

Meanings of Programs]; F.3.2 Semantics, Operational

General Terms: Algorithms, Design, Languages

Additional Key Words: Message Sequence Charts

Chapter 1

Introduction

Telecommunications protocol speci�cations are distinguished amongst general system spe-

ci�cations by an emphasis on communication amongst process instances rather than com-

putation within a process, and by the relatively simple nature of the messages exchanged

(often called signals). Message Sequence Charts or MSCs (also called Time Sequence

Charts) are a form of system speci�cation often used in speci�cation of telecommunications

systems. They are the subject of an international standardisation e�ort by CCITT [X92].

Although the syntax de�nition is quite well developed, the semantics is still in its early

stages. Our purpose in this paper is to propose a precise mathematical semantics for

MSCs.

We proceed via the de�nition of an abstract syntax in the form of a labelled graph,

an ne/sig graph, whose two sorts of edges represent signals sent and process transitions.

We show that a single such graph may be used to represent an MSC speci�cation. From

this graph, we obtain the transition graph of a B�uchi automaton [Tho90] of global system

states. B�uchi automata may be de�ned with di�erent acceptance criteria which we show

are related to various reliability assumptions for signal transmission that may be made by

the speci�cation. Although reliability properties are thus necessary for a precise semantics,

they are not currently included (except by default) in MSC speci�cations. The B�uchi

automaton de�nes the semantics of the MSC by specifying a set of traces (the accepted

traces) which is taken to be the set of traces denoted by the speci�cation.

MSCs describe the signal-passing behaviour of collections of communicating sequential

processes. Computations, if any, which processes perform are not speci�ed with MSCs.

Events in an MSC are communication events. A simple example of an MSC is given in

Figure 1.1, in which a system with three processes is speci�ed. The �rst process sends a

signal of type a to the second process, which upon reception sends a signal of type b to the

third process, a signal of type c to the �rst process, and �nally a signal of type d to the

third process. The system terminates when all processes have terminated. MSCs assume

that communication is asynchronous. Various reliability assumptions may also be made,

1

aaa

c

b

d

a

!b ?bb

!d

BottomBottomBottom

Top Top Top

?a!a

c

d

!c

?d

?c

Figure 1.1: A simple MSC and its corresponding ne/sig graph

such as that all signals sent will eventually be received, and that there is no duplication

of signals.

Extension of the basic MSC example allows a system to be speci�ed by multiple MSCs,

which contain labelled conditions at which MSCs may be `glued' together. We call these

MSCs with Conditions, or cMSCs.

The �rst step translates cMSCs into a single graph structure that provides a mathe-

matical syntax for the speci�cation. This labelled graph with two sorts of edges is called

a next-event/signal graph or ne/sig graph. The second step obtains from the ne/sig graph

the state transition graph of an !-regular automaton. Finally, the de�nition of a B�uchi

automaton follows from this state transition graph by de�ning acceptance criteria from

reliability properties of communication in the MSC speci�cation. Di�erent reliability as-

sumptions yield di�erent automata, all with the same underlying transition graph.

The advantages of this approach are:

� Ne/sig graphs have also been used to give an abstract syntax for other message-

passing speci�cation methods such as simple SDL (sSDL) [GHL

+

92] and loop pro-

cesses [LS91]. This versatility is evidence that they represent a natural syntactical

abstraction useful for many di�erent forms of protocol speci�cation.

� B�uchi automata methods have already been shown useful in distributed system spec-

i�cation [VW86b], [VW86a], [AS87], [AS89]. Use may therefore be made of the es-

tablished connections between reliability properties and B�uchi automata [AS89] to

make explicit the reliability of communication in MSC speci�cations.

� By factoring the semantic de�nition into the transition graph de�nition and the

2

acceptance criterion de�nition, we separate the reliability properties of the commu-

nication, which are not explicit in the MSC speci�cation, from the set of global states

of the system, which are determined from the MSC speci�cation.

Interleaving Semantics and Traces. We consider the semantics of any speci�cation

to be the set of traces that the speci�cation allows. A trace is an interleaving of all

observable events of the system, which is consistent with the linear ordering of events

within each process. Thus, we consider events as atomic (i.e. indivisible). It is beyond

the scope of this paper to debate interleaving vs. partial-order semantics, so we merely

note that interleaving semantics is appropriate for many important speci�cation styles,

including TLA [Lam91], and CSP [Hoa85]. We identify the set of system traces speci�ed

by the MSC with the set of accepted traces of the B�uchi automaton we de�ne.

3

Chapter 2

The ne=sig graph

We de�ne general ne/sig graphs. For this section, we only require an intuitive understand-

ing of MSCs, as obtained for example from Figure 1.1. Simple MSCs will be de�ned in the

next section as particular ne/sig graphs. Nodes of the ne/sig graph correspond to MSC

events i.e. heads and tails of signal arrows. There are two kinds of edges: next-event edges

which represent the succession of events occurring in an individual process; and signal

edges, which represent the possible communication paths of a signal from a process to

others. Signal edges are labelled with the type s of the signal, and the nodes at the tail

and head of a signal edge are labelled send(s) (!s) and receive(s) (?s) respectively.

