
Fast Segmentation of Range Images into

Planar Regions by Scan Line Grouping

X. Y. Jiang, H. Bunke

Institute of Informatics and Applied Mathematics

University of Berne, Switzerland

Abstract

In this paper we present a novel technique for rapidly partitioning surfaces

in range images into planar patches. Essential for our segmentation method

is the observation that, in a scan line, the points belonging to a planar surface

form a straight line segment. On the other hand, all points on a straight line

segment surely belong to the same planar surface. Based on this observation,

we �rst divide each scan line into straight line segments and subsequently

consider only the set of line segments of all scan lines as segmentation prim-

itives. We have developed a simple link-based data structure to e�ciently

represent line segments and their neighborhood relationship. The principle of

our segmentation method is region growing. Three neighboring line segments

satisfying an optimality criterion are selected as a seed region, and then a

growing is carried out around the seed region. We use a noise variance esti-

mation to automatically set some thresholds so that the algorithm can adapt

to the noise conditions of di�erent range images. The proposed algorithm

has been tested on real range images acquired by two di�erent range sensors.

Experimental results show that the proposed algorithm is fast and robust.

CR Categories and Subject Descriptors: I.4.6 [Image Processing]: Segmenta-

tion; I.4.8 [Image Processing]: Scene Analysis.

General Terms: Algorithms.

Additional Key Words: Range data, partitioning, region growing, planar sur-

faces.

1

1 Introduction

Recently, three-dimensional vision techniques based on range data have been receiv-

ing much attention in computer vision and robotics. Particularly, in such areas as

industrial and navigational robotics where a robot must be capable of handling 3-D

environment, range information plays a vital role. The development of advanced

computer vision systems involves improvements in both data acquisition technology

and algorithmic approaches. One advance in data acquisition is the development of

direct and e�ective indirect range imaging techniques [2, 13, 18]. Raw range images

in their full dimensionality, however, are just a list of numbers, and can not directly

support high-level scene interpretation processes without some type of perceptional

organization. One way of perceptional organization is the segmentation of range

images into surface patches.

Roughly speaking, the segmentation algorithms known in the literature can be

classi�ed into general and dedicated approaches. In a general approach, only general

knowledge about surfaces is used to compute a complete segmentation and recon-

struction. The algorithm proposed by Besl [3], for instance, assumes only that the

range data may be interpreted as noisy samples of a piecewise-smooth surface. On

the contrary, dedicated approaches search for particular structures in range data,

such as planes, cylinders, cones or solids of revolution. Examples of this class of

approaches are [4, 16, 26, 30].

In this work we consider the segmentation of range images into planar regions.

Our proposed approach belongs to the second category, i.e., it is a dedicated ap-

proach applicable only for planar surfaces. However, for a particular problem, a

dedicated approach can be more useful than a general method, mainly for reasons

of e�ciency. Moreover, the partition into planar regions is perhaps only a possible

preprocessing step in a high-level region description approach. By deriving higher

order surfaces from the �rst-order planar regions, the �nal result is a hierarchical

scheme capable of representing regions of arbitrary complexity.

1.1 Segmentation of range images into planar regions

A few algorithms are known in the literature for segmenting range images into planar

regions. Yang and Kak [29], for instance, have taken a region growing approach.

As their goal was to determine the identity, position and orientation of the topmost

object in a pile, they started with an 8� 8 topmost region. If this is planar, then it

is used as a seed to grow to the boundary of the planar region.

In [20], the split-and-merge paradigm by Horowitz and Pavlidis [12] has been

extended from greylevel to range imagery. The approach in [28] is an enhanced

version of the split-and-merge technique. It di�ers from the approach in [20] in a

number of ways. In particular, the authors have incorporated a more sophisticated

technique for surface parametrization, the use of range continuity checks during the

split-and-merge phases, and the option of multiple merge phases.

2

Traditionally, quadtrees are used in the split-and-merge algorithms as the geo-

metric data structure which serves both for the tessellation of the image domain and

the neighborhood referencing. Examples are the methods described in [12, 20, 28].

As a drawback, the quadtree structure often results in some false region bound-

aries. In [25], the authors used another data structure of a more geometric nature,

namely the Delaunay triangulation de�ned by a set of triangles tessellating the im-

age domain. This data structure, combined with an adaptive surface approximation

technique, gives region edges which adapt better to the surface boundaries in the

range image. Experimental results were given for three real 256�256 range images,

using a VAX 8555 computer. The segmentation takes 79, 104, and 125 seconds,

respectively.

Clustering represents another class of algorithms for segmenting range images

into planar regions. In any clustering algorithm, two important aspects have to

be considered, namely the feature space in which the clustering takes place, and a

strategy for partitioning the feature space into clusters without a priori information

about the actual number of clusters. In [14], the authors de�ne the feature vector of a

pixel (x; y) to be the parameters of the facet model z = �

0

+�

1

x+�

2

y+�

3

x

2

+�

4

xy+

�

5

y

2

in a small local (2L+ 1)� (2L + 1) neighborhood centered on (x; y). (For the

planar facet model �

3

= �

4

= �

5

= 0 is used.) The parameters �

i

can be computed

by least square estimation. Least square, however, is very sensitive to the presence of

outliers, e.g. on a discontinuity. To overcome this problem, the robust M-estimators

have been used to compute the feature vector. A clustering algorithm based on

the minimum volume ellipsoid robust estimator has been proposed which iteratively

partitions the feature space into clusters. As clustering in feature space does not take

into account the spatial information, the clusters found must be mapped back into

the image and analyzed to get the �nal segmentation result in the spatial domain.

For a synthetic 128 � 128 cube image, a segmentation time of about 2 minutes has

been reported on a HP9000 computer.

Among the numerous clustering algorithms, the adaptive distance dynamic clus-

ters algorithm (ADDC) [6] is of particular interest to the problem of partitioning

range images into planar regions. ADDC is a \crisp" (hard) clustering algorithm

specially designed to search for clusters that lie in subspaces (such as lines or (hy-

per)planes) of the original feature space. If we de�ne the feature space to be the

range image itself, then the clusters found by ADDC correspond to planar regions.

In [15], ADDC has been extended to the fuzzy case (FADDC), and a compatible

cluster merging technique has been proposed to �nd the optimumnumber of clusters.

Unfortunately, this special clustering algorithm is computationally very expensive.

It has been tested on two 200�200 range images from ERIM. To reduce the compu-

tation time, the authors have thresholded out the background in both images before

the algorithm was applied. Thus, the amount of data e�ectively processed was much

smaller than the original image data. Even with this reduced data dimension, a seg-

mentation time of 70 (ADDC) and 600 (FADDC) seconds has been reported on

a Sun Sparcstation. Despite the computational expense, the (F)ADDC algorithm

3

has some advantages over other clustering algorithms, such as that in [14]. As the

clustering in (F)ADDC proceeds in the original image space, there is no need for the

computation of feature vectors from the range image. Since no feature vectors need

to be extracted, discontinuity poses no problem, and the resulting segmentation is

very sharp. Finally, the mapping from clusters back into the image domain and the

subsequent analysis is no more necessary.

The approach in [17] is quite di�erent from other techniques known in the litera-

ture. It is based on the observation that the �rst-order polynomials which determine

the planar surfaces in a range image satisfy the Laplace equation. The segmentation

is solved by a relaxation process. The great advantage of this approach is surely its

parallel nature. On a conventional computer, however, it runs quite slowly. A worst

case of 10 minutes CPU time for 256� 256 range images on a �VAX 3400 has been

reported.

1.2 Scan line grouping technique

In this work we take the region growing paradigm. Our segmentation algorithm

di�ers from other region growing approaches in a fundamental point. Instead of

pixels we use straight line segments as growing primitives. This greatly reduces

the data dimension to be handled in the growing process. Together with a simple

optimalitymeasure for seed region extraction and a simple test for growing decisions,

the use of line segments makes our algorithm very fast.

The idea of scan line grouping is not new. In fact, Pavlidis [22] has proposed

a similar approach and applied it to the segmentation of images from a scanning

electron microscope. In Pavlidis' algorithm, each scan line z(x; y

0

) is divided into

J straight line segments whose endpoints are adjusted in order to minimize the

error norm of approximation of z(x; y

0

) by a set of linear functions. This approach,

however, requires a good initial guess of the break points. It is also necessary

to estimate the number of line segments J , at least for a few of the scan lines.

In [22], an estimate of J was obtained through experimental tests on a few scan

lines. A subsequent grouping phase merges line segments into larger regions. Two

neighboring line segments are merged if the absolute di�erence between their slopes

is smaller than a threshold.

Our segmentation method is an enhanced version of Pavlidis' algorithm. It di�ers

from his method in a number of ways. First, we use a much simpler method for

partitioning the scan lines into straight line segments. Secondly, we extract optimal

seed regions for the growing process. Moreover, the similarity criterion for two line

segments used in [22] is not feasible and su�cient for our application. Therefore, we

will give a modi�ed similarity measure. Finally, we introduce a postprocessing step

to get clean edges between regions.

This paper is organized as follows. The next section gives an overview of the

algorithm. Then all steps of the algorithm are described in detail in subsequent

sections. In section 7 we report some experimental results. And �nally, a discussion

concludes the paper.

4

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

5 5 5 5 5

4 4 4 4 4

2 2 2 2 2

1 1 1 1 1

-

(a)

r r r r

r r r r

r r

r r r r

r r r r

(b)

1 1 1 1 1 3 3 3 3 3

1 1 1 1 1 3 3 3 3 3

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 2 2 2 2 2

1 1 1 1 1 2 2 2 2 2

(c)

3 3 3 3 3 1 1 1 1 1

3 3 3 3 3 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 1 1 1 1 1

2 2 2 2 2 1 1 1 1 1

(d)

Figure 1: A pathological case: (a) Range image. (b) The extracted line segments.

(c) One possible segmentation. (d) Another possible segmentation.

2 Overview of the algorithm

As input to our algorithm we assume that a dense range image z(x; y) is available.

That is, the points are sampled on a regular grid. For the sake of description clarity

and without loss of generality, we assume furthermore the sampling interval in both

x and y direction to be one. Under these two assumptions, a N � N range image

is given by a discrete function z(x; y); x; y 2 I

N

= f1; 2; : : : ; Ng, which contains N

scan lines z(x; y

0

); y

0

2 I

N

.