In a general ne/sig graph, communication may be synchronous or asynchronous, chan-

nelled or broadcast, �nitely or in�nitely bu�ered, reliable or unreliable. Processes may be

deterministic or non-deterministic, including parallel constructions or not, terminating or

non-terminating. All these issues belong to the semantics of the speci�cation style. Be-

cause it may be used to describe a mathematical syntax for di�erent speci�cation methods,

a general ne/sig graph is neutral with regard to the meaning of signal edges, the types

of communication, or the control structure of processes. Thus it is an abstract syntax

appropriate for telecommunications speci�cation methods: a syntax because it does not

encode semantic assumptions, and abstract because it abstracts from the details of the

syntax of any speci�c method. We choose ne/sig graphs satisfying particular properties to

represent simple MSCs and MSCs with conditions (de�ned later), and in this use they are

syntactic sugar. However, we derive from these a single ne/sig graph for an entire MSC

speci�cation, which can not in general be represented by a single MSC.

The semantics of MSC speci�cations is given by de�ning B�uchi automata from the

ne/sig graph representing a speci�cation. Although the transition graph is uniquely de-

termined by the ne/sig graph, the set of �nal states is chosen by considering reliability

properties assumed for the communications in a speci�c MSC speci�cation (so the au-

tomaton is under-speci�ed by the raw MSC speci�cation).

The ne/sig graph is mathematically speaking just a graph with labelled nodes and two

4

a b

e

g ih

c

d

f

j

k l m

Figure 2.1: Next-event / signal graph (labels not shown)

di�erent kinds of labelled edges. Figure 2.1 is a general example, in which ne edges are

represented by solid arrows and sig edges by dashed arrows, but the labels are omitted.

The graph structure may be used to represent behaviour such as cyclic process behaviour

(the cycles d; f; d and e; g; e), indeterministic control choices (the branching next event

relation at node e) or broadcast communication (multiple outgoing signal edges at node

h). None of these features are allowed in individual MSCs. However, they may be e�ected

by use of a set of MSCs with conditions.

The set of events with the signal relation alone forms a bipartite graph (sources are

send events, and targets are receive events). Also, if we disallow self-sending, the signal

relation is disjoint from the transitive closure of the next-event relation. Processes may

be identi�ed as components of the next-event relation.

In order to de�ne an automaton corresponding to a particular speci�cation, we need

to introduce start nodes (in our example the nodes a; b and c), and for �nite behaviours

also finish nodes (nodes k; l and m), neither of which correspond to events, and therefore

are not in the �eld of the signal relation. They have the special labels Top and Bottom.

Other nodes which are not event nodes will be introduced to represent MSC conditions.

Signal and Event Types. If a signal edge is assigned label a, we say that the signal

has type a, and it is a restriction on general ne/sig graphs the the label on the source of

the edge is (!; a), abbreviated !a (send a), and the label on the target is (?; a) (!a, receive

a).

5

Mathematical de�nition of ne/sig graphs

Ne/sig graphs contain send and receive events, and also a set of extra `events', to which

start and �nish nodes belong, and also nodes marking conditions in MSCs with conditions.

We �rst introduce some notation. Let f � R � R denote a binary relation over a set

R, and S a set. We de�ne the following restrictions and operators on a function f .

f . S

4

= f(a; b)j(a; b) 2 f ^ b 2 Sg

S / f

4

= f(a; b)j(a; b) 2 f ^ a 2 Sg

domain(f)

4

= fa j (9b 2 R)((a; b) 2 f)g

range(f)

4

= fb j (9a 2 R)((a; b) 2 f)g

�eld(f)

4

= domain(f) [range(f)

We also extend / and . to n-ary relations by restricting to the �rst, respectively last,

elements in an f -tuple in the obvious way. (V;E; type; labels) is a digraph with node labels

i� E � V � V , type : V ! labels, and labels = range(type). (V;E; type; labels) is a digraph

with edge labels i� E � V � V , type : E ! labels, and labels = range(type).

Ne/sig graphs. Let S;C and X denote arbritrary pairwise disjoint sets, the elements of

which we call sending events, receiving events and extra nodes. Furthermore, let ST and

ET denote arbitrary disjoint sets whose elements we call signal and event types. We de�ne

an ne=sig graph as a tuple G

ne=sig

= (S;C;X;ne; sig; ST; stype; ET; etype; Top; Bottom),

where (S [C [X; ne; etype; ET) is a digraph with node labels and (S [C; sig; stype; ST)

is a digraph with edge labels satisfying the following conditions:

1. sig � S � C is a bipartite relation, where S = domain(sig) and C = range(sig)

2. The set ET = (f!; ?g � ST) [fTop; Bottomg contains the event types (we write !t

for (!; t) and ?t for (?; t)).