2.1 Basic idea

Principally, our algorithm is a region growing process based on the straight line

segments in the scan lines. The feasibility of the use of line segments as segmen-

tation primitives results from the following observation. A planar surface S can be

described by a �rst-order polynomial

z = Ax+By + C

:

(1)

In a scan line z(x; y

0

); y

0

2 I

N

, the points belonging to S are

z = Ax+By

0

+ C = Ax+B

0

(2)

that clearly form a straight line segment in the x� z plane. Di�erent line segments

of S have the same slope A but di�erent intercepts B

0

which are dependent on y

0

.

On the other hand, all points on a straight line segment in the x � z plane surely

belong to the same planar surface. Thus, instead of an individual pixel, we can

treat a complete line segment as an atomtic entity. In the growing process we must

only decide whether a new line segment can be added to the surface patch already

approximated or not.

The assertion that all points on a line segment belong to the same planar surface

is true, expect for some pathological cases. One such case is shown in Fig. 1. The

two possible segmentation results are shown in Fig. 1(c), (d). Neither of them agrees

with our expectation. The reason is that the assertion above is violated at the scan

5

Range image

?

Median �ltering

?

Compute RMSE

?

Partition scan lines into straight line segments

?

Select the best seed region

?

Region Growing

?

Postprocessing

?

List of regions

�

No seed

region

Figure 2: Overview of the segmentation algorithm.

line y

0

= 3 where a line segment goes across two planar surfaces. However, this is

not an inherent problem of our scan line grouping technique but rather a problem

of any segmentation method based solely on function approximation. Pictorial sim-

ilarity (or homegeneity) is not always a reliable criterion for segmenting an image

into regions that correspond to meaningful surfaces of objects. Without additional

knowledge, such as the boundary shape of surfaces, this problem is unavoidable.

In the following discussion we won't consider this problem for two reasons. First,

the occurrence of this kind of pathological cases is extremely rare. Secondly, as one

can not expect always to get a perfect segmentation result, the usual practice is to

let the segmentation method produce an over-segmented image. Using high-level

knowledge, the over-segmentation can then be remedied in a later interpretation

phase by merge operations. In our algorithm, the pathological case in Fig 1 will

result in an over-segmentation. Thus, the segmentation error introduced through

the violation of the fundamental assumption of our scan line grouping technique is

not a serious problem.

2.2 Algorithm description

An overview of our algorithm is given in Fig. 2. Real range images su�er from

sensor noise. Before the actual segmentation takes place, it would be advantageous

6

to reduce the noise level of an image while preserving edge information. The Median

�lter turned out to be a good candidate for this purpose [11]. Thus, we use the

Median �lter on a 3� 3 neighborhood as a standard preprocessing step.

The �rst step of the algorithm is the partition of each scan line into straight line

segments. Through the use of line segments as segmentation primitives, however,

we loose the natural neighborhood relationship of the grid structure. To overcome

this problem we have developed a simple link-based data structure to provide very

e�cient access to the neighborhood of each line segment.

The actual segmentation is a region growing process. A small number of line

segments satisfying an optimality criterion are selected as a seed region, and the

region is expanded around the seed region. For each line segment neighboring the

actual region, which can easily be accessed using the link-based data structure, we

decide whether it can be added to the planar surface approximated so far. This

is done by a very simple test. The growing process is continued until no new line

segment can be found surviving the test.

The algorithm above does not always yield clean edges between regions. We

introduce a postprocessing step to overcome this problem. The �nal result is a list

of �rst-order polynomials of all planar regions, and a label image in which each pixel

contains the number of the region it belongs to. In the algorithm some thresholds

are needed. For all experiments, we use a �xed set of thresholds. The value of each

threshold will be given where it is introduced.

3 Noise estimation for threshold selection

In order for the segmentation algorithm to group pixels based on their underlying

planar surfaces, it needs to know how well the approximating surface functions

should �t the input data. This kind of information should be derived in a data-

driven manner from the input data so that the algorithm can automatically adapt

to the noise conditions of di�erent range images.

If the noise in the image is approximately stationary, we can compute an esti-

mation of the noise variance �

2

img

(that should be applicable at almost all pixels) by

averaging the estimates of the noise variance at each pixel. To compute the noise

variance at each pixel p, we perform a least-square plane �tting z = Ax+By + C

in the 3 � 3 neighborhood of p. If the pixel lies in the interior portion of a planar

surface, the error in the plane �tting will be primarily due to noise. By contrast, if

a pixel is at or near to a step discontinuity where plane �tting is always poor, we

should discard it. Such a pixel is detected by testing whether the di�erence between

the maximal and minimal range values in the neighborhood is greater than a preset

threshold (10 in our experiments). The mean image noise variance can be expressed

as

�

2

img

=

1

jI

0

j

X

p2I

0

�

2

W

3

(p) (3)

7

where I

0

is the set of pixels actually considered, and �

2

W

3

(p) is the root-mean-square-

error (RMSE) of the plane �tting in the 3 � 3 window W

3

around p

�

2

W

3

(p) =

1

9

X

(x;y)2W

3

(z(x; y)� (Ax+By + C))

2

:

(4)

Although the regions themselves are not known at the time the noise variance is

estimated, we get a good approximation of �

2

img

. This allows us to automatically

set some thresholds used in the algorithm.

4 Extraction and representation of line segments

As a preparation step for the segmentation, each scan line z(x; y

0

); y

0

2 I

N

, is divided

into straight line segments. We use the classical splitting algorithm proposed by

Duda and Hart [8]. It splits a curve into two parts at the point most distant from

the chord between the two end-points of the curve whenever this maximal distance

is greater than some preset threshold. The algorithm proceeds recursively until

the curve can not be divided further. In our experiments the threshold is set to

1:0 + 0:5�

img

.

In order to be useful in our algorithm, the original splitting algorithm has been

adapted in two ways. In the context of polygonal approximation of curves, the

distance of a point to the chord between the two endpoints of the curve is the per-

pendicular distance of a point to a straight line. In our case we use the approximation

error, i.e. for two endpoints (x

0

; y

0

) and (x

2

; y

0

), and a point (x

1

; y

0

), the distance

is computed by jz(x

1

; y

0

)� f

02

(x

1

)j where f

02

is the equation of the straight line go-

ing through (x

0

; y

0

) and (x

2

; y

0

). In a polygonal approximation of a curve, a break

point always belongs to two line segments, namely the left and right neighboring line

segments. For the purpose of segmentation, however, the line segments should be

disjoint. So, we must assign each break point to one of the neighboring line segments.

We do this assignment by a simple heuristic. Let (x

0

; y

0

) be the break point. Then

(x

0

�1; y

0

) ((x

0

+1; y

0

)) must be the immediate neighbor of (x

0

; y

0

) on the left (right)

neighboring line segment. If jz(x

0

; y

0

) � z(x

0

� 1; y

0

)j < jz(x

0

; y

0

) � z(x

0

+ 1; y

0

)j,

then we assign the break point to its left and otherwise to its right neigboring line

segment.

It is well known that the simple splitting method of Duda and Hart produces

sometimes super
uous line segments. Pavlidis and Horowitz [21] tried to solve this

problem by introducing a merge step. As stated in [7], however, this algorithm is

computationally much more expensive. For complex curves, it produces sometimes

worse results than the simple splitting method. As the second stage of our segmen-

tation algorithm is based on region growing which is a special kind of merging, the

potential problem with the simple splitting method will automatically be overcome.

Hence, we use the algorithm of Duda and Hart without any merging. Consequently,

8

our scan line partition method is much simpler than that of Pavlidis [22]. However,

this simple method does work well as the experimental results in section 7 show.

We denote a line segment by ((x

1

; x

2

); y

0

) where y

0

is the y-coordinate of the

corresponding scan line and x

1

(x

2

) is the x-coordinate of the leftmost (rightmost)

pixel of the line segment. Each segment is represented by a record containing x

1

, x

2

,

and the equation of the segment z = ax+ b which is determined by the leftmost and

rightmost pixel. The y-coordinate y

0

is saved somewhere else as will be explained

later.

As stated earlier, our segmentation algorithm follows the region growing para-

digm. Because a region growing process always proceeds in the neighborhood of the

region found so far, a simple and e�cient access of the neighborhood relationship

of the segmentation primitives is of crucial importance. In a regular image grid this

is guaranteed in a natural way. The 8-neighborhood of a pixel (x; y), for instance,

is simply the set f(x � 1; y � 1)g � f(x; y)g. Through the use of line segments as

segmentation primitives, however, we loose the natural neighborhood relationship of

the grid structure. In the following we describe a simple link-based data structure

which enables a fast access to the neighborhood of each segment.

All line segments of a scan line are stored in a double-linked list in their natural

order. Furthermore, we use an array of dimension N in which each entry y

0

2 I

N

points to the �rst line segment of the scan line z(x; y

0

). As all line segments of this

scan line have the same y-coordinate y

0

which is in fact the index of the array entry,

we do not need to store this coordinate explicitly.

Two line segments s and s

0

are said to be neighbors if there exist p 2 s and

p

0

2 s

0

such that p and p

0

are neighbors in a 4-neighborhood. Clearly, each line

segment s = ((x

1

; x

2

); y

0

) has exactly one left neighbor (except the �rst segment of

a scan line) and one right neighbor (except the last segment of a scan line). They

are simply the left and right neighbor in the double-linked list. The number of

neighbors in the scan lines z(x; y

0

� 1), however, is not constant. We note that a

segment s

0

= ((x

0

1

; x

0

2

); y

0

� 1) is a neighbor of s if and only if [x

1

; x

2

] \ [x

0

1

; x

0

2

] 6= ;

holds which can be easily tested. Moreover, if s

0

and s

00

on the same scan line are

both neighbors of s, then all line segments between s

0

and s

00

are also neighbors of

s. Thus, all neighbors of s in the scan line z(x; y

0

� 1) build a continuous sequence

in the double-linked list, and we need only to store two pointers to the �rst and last

segment of this sequence. (Naturally, they can be the same.)

In summary, all line segments of a scan line are stored in a double-linked list in

their natural order. Each line segment ((x

1

; x

2

); y

0

) is represented by a record which

contains x

1

, x

2

, the slope a, the intercept b, pointers to the left and right neighbor,

and pointers to the �rst and last neighbor in the scan line z(x; y

0

� 1). An array

is used to record the �rst line segment of each scan line. Using this data structure,

we can easily go through all line segments of a scan line. For each line segment, its

neighboring segments can be found by simply following the pointers.