3. If the type of a signal is t, then the corresponding send and receive events are of type

!t and ?t respectively: (a; b) 2 sig then (9t 2 ST)(stype((a; b)) = t ^ etype(a) =

!t ^ etype(b) =?t);

4. Start nodes (de�ned to be nodes in the set fe 2 X j (ne . feg) = ;g) are of type

Top and �nish nodes (nodes in the set fe 2 X j (feg / ne) = ;g) of type Bottom:

e =2 ran(ne)$ etype(e) = Top and e =2 dom(ne)$ etype(e) = Bottom;

5. Every component of the ne relation graph contains only one start event: (e; e

0

=2

ran(ne) ^ (e; e

0

) 2 ne

�

)! (e = e

0

).

6

Process type. A process is de�ned as a connected component of the ne relation. Since

every component contains only one start node, we could de�ne the set PT of all process

types to consist of all start nodes, i.e. ptype(a) = e i� a 2 range(feg / ne

�

). However,

we shall later wish to identify processes across di�erent cMSCs when we de�ne cMSC

composition, so we specify only that ptype � S [C [X � PT is a functional relation

relating every node of the ne/sig graph to its process type, and the set of process types

PT is disjoint from every other set in sight.

7

Chapter 3

Simple Message Sequence Charts

We �rst de�ne an abstract syntax for simple Message Sequence Charts (sMSCs), which

are simple in the sense that they do not contain conditions. Conditions allow the expres-

sion of in�nite or non-deterministic behaviour alternatives. In contrast, sMSCs allow the

description only of �nite system behaviour.

Graphical representation. An MSC describes the behaviour of two or more commu-

nicating processes. We call vertical lines in the graphical representation instance axes.

Each instance axis yields a total ordering of some communication events and represents

the control
ow of exactly one process

1

. Arrows between instance axes denote the send-

ing and consumption of messages. According to [X92] the tail of an arrow is a message

output symbol and the head is an message input symbol. We identify message output

symbols with sending and message input symbols with consuming events.

sMSC instance axes do not branch, which means that there is no indeterminism in

the process control
ows. Furthermore, the instance axes contain no cycles, consequently

process behaviours are acyclic and �nite. There is only 1:1 communication in sMSCs, so at

any message output symbol there is only one arrow leaving. Self-sending is disallowed

2

,

so an arrow always starts at one process and ends at another process.

Simple Message Sequence Charts. Given an sMSC in graphical form we de�ne a

set of sending events S of which each element corresponds to a message output symbol

and a set of consuming events C of which every element corresponds to a message input

symbol. We call the arrow connecting a message input and a message output symbol

a message symbol. For simple MSCs, the ne/sig graph is so close to the MSC that it

1

We only consider static systems without process generation and termination, therefore we do not

distinguish between process type and process instance.

2

The proposed standard does not include self-sending, except for the timer symbol[X92]. Though the

timer symbol is an arrow with tail and head at the same instance axis, we suppose that its currently

unde�ned semantics will not be equivalent to a self-sending.

8

may be regarded as just syntactic sugar. So we shall identify an sMSC with its ne/sig

graph by identifying elements of S and C with their graphical MSC representation if they

correspond in the above sense. Let ne

0

� (S [C) � (S [C) denote a core next-event

relation and let sig � S �C denote a signal relation such that (x; y) 2 ne

0

i� y is a direct

successor of x on some instance axis, and (v; w) 2 sig i� v and y are connected by a

message symbol.

We de�ne an sMSC as an ne=sig graph

G

ne=sig

= (S;C;X;ne; sig; ST; stype; ET; etype; Top;Bottom)

where

� X = T [B, T \ B = ;, t 2 T) etype(t) = Top, and b 2 B) etype(b) = Bottom:

elements of T are called top nodes and elements of B bottom nodes;

� there is an injective functional relation init � T � (S [C) with (t; a) 2 init i�

(ne

0

. fag) = ;: we call init an initial completion of ne

0

;

� there is an injective functional relation final � (S [C) � B with (a; b) 2 final i�

(fag / ne

0

) = ;: �nal is a �nal completion of ne

0

;

� ne = ne

0

[init[�nal (the next-event relation ne is obtained from the core next-event

relation and its inital and �nal completions);

� (8a 2 E)(j dom(fag/ ne) j= 1 (there is no branching in the ne relation, we use E as

previously de�ned to denote the set of all events),

� ne

+

\ id

E

= ; (there are no cycles in the ne relation),

� (8a 2 S)(j range(fag / sig) j= 1) (for every sending there is exactly one receiving

event in the signal relation),

� (8(a; b) 2 sig)(ptype(a) 6= ptype(b)) (there is no self-sending),

� (8e 2 T)(ran(feg / ne

�

) = ran(feg / ne

�

)) (all elements in some component are

reachable from the start node), and

� (8x 2 ST)(j range(field(dom(stype . fxg))) /ptype j� 2) (for any signal type, there

is a unique sender and a unique receiver process).

Figure 1.1 shows a simple Message Sequence Chart using the usual notation, and its

corresponding ne=sig graph according to our de�nition.