9

5 Region growing based on line segments

The region growing paradigm may be stated as: make an initial guess and then it-

eratively re�ne the solution. In our algorithm, the initial guess is a small set of line

segments. The iterative re�nement is based on function approximation and region

growing. Once a planar surface has been �tted to the kth group of neighboring line

segments, the (k + 1)th group of segments is obtained by �nding all those neigh-

boring segments that are compatible with the �tted planar surface of the previous

group. When no new line segment can be found, the iteration terminates yielding an

extracted region. The process of seed region �nding and region growing is iterated

until no seed region more can be found.

5.1 Seed region extraction

It is important to choose reliable seed regions from which the growing process begins.

In this work we choose a small number of neighboring line segments as a seed region.

Because working with only two line segments is relatively unreliable, we use three

neighboring line segments on three di�erent scan lines. As very short line segments

are generally not reliable, we de�ne a length threshold (10 pixels in our experiments).

If one of the three line segments is shorter than this threshold, we discard this seed

region candidate. The total number of potential seed region candidates corresponds

to the number of all instances of three neighboring line segments on three neighboring

scan lines surviving the length constraint.

Next we have to decide which one is the \optimal" seed region among all the

candidates. One possible measure of optimality could be based on a least-square

plane �tting for each candidate. Then, the approximation error could be computed,

and the candidate with the smallest error selected as the optimal seed region. In

this way, however, we need to consider all pixels of the three line segments, for all

candidates. It would be thus very time-consuming. Moreover, the advantage of scan

line grouping is lost as we consider now individual pixels which are the primitives

before the grouping process. In the following we formulate an optimality criterion

directly based on line segments.

We recall that, in the scan line z(x; y

0

), the straight line segment due to a planar

surface

z = Ax+By + C (5)

is

z = Ax+By

0

+ C = Ax+B

0:

(6)

In the next scan line z(x; y

0

+ 1), the line segment due to (5) is

z = Ax+B(y

0

+ 1) + C = Ax+B

0

+B = Ax+B

1;

(7)

and in the scan line z(x; y

0

+ 2), the corresponding line segment is

z = Ax+B(y

0

+ 2) + C = Ax+B

1

+B = Ax+B

2:

(8)

10

-

X

6

Z

�

�

�

�

�

� @

@

@

@

@

@

�

�

�

�

�

� @

@

@

@

@

@

�

�

�

�

�

�
@

@

@

@

@

@

?

6

B

?

6

B

?

6

B

?

6

B

Scan line y

0

� 1

Scan line y

0

Scan line y

0

+ 1

Figure 3: Graphical representation of the relationship of three line segments.

Thus, the three line segments have the same slope but di�erent intercept. The

di�erence in the intercept of two neighboring line segments is always B. These two

constraints are graphically shown in Fig. 3.

For each seed region candidate formed by three line segments

s

i

: z = a

i

x+ b

i

; i = 0; 1; 2 (9)

if s

0

, s

1

and s

2

are really due to the same planar surface (5), then

a

0

= a

1

= a

2

= A; b

2

� b

1

= b

1

� b

0

=

b

2

� b

0

2

= B (10)

holds in the ideal case. In reality, this will never be true. So, we need to test how

close this relation is satis�ed by each seed region candidate.

A simple test like

X

i 6=j

(a

i

� a

j

)

2

+

X

i 6=j

(b

�

i

� b

�

j

)

2

(11)

where b

�

0

= b

2

�b

1

, b

�

1

= b

1

�b

0

, and b

�

2

=

b

2

�b

0

2

, is not feasible because the parameters

a

i

and b

�

i

are not appropriate metrics for comparison purpose. The problem is that

the absolute di�erence in space is a nonlinear function of the relative di�erence

of such kind of parameters. For the 2-dimensional case, for instance, the angle �

between two lines of slopes m

1

and m

2

is a nonlinear function of their slopes:

� = tan

�1

(m

1

)� tan

�1

(m

2

)

:

(12)

In this work we use the following strategy for checking the similarity of line

segments. The normals of two line segments s

i

and s

j

in the x � z plane are

m

i

= (a

i

;�1) and m

j

= (a

j

;�1), respectively. A good test for whether they have

approximately the same slope is based on

m

i

�m

j

jm

i

jjm

j

j

, being the cosine of the angle

between m

i

and m

j

. In the ideal case, b

�

i

= B holds. If we de�ne a scan line as

z(x

0

; y); x

0

2 I

N

instead of z(x; y

0

); y

0

2 I

N

, then all the discussions above for the

comparison of a

i

are valid for b

�

i

. So, if we de�ne n

i

= (b

�

i

;�1), n

j

= (b

�

j

;�1), the

11

similarity between b

�

i

and b

�

j

can be measured by

n

i

�n

j

jn

i

jjn

j

j

. From this discussion, we

de�ne the optimality measure of a seed region candidate as

1

12

[

X

i 6=j

m

i

�m

j

jm

i

jjm

j

j

+

X

i 6=j

n

i

� n

j

jn

i

jjn

j

j

] + 0:5 (13)

which falls into the interval [0; 1].

In summary, we compute for each seed region candidate the optimality measure

de�ned in (13), and select the candidate with the largest optimality value as the

seed region for the growing process.

Here some comments on Pavlidis' algorithm [22] are adequate. In his algorithm,

two neighboring line segments are merged if the absolute di�erence between their

slopes is smaller than a threshold. As stated above, however, slope is not an ap-

propriate metric for direct comparison. Thus, the simple similarity test of Pavlidis

is not feasible for our application. Moreover, di�erent line segments of a particular

planar surface not only have the same slope, but also their intercepts are subject to

the relation

b

i

�b

j

y

i

�y

j

= B. Thus, it is not su�cient to consider the slope alone. Rather

both the slope and the intercept must be taken into account to guarantee that a set

of line segments really belong to the same planar surface. Our optimality criterion

(13) ful�lls this requirement.

5.2 Iterative region growing

After a seed region R

0

is found, a region growing process takes place around R

0

. We

represent the region after the kth growing iteration by R

k

, and use a simple-linked

list L to record all line segments of R

k

. A least-square plane �tting is performed to

get the plane P

k

: z = A

k

x + B

k

y + C

k

that best �ts R

k

. The task is to �nd A

k

,

B

k

and C

k

so that the approximation error

"

2

=

X

(x;y)2R

k

(z(x; y)� (A

k

x+B

k

y + C

k

))

2

(14)

is minimized. This is done by the least square technique.

The (k + 1)th iteration proceeds in the following way. We go through the list L

once, and for each line segment s 2 R

k

, we consider all neighboring line segments of

s. For each neighboring line segment s

0

of s, if it is still unlabeled, we test whether

s

0

is compatible with P

k

. s

0

is compatible with P

k

if, for all (x; y) 2 s

0

,

jz(x; y)� (A

k

x+B

k

y + C

k

)j � � (15)

holds where � is a threshold. In our experiments we set � = 1:5 + 1:75�

img

. We

notice that, on the straight line segment s

0

, the maximal approxation error will occur

either at the leftmost pixel (x

l

; y

0

) or the rightmost pixel (x

r

; y

0

) of s

0

. Thus, the

simple test

jz(x

l

; y

0

)� (A

k

x

l

+B

k

y

0

+ C

k

)j � � ^ jz(x

r

; y

0

)� (A

k

x

r

+B

k

y

0

+ C

k

)j � � (16)

12

is su�cient. This is a large saving as only two approximation error checks are needed

instead of one check for each pixel of s

0

, showing another advantage of the scan line

grouping technique. If s

0

survives the test, it is added to the region and the list L.

The growing process is iterated until, for some k, R

k

= R

k+1

.

The region growing above is quite simple, but it introduces some ine�ciency

because no deletion operation is performed on the list L. If all neighboring line

segments of some s 2 L are already labelled, for instance, s needn't be considered in

the subsequent iterations. We have tried two strategies to overcome this problem.

First, we delete a line segment s from the list L if all neighboring line segments

of s are already labelled. In the second strategy we go a step further. If, for each

neighboring line segment s

0

of s, s

0

is either labeled or the approximation error is

very large, say

jz(x

l

; y

0

)� (A

k

x

l

+B

k

y

0

+C

k

)j > 2� _ jz(x

r

; y

0

)� (A

k

x

r

+B

k

y

0

+C

k

)j > 2� (17)

such that the probability of s

0

being added to the region in a later iteration is almost

zero, we delete s from L. These two strategies seem to be useful. Experimental

results, however, show that no speedup could be achieved. This is because both

strategies introduce extra housekeeping work. On the other hand, the additional

cost resulting from keeping the unnecessary line segments in L is very small. So

the saving from using deletion operations and the newly introduced housekeeping

work are approximately the same. Based on this observation we use only the simple

version without deletion.

6 Postprocessing

The algorithm above does not always yield clean edges between regions. There are

two reasons for this behaviour. First, the simple splitting algorithm for line segment

extraction �nds sometimes nonoptimal separating points. This leads to some short

line segments across two di�erent planar surfaces. In fact, even more sophisticated

approaches can not avoid this phenomenon. Another reason for noisy edges is that

the region growing process sequentially extracts planar regions from range data. If

a line segment s is added to the region R found so far, it is merely guaranteed that

the approximation error of s is below a certain threshold. However, there might

exist another region R

0

that gives a better approximation of s. This is a problem of

growing order.

We solve the problem of noisy edges using an iterative re�nement technique.

For each line segment s, we check whether the leftmost (rightmost) pixel of s is

better approximated by the left (right) neighbor of s. If this is the case, the pixel

is deleted from s and added to the neighboring line segment. This simple heuristic

is iteratively used until a stable solution is achieved. In our experiments we have

observed that, in most cases, the re�nement process converges after a few iterations.

In the region growing process we treat a line segment as a single entity, and only

merging but no splitting of line segments is possible. The iterative re�nement as

13

described above could be considered as some kind of splitting operation for improving

nonoptimal segmentation results.

7 Experimental results

The segmentation algorithm has been implemented on a Sun Sparcstation 1 and

tested on about 50 real range images acquired by two di�erent range sensors. In

this paper we give the results for �ve test scenes.

The �rst sensor is based on the projection of binary-coded patterns [27]. The

256� 256 greylevel and range image of a scene bloc1 are shown in the top of Fig. 4.