9

a

a

Top Top

?a!a

!a ?a

Bottom Bottom

a

Top Top

!a ?a

!a ?a

Bottom Bottom

a

Figure 3.1: A cross-over MSC example, expressed as ne/sig graphs

A Cross-Over Example. The proposed MSC standard allows crossing of signals to

occur[X92]. The two ne/sig graphs of Figure 3.1 derived from two simple MSCs represent

di�erent system behaviours. In both cases an identical type of signal is transmitted twice.

The second case di�ers from the �rst in that a `cross-over' of the messages is speci�ed. The

observable behaviour of each individual process is identical (one sends two a signals, the

other receives two a signals), hence code for implementing either process will be the same

in both cases. However, the set of traces (interleaved observable events) of the �rst MSC is

f<!a; !a; ?a; ?a >;<!a; ?a; !a; ?a >g, and that of the second is is f<!a; !a; ?a; ?a >g, hence

their meanings di�er. A system exhibiting behaviour <!a; ?a; !a; ?a > satis�es the �rst

speci�cation but not the second. However, a system exhibiting behaviour f<!a; !a; ?a; ?a >

g and no other may satisfy either speci�cation. Since process code is the same, the

di�erent meaning must be accounted for by di�ering properties of the environment. Thus

properties of the environment may be in
uenced by MSCs, even though the environment

is not explicitly represented. (Even if the environment is represented as a process axis, the

example can be modi�ed to produce a similar result.) Since this is allowed in the MSC

speci�cation style, we don't judge whether this is a bug or a feature. However, it raises

for us also the question of whether MSCs specify merely observable behaviours.

10

Chapter 4

Message Sequence Charts with

conditions

We now extend sMSCs to MSCs with conditions (cMSCs). We shall also consider MSC

speci�cations for which we de�ne an operation, unfolding, which yields the (single) ne/sig

graph for the MSC speci�cation. Conditions cover one or more MSC instance axes in

between two message symbols. They allow the de�nition of iterations, cycles and non-

determinism in control
ow, as well as the speci�cation of systems by sets of MSCs.

The ne/sig graph with conditions may be regarded as syntactic sugar for cMSCs, but

composition and unfolding lead to ne/sig graphs that do not correspond to individual

cMSCs. In fact, we obtain one ne/sig graph per speci�cation, and obtain the transition

graph for an automaton from this single ne/sig graph.

A MSC with conditions (cMSC) is similar to an sMSC, but now various subsets of

process instances may be interrupted, started or terminated by conditions. Identically

labelled conditions in di�erent MSCs may be `glued together' (composed) to describe the

behaviour of a system.

As before, we identify a cMSC with an ne/sig graph of a certain form, and then

complete the ne/sig graph. This ne=sig graph has condition nodes (in addition to event

nodes and start/�nish nodes) which are introduced wherever a condition covers an instance

axis in between two subsequent communication events. The ne relation is now de�ned not

only between event nodes but also on condition nodes. The sig relation may not `cut

through' pairs of condition nodes. To group multiple condition nodes together to form a

single condition we employ a labelling relation assigning a label to some set of condition

nodes. We will identify conditions with these condition labels. See Figure 4.1.

S and C are as for sMSCs. We introduce the set I of condition nodes, such that

S, C and I are pairwise disjoint. Condition nodes intuitively correspond to particular

segments of instance axes in between directly connected message symbols. Let ne

0

�

((S [C [I)� (S [C)) [((S [C)� (S [C [I)) denote a core next-event relation such

11

b
a

c
d

B

C

A

D

a

b

C

A A A

?a!a

!b ?b

B B

C

?c !c

!d ?d

DDD

Figure 4.1: MSC with conditions and its corresponding ne/sig graph

that (x; y) 2 ne

0

i� y is a direct successor of x on some instance axis, and sig is de�ned

as for sMSCs.

De�nitions. Let S;C; ne

0

and sig be as for sMSCs. A cMSC is a labelled digraph

M = (S;C;X;ne; sig; ST; stype; ET; etype; Top; Bottom;CL; cond)

where

� (S,C,X,ne,sig,ST,stype,ET,etype,Top,Bottom) is an ne=sig graph,

� X = T [B [I with T;B and I pairwise disjoint: we call elements of T top nodes,

elements of B bottom nodes, satisfying the condition as for sMSCs, and elements of

I are condition nodes;

� there is an injective functional relation init � T � (S [C [I), and an injective

functional relation final � (S [C [I)�B as for sMSCs, and all constraints stated

for sMSCs are satis�ed;

� CL is pairwise disjoint from any other set de�ned, and cond � I�CL is a functional

relation: elements of CL are called condition labels and cond the condition labelling;

� (8l 2 CL)(j domain(cond. l) j=j range(domain(cond. l))/ptype j) (every condition

node belonging to a given condition belongs to a di�erent process).

12

We de�ne a condition to be a set C such that for some q 2 CL, C = fc 2 I j cond(c) = qg).

The set of all conditions of a cMSC M is conditions(M).