The result after line segment extraction is shown in the middle where the endpoints

of the line segments are marked. The segmentation results before and after the

postprocessing step are shown in the bottom where four grey levels are used to color

the regions in such a way that no two neighboring regions get the same grey level.

The results for two other range images acquired by the same sensor are shown in

Fig. 5 and 6, respectively. Notice that the backgound plane in the scene bloc3 has

been segmented into two planar regions. This is not an over-segmentation. Rather

it is due to a column in which the range values have been erroneously measured by

the sensor. Some thin regions of bloc3 (the black regions) have not been detected

by our algorithm. This is because we require all the three line segments of a seed

region have a minimum length (10 pixels in our experiments). In such a thin region,

the line segments are so short that no seed region can be found.

The second set of test images was acquired by a Technical Arts scanner at Michi-

gan State University. As an example, the range image of a scene curvblock-3 is shown

in the top of Fig. 7. As no greylevel image of the scene is available, a 3-D plotting is

given for better understanding of the scene. The extracted line segments are shown

in the middle, and the segmentation results before and after postprocessing in the

bottom. Another scene propane-5 is shown in Fig. 8. It contains two planar and one

curved surface. Our algorithm has successfully detected the two planar regions and

partitioned the curved (cylindrical) region into a few parallel surfaces which agree

with our expectation.

Some statistics for the test scenes are recorded in Table 1. The �rst six rows

show the computation time in seconds of the main steps of the algorithm. The total

computation time is given in the seventh row. Some more statistics are recorded in

rows eight to ten. We see that the �nal re�nement process usually converges after

a small number of iterations. The e�ect of edge cleaning can be easily observed in

the �nal result images. We want to mention again that the same set of thresholds

have been used for all images, i.e. for both types of range scanner.

14

Figure 4: The test scene bloc1.

15

Figure 5: The test scene bloc2.

16

Figure 6: The test scene bloc3.

17

Figure 7: The test scene curvblock-3.

18

Figure 8: The test scene propane-5.

19

Table 1: Statistics for the test scenes. RMSE = Computation of RMSE. EOLS =

Extraction of line segments. EOSR = Extraction of seed regions.

bloc1 bloc2 bloc3 curvblock-3 propane-5

256 � 256 256 � 256 256 � 256 240 � 203 174 � 204

Median 3.50 3.50 3.50 2.62 1.88

RMSE 3.08 2.98 3.02 2.25 1.65

EOLS 0.80 1.07 1.20 0.65 0.43

EOSR 0.72 1.17 1.07 0.68 0.50

Growing 0.66 0.80 0.76 0.48 0.38

Postprocessing 0.05 0.15 0.07 0.05 0.10

Total (s) 8.81 9.67 9.62 6.73 4.94

�

img

0.87 1.41 0.55 0.50 0.40

Line segments 1740 2882 3704 1333 1000

Iterations 5 6 4 6 21

8 Discussions

From Table 1 we see that our algorithm is very fast. As a matter of fact, we have not

paid special attention to e�ciency in our current implementation. The Median �lter

and the splitting algorithm for line segment extraction, for instance, were directly

implemented. The Median �ltering could be done more e�ciently [1, 19]. We could

also use the faster pseudo-Median �lter [24]. Moveover, there are more e�cient

ways for the iterative splitting [5, 9, 10]. Thus, our implementation could be further

speeded up.

A closer look at Table 1 reveals that a large portion (65% or even more) of the run

time is devoted to the Median �ltering and the computation of RMSE. The actual

segmentation takes merely a few seconds. This is a large speedup against almost all

of the known algorithms for partitioning range images into planar regions.

The speed of our algorithm lies surely in the scan line grouping. The use of

straight line segments as segmentation primitives greatly reduces the data dimension

that must be handled in the region growing process. The test scene bloc2, for

instance, has 65536 pixels, but only 2882 line segments. Hence, a reduction ratio

of 22 has been achieved

1

. On the other hand, due to the use of the data structure

described in section 4, the high-level primitive line segments do not result in more

handling costs. We can access the neighborhood of a line segment almost as easily

as in a regular grid structure. Moreover, the investigation of special properties of

1

As a matter of fact, the x-coordinates and the data of the points at the end of the line segments

provide the basis for a powerful method of image compression [23]. Our interest here, however, lies

not in e�cient storage and transmission of pictorial information but in an image representation

which allows a fast segmentation.

20

line segments enables us to formulate the simple optimality measure in (13) for seed

region extraction and the growing criterion in (16).

Our segmentation algorithm treats a line segment as a single entity and provides

only very limited ability of line segment splitting in the postprocessing step. This

means that an over-partition of scan lines is needed so that no powerful line segment

splitting technique is required. The empirically determined threshold for the scan

line splitting algorithm 1:0 + 0:5�

img

is low enough in order to always obtain an

over-partition. This can be easily seen in the middle of Fig. 4. The experiments

show that the region growing process has successfully grouped the over-partitioned

line segments into global regions.

We have used the noise variance estimation �

img

to automatically set two thresh-

olds. In this way the thresholds are directly tied to the geometrical and statistical

properties of range data providing good performance for di�erent images. We have

tested the algorithm on real range images acquired by two di�erent sensors. The

use of a �xed set of thresholds for all the test images shows the robustness of the

algorithm.