We de�ne a MSC speci�cation to be a set of cMSCs, speci�cally M = fM

1

; : : : ;M

n

g

where each M

i

is a cMSC. Evidently, MSC speci�cations are useful where condition labels

of the various M

i

overlap, and process instances in di�erent MSCs in the set are identi�ed.

It is important to restrict the usage of conditions within some speci�cation M in the

following way: a condition label c

1

of some cMSC M

1

may only be identical to some

condition label c

2

of some cMSC M

2

if they cover the same set of instance axes. Let C

i

be the condition corresponding to label c

i

:

(C

1

/ cond) = (C

2

/ cond)) (C

1

/ ptype

1

) = (C

2

/ ptype

2

)

The set of all conditions of an MSC speci�cation M is conditions(M).

Types of conditions.

� A condition c of some cMSC M

j

is global with respect to some MSC speci�cation

M i� the set of all process types of M is equal to the set of process types of the

condition nodes of c:

[

i=1:::n

PT

i

= (c / ptype)

� A condition c of some MSCM is initial i� all its predecessor nodes in the ne relation

are top nodes:

(domain(ne . c)) / etype = fTopg

� A condition c of some MSC M is �nal i� all its successor nodes in the ne relation

are bottom nodes:

(range(c / ne)) / etype = fBottomg

Continuations. Let M be a MSC speci�cation, M

1

;M

2

2 M, C

1

a condition in M

1

and C

2

a condition in M

2

, with cond(x) = c

i

for every x 2 C

i

. C

2

is a continuation of C

1

(cont(C

1

; C

2

)) i�

� c

1

= c

2

(the labels are identical)

� global(C

1

) ^ global(C

2

) (both conditions are global)

� (8x 2 C

1

)(x 2 range(�nal

1

)) ^ (8x 2 C

2

)(x 2 range(init

1

)) (C

1

is a �nal condition

and C

2

is an initial condition)

We shall restrict ourselves here to composition of MSCs via global initial or �nal conditions,

in order to simplify the algebraic treatment of MSC speci�cations for this paper.

13

Composition. The composition of cMSCs is the `gluing together' of cMSCs at common

conditions (i.e. where one is a continuation of the other). During this process, condition

nodes are removed. We also de�ne the composition graph of an MSC speci�cation.

Let M be an MSC speci�cation, M

1

;M

2

2 M, and suppose the event sets of both

cMSCs are disjoint (i.e. S

1

\ S

2

= ;, C

1

\ C

2

= ;). The composition of M

1

and M

2

is the cMSC M

0

= (S

0

; C

0

; X

0

; ne

0

; sig

0

; ST

0

; stype

0

; ET

0

; etype

0

; Top; Bottom;CL

0

; cond

0

)

(M

0

4

= M

1

�M

2

) i�

� 9C 2 conditions(M

1

) 9D 2 conditions(M

2

) cont(C;D) (there is a condition in M

2

continuing a condition in M

1

),

� S

0

= S

1

[S

2

, C

0

= C

1

[C

2

(the event sets are uni�ed),

� X

0

= I

1

[T

1

[B

2

[I

2

(top nodes of M

2

and bottom nodes of M

1

are eliminated at

the conditions where the cMSCs are composed),

� ne

0

=

(ne

1

� (ne

1

. domain(cond . fCg)� (ne

1

. B

1

))

[(ne

2

� ((domain(cond

2

. fDg)) / ne

2

)� (T

2

/ ne

2

)))

[f(a; b) j ptype(a) = ptype(b) ^ a 2 domain(ne

1

. (domain(cond

1

. fCg)))

^ b 2 range((domain(cond

2

. fDg)) . ne

2

)g;

(the new ne relation is obtained as the uni�cation of the old ne relations minus those

pairs which have the connecting condition nodes in their range or domain and minus

those pairs which connect these condition nodes the top and bottom nodes; we then

add new ne edges to connect M

1

and M

2

)

� sig

0

= sig

1

[sig

2

, ST

0

= ST

1

[ST

2

, stype

0

= stype

1

[stype

2

,

� ET

0

= (f!; ?g � (ST

1

[ST

2

))[Top [Bottom, etype

0

= etype

1

[etype

2

,

� CL

0

= (CL

1

� C) [(CL

2

� D), and cond

0

= (cond

1

� (cond

1

. fCg)) [(cond

2

�

(cond

2

. fDg)).

LetM be an MSC speci�cation. We de�ne the composition relation comp �M�M such

that comp

4

= f(M

i

;M

j

) j M

i

;M

j

2 M ^ M

i

�M

j

is de�nedg. From this we derive the

composition graph C = (M; comp) (C is a digraph whose nodes are individual cMSCs, and

whose edges lead from a cMSC to its continuation).

14

Unfolding of MSC Speci�cations. We need an ne=sig graph obtained by the com-

position of all composable cMSCs contained in a speci�cation. The composition of cMSCs

according to a composition graph yields a single graph, paths through which correspond to

system traces. Unfortunately, in�nite traces could only be obtained in this manner from

cMSCs (which specify a �nite number of signals each) by in�nite composition. This can

only occur from an MSC speci�cation when there is a loop in the composition graph. We

therefore need a �nite representation of the in�nite composition. We de�ne the unfolding

operation on an MSC speci�cation which composes a cMSC with all possible successors,

intuitively by taking the composition graph and `plugging in' the actual cMSC (without its

initial and terminal condition nodes) in the appropriate place. The result of this operation

is a general ne=sig graph with branching and cycles, and provides us with a single, �nite,

ne/sig graph structure corresponding to the speci�cation.

Let M be a speci�cation and let C denote the corresponding composition graph. We

de�ne the ne=sig graph N

M

= (S;C;X;ne; sig; ST; stype; Top; Bottom) as the unfolding

of M i�

� S =

S

i=1;:::;n

S

i

, C =

S

i=1;:::;n

C

i

, X =

S

i=1;:::;n

X

i

,

� ne =

(

[

fne

i

[ne

j

j (M

i

;M

j

) 2 compg)

� (

[

i=1;:::;n

ne

i

. (domain(cond

i

. CL

i

)))

� (

[

i=1;:::;n

(domain(cond

i

. CL

i

)) / ne

i

)

� (

[

i=1;:::;n

fT

i

jM

i

2 range(comp)g / ne

i

)

� (

[

i=1;:::;n

ne

i

. fB

i

jM

i

2 domain(comp)g)

[f(a; b) j ptype(a) = ptype(b)

^ (9C 2 conditions(M

i

); D 2 conditions(M

j

)) cont(C;D)

^ (9c; d)(c 2 (domain(cond

i

. fCg))^ (a; c) 2 ne

i

^ d 2 (domain(cond

j

. fDg))^ (d; b) 2 ne

j

)g;

(The ne relation is obtained by a uni�cation of all the component ne relations,

minus all condition nodes, minus all ne pairs which contain top and bottom nodes

over which a composition is performed, plus all those event pairs which need to be

connected as a result of the composition of two cMSCs.)

� sig =

S

i=1;:::;n

sig

i

, ST =

S

i=1;:::;n

ST

i

, stype =

S

i=1;:::;n

stype

i

.

15

Chapter 5

Global State Transition Graph

We de�ne the notions of a global system state, of enabling a set of events in a global system

state, and �nally the global state transition graph.

Enabling. A potential system state (pss) G � ne [sig is any subset of the union of the

system's ne and sig edges. It is useful to de�ne state transitions for pss's. An (actual)

global system state (gss) will later be de�ned as a pss reached by taking the transitive

closure of the transition relation from the start state (the set of all start nodes of the

processes). De�nition of a gss therefore waits upon de�nition of the transition relation.

Let V � S [C denote an set of events and let G denote a potential system state. We

call V enabled in G i� for every event in V one incoming ne edge is in G, and for every

receive event in V the corresponding sig edge is in G.

enabled(V;G)

4

= range((ne . V) \G) = V ^ (sig . V) � G

enableset(G)

4

= fV j enabled(V;G)g

Figure 5.1 shows an ne=sig graph with labels not shown. Let G

1

= f(c; e); (c; f)g

and G

2

= f(a; e); (c; e); (c; f)g denote potential system states. Then enabled(ffg; G

1

) and

enabled(fe; fg; G

2

). Note that in state G

2

two events are enabled simultaneously, which

indicates an indeterministic behaviour alternative.

We now de�ne how a system transits between di�erent global system states in relation

to a set of enabled events.

Construction of a successor state. Assume that a system is in an actual state G.

The following operations need to be performed in order to obtain the successor state G

0

.

� Select the event a which is to be executed next from enableset(G) (i.e. fag 2

enableset(G)),

� remove all sig edges pointing to a from G,

16

g

a

b c

e f

h

g

Figure 5.1: An ne=sig graph (labels not shown)

� remove all ne edges pointing to a from G,

� if a has a directly preceeding event b which has multiple outgoing ne edges, remove

all edges from G which have source b,

� add all ne and sig edges which have source a to G.

Formally, we de�ne succ(G;G

0

) where G;G

0

are pss's i�

G

0

= ((G � (sig . fag)) � domain(ne . fag) . ne) [(fag / (ne [sig))

The Transition relation. We de�ne a transition relation on a pss G, an event a such

that fag 2 enableset(G) (a is enabled in G), and a successor stateG

0

such that succ(G;G

0

).

Let N

M

denote an unfolding. The global state transition relation is T

M

� (ne [sig) �

(S [C [X)� (ne [sig) such that

T

M

4

= f(G; a;G

0

) j enabled(G; fag;G

0

) ^ succ(G;G

0

)g

Global States and the Transition Graph. We now distinguish system states that

actually can occur in a run of the system. A system starts in its start state, and transits

according to the transition relation, so every actual system state (called global system state

below) is in the transitive closure of the transition relation starting from the start state.

Finally, we restrict the transition relation to global system states to obtain the transition

graph of the system.

Formally, let M be an MSC speci�cation, N

M

the corresponding unfolding. Let q

0

=

f(a; b) 2 ne j (fag / ne) = ;g (the set of start states). We de�ne G to be a global system

state (gss) i� G 2 Q, where Q = fq

0

g / T

�

M

, where

�

is the transitive closure operator Q

17

is the set of all gss's). Let T

M

= Q / T

M

(the transition relation restricted to gss's). The

global state transition graph corresponding to N

M

is GST G

M

4

= (Q; q

0

; T

M

). The global

state transition graph is almost an automaton, lacking only a de�nition of end states, to

which we now turn.

18

Chapter 6

Global State Automata, Safety

and Liveness

De�nition of global state automaton. Let M denote a MSC speci�cation and

GST G

M

the corresponding global state transition graph. We can de�ne B�uchi automata

which transit between global system states, by adding to GST G

M

a de�nition of a set of �-

nal states F . A global state automaton for GST G

M

= (Q; q

0

; T

M

) is A

M

4

= (Q; q

0

; T

M

; F),

where F � Q is a set of �nal states. Acceptance is B�uchi acceptance [Tho90], namely an

in�nite word is accepted i� the automata cycles through some state in F in�nitely often

on the word (the alphabet is the set of events, e.g. ?a; !b, and a word is thus a possibly

in�nite sequence of events, i.e. a possible trace).

Assume that the global state transition graph with 3 global states in Figure 6.1 is

derived from some MSC speci�cation, and q

0

= S1. The set of in�nite paths through the

graph is represented by the !-regular expression

(!a(!b?b)

!

) + (!a(!b?b)

�

?a)

!

+ (!a(!b?b)

�

?a)

�

:(!a(!b?b)

!

):

Selecting F = fS2; S3g as end-states means that traces of the form !a(!b?b)

!

would be

accepted. Traces in this class do not satisfy the liveness requirement that a sent message

will eventually be received (the counter example here is !a in the �rst and third terms in

the sum). However, selecting F = fS1; S2g ensures that only the fair traces of the form

(!a(!b?b)

�

?a)

!

are accepted. Thus selection of a set of end states depends fundamentally

on the liveness and safety characteristics assumed for a particular MSC speci�cation.

In the following, let F be a set of end-states, P

i

denote the process with process type i.

We brie
y discuss relations between some safety and liveness properties and the de�nition

of the end state set F , without formalism. We wish here only to establish the point that

explicit reliability properties are crucial to de�ning the semantics of an MSC speci�cation

completely.

19

?b

S1

?a

!a

S2 S3

!b

Figure 6.1: Global state transition graph

d

a

b

c

!a ?a

!b ?b

?c !c

!d ?d

Figure 6.2: Strong and weaker liveness examples

20

a

b

c

!a ?a

?b!b

?c !c

Figure 6.3: Strong liveness violated by branching

A strong liveness property for loop processes. Consider a system whose unfolded

ne/sig graph contains precisely one cycle per process, and assume no branching. Then the

cycles are terminal, i.e. there are no outgoing edges from the cycles (which would violate

branching). Then the processes are loop processes as de�ned in [LS91]. Let a

i

2 P

i

be

some node in P

i

's cycle, for i � n, chosen such that G = fa

i

j i � ng 2 Q is a gss (we

omit the easy proof that there is some such G). Let F = fGg. A trace is accepted by the

automaton with �nal-state set F if and only if all processes iterate through their cycles

in�nitely often. This ensures strong liveness for the processes, as in the left-hand example

in Figure 6.2, i.e. events preceding the cycle, and all events in the cycle, occur.

The example in Figure 6.3 shows that this condition does not ensure the strong liveness

condition that all events eventually happen for examples in which the cycle is non-terminal

(this can happen only if there is branching in the ne/sig graph). In this example, the

language of receive-events can be described by the expression (?a?b)

!

[(?a?b)

�

?a?b?c which

denotes a set of �nite and in�nite regular sequences. In the in�nite trace, the eventual

reception of b is actually ensured by the strong liveness requirement that a is received

in�nitely often. But message c will then never be either sent or received. However, this

example does satisfy a weaker `strong' liveness property that all signals sent will eventually

be received.

A weaker liveness condition. A weaker liveness property is to require: (weak liveness)

for all processes which ever send there is a state in the set of send-states which also is

an end-state. Whereas the previous `strong' liveness property expresses a general claim

21

about the transmission medium, equivalent to requiring for loop processes that in�nite

sending leads to in�nite reception, the `weak' liveness property only addresses the local

behaviour of loop processes. For example, the system of loop processes described by the

right hand part of Figure 6.2 satis�es the weak liveness condition, but not the strong

liveness condition that all signals sent are received. In�nitely many signals are sent, but

only one of the signals is ever received.

A �nal-states de�nition for loop processes which encodes this weaker liveness property

is: If P

i

has a cycle,let b

i

= fa

i

g, where a

i

2 P

i

is any node in P

i

's cycle, for i � n. If P

i

has no cycle, then b

i

= ;. G =

S

fb

i

j i � ng 2 Q (we again omit the easy proof that G is

a gss), and let F = fGg.

22

Chapter 7

Topics for Further Research

Characterisation of �nite bounded bu�ers Consider a �nite bounded bu�er capac-

ity of the communication channel between two processes, i.e the channel is restricted by

allowing at maximum n messages to be sent and not yet received, where n 2 N . This

situation requires the following n-safety property S

n

: reception of the k-th message occurs

before the k + n-th message has been sent. Let i range over the indices of system states,

let a range over messages of arbitrary type and let #

i

(m) denote the number of messages

of type m received or sent in state i. S

n

can then be formulated as follows:

S

n

: (8a; i)(#

i

(!a) � #

i

(?a) + n)

A global state automaton re
ecting this condition needs the ability to count sending and

reception of events modulo a �xed integer n. This can be implemented by a �nite-state-

automaton, but whose states are not necessarily precisely the set of gss's, since some gss's

need to be duplicated n times to encode the state of the bu�er. It is a topic of ongoing

research to supplement our automaton derivation in this way.

Proper delivery The proper delivery of sent messages along an in�nite computation

is described by the following property: at any point of a computation the number of

messages sent of some type is greater or equal to the number of messages of that type

received. Additionally we might require that for any point in the execution sequence there

is a later point at which all previously sent messages are consumed. Formally,

L

pd

: (8a; i9j � i)((#

i

(!a) � #

i

(?a))^ (#

j

(?a) = #

i

(!a))):

It is easy to show that such a condition cannot be checked by a �nite state !- automaton,

because it requires counting up to arbitrary large numbers. We need at least a counting

automaton which has one counter for sendings and receptions of messages of each type.

It is a topic of further research whether our method may be extended to accomodate

counting !-regular automata.

23

Chapter 8

Concluding remarks

We have provided a semantics of MSCs which proceeds by de�ning a single ne/sig graph

for an MSC speci�cation, and de�ning the transition graph of an automaton from this

ne/sig graph. An automaton is de�ned by providing in addition a set of �nal states, which

correlates the set of accepted traces of the automaton with reliability properties of the

communication acts in the MSC speci�cation. Such properties are not normally explicit

in MSC speci�cations, and we conclude it may be wise to include them explicitly, to enable

a precise interpretation to be assigned to each MSC speci�cation.

We have discussed the relation between properties of the communication in an MSC

speci�cation, the underlying automaton model, selection of end-states, assumptions about

the communication mechanism (e.g. �nite or in�nite bu�ers) and other formal description

techniques (regular expressions, and there is a well-known connection between temporal

logic formulas and B�uchi automata). Clarifying di�erent assumptions about the inherent

properties of MSCs may therefore be approached by formal description techniques such as

temporal logic. The connections between reliability properties of systems and temporal

logic is shown in [MP90].

The connections between various end-state de�nitions and reliability properties of the

communications in an MSC speci�cation are the subject of continuing research.

Acknowledgements

Development of the ne/sig graph concept bene�tted from discussions with Robert Nahm.

The work was funded by the Swiss PTT under contract 233 with the University of Berne,

project leader Prof. Dr. D. Hogrefe.

24

Bibliography

[AS87] B. Alpern and F.B. Schneider. Recognizing safety and liveness. Distributed

Computing, 2:117{126, 1987.

[AS89] B. Alpern and F.B. Schneider. Verifying temporal properties without temporal

logic. ACM Transactions on Programming Languages, 11(1):147{167, jan 1989.

[GHL

+

92] J. Grabowski, D. Hogrefe, P. Ladkin, S. Leue, and R. Nahm. Conformance

testing - a tool for the generation of test cases. Project Report, project contract

no. 233, funded by Swiss PTT, University of Berne, may 1992.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood

Cli�s, 1985.

[Lam91] L. Lamport. The temporal logic of actions. Technical Report 79, Digital

Equipment Corporation, dec 1991.

[LS91] P.B. Ladkin and B.B. Simons. Compile time analysis of communicating loop

processes. Technical report, IBM Almaden RJ 8488, nov 1991.

[MP90] Z. Manna and A. Pnueli. A hierarchy of temporal properties. In Proceedings

of the 9th Annual ACM Symposium on Principles of Distributed Computing,

pages 377{408. ACM Press, aug 1990.

[Tho90] W. Thomas. Automata on in�nite objects. In Handbook of Theoretical Com-

puter Science, chapter 4, pages 132{191. Elsevier Science Publisher, 1990.

[VW86a] M. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-

gram veri�cation. In IEEE Symp. on Logic in Computer Science, pages 332{

344, 1986.

[VW86b] M. Vardi and P. Wolper. Automata theoretic techniques for modal logics of

programs. Journal of Comput. Systems. Sci., 32:183{221, 1986.

[X92] CCITT SG X. Draft recommendation Z.120: Message sequence chart. Sub-

mitted to CCITT, mar 1992.

25