Our segmentation algorithm is a dedicated approach. It searchs for planar sur-

faces in range data. It is interesting to ask whether the idea of scan line grouping

could be extended to other types of geometrical entities, like spheres or cylinders.

This topic is currently being evaluated.

Acknowledgements

The �rst author was supported by the Swiss National Science Foundation under

the NFP-23 program, Grant No. 4023-027026. We thank F. M. Wahl and T. G.

Stahs of the Technical University of Braunschweig, F. R. Germany, for providing

some of the test range images, and the Pattern Recognition and Image Processing

Lab of Michigan State University for making a database of range images for public

usage. Further thanks are due to U. Meier who prepared the 3-D plottings and to

R. Robmann for valuable discussions.

References

[1] J. T. Astola, T. G. Campbell, On computation of the running median, IEEE

Trans. on ASSP, Vol. 37, No. 4, 572{574, 1989.

[2] P. J. Besl, Active, optical range imaging sensors, Machine Vision and Applica-

tions, Vol. 1, 127{152, 1988.

[3] P. J. Besl, Surfaces in range image understanding, Springer-Verlag, 1988.

[4] R. C. Bolles, M. A. Fischler, A RANSAC-based approach to model �tting and

its application to �nding cylinders in range data, Proc. of 7th Int. Conf. on

Arti�cial Intelligence, Vancouver, 637{643, 1981.

21

[5] L.-M. Chien, et al., Fast corner detection using linear search, Proc. of 7th Scand.

Conf. on Image Analysis, Aalborg, Denmark, 354{361, 1991.

[6] E. Diday, J. C. Simon, Clustering analysis, in Digital pattern recognition, K.

S. Fu (Ed.), Springer, New York, 47{94, 1976.

[7] J. G. Dunham, Optimum uniform piecewise linear approximation of planar

curves, IEEE Trans. on PAMI, Vol. 8, No. 1, 67{75, 1986.

[8] R. O. Duda, P. E. Hart, Pattern classi�cation and scene analysis, Wiley, New

York, 1972.

[9] R. Epselid, I. Jonassen, A comparison of splitting methods for the identi�cation

of corner-points, Pattern Recognition Letters, Vol. 12, 79{83, 1991.

[10] M.-H. Han, D. Jang, J. Foster, Identi�cation of cornerpoints of two-dimensional

images using linear search, Pattern Recognition, Vol. 22, No. 1, 13{20, 1989.

[11] A. H�ark�onen, H. Ailisto, I. Moring, Noise analysis and �ltering of range images

produced by a scanning laser range �nder, Proc. of 6th Scand. Conf. on Image

Analysis, Oulu, Finland, 481{491, 1989.

[12] S. L. Horowitz, T. Pavlidis, Picture segmentation by a direct split and merge

procedure, Proc. of 2nd Int. Conf. on Pattern Recognition, 424{433, 1974.

[13] R. A. Jarvis, A perspective on range �nding techniques for computer vision,

IEEE Trans. on PAMI, Vol. 5, No. 2, 122{139, 1983.

[14] J.-M. Jolion, P. Meer, S. Bataouche, Robust clustering with applications in

computer vision, IEEE Trans. on PAMI, Vol. 13, No. 8, 791{802, 1991.

[15] R. Krishnapuram, C.-P. Freg, Fuzzy algorithms to �nd linear and planar clus-

ters and their applications, Proc. of CVPR'91, 426{431, 1991.

[16] T. Lozano-P�erez, W. E. L. Grimson, S. J. White, Finding cylinders in range

data, Proc. of IEEE Conf. on Robotics and Automation, 202{207, 1987.

[17] G. Ma

^

itre, H. H�ugli, F. Ti�eche, J. P. Amann, Range image segmantion based on

function approximation, Proc. of ISPRS-Conference, SPIE Vol. 1395, Zurich,

275{282, 1990.

[18] D. Nitzan, Three-dimensional vision structure for robot applications, IEEE

Trans. on PAMI, Vol. 10, No. 3, 291{309, 1988.

[19] A. W. Paeth, Median �nding on a 3�3 grid, in Graphics Gems, A. S. Glassner

(Ed.), Academic Press Inc., 171{175, 1990.

22

[20] B. Parvin, G. Medioni, Segmentation of range images into planar surfaces by

split and merge, Proc. of Computer Society Conf. on Computer Vision and

Pattern Recognition, 415{417, 1986.

[21] T. Pavlidis, S. L. Horowitz, Segmentation of plane curves, IEEE Trans. on

Comput. Vol. C-23, 860{870, 1974.

[22] T. Pavlidis, Segmentation of pictures and maps through functional approxima-

tion, Computer Graphics and Image Processing, Vol. 1, 360{372, 1976.

[23] D. T. Pham, M. Abdollahi, Image compression using polylines, Pattern Recog-

nition, Vol. 21, No. 6, 631{637, 1988.

[24] W. K. Pratt, Digital image processing, Second edition, John Wiley & Sons,

Inc., 1991.

[25] F. Schmitt, X. Chen, Fast segmentation of range images into planar regions,

Proc. of CVPR'91, 710{711, 1991.

[26] L. Shao, R. Volz, Finding cones from multi-scan range images, SPIE Vol. 1608,

Intelligent Robots and Computer Vision X: Neural, Biological and 3-D Meth-

ods, 378{384, 1991.

[27] T. G. Stahs, F. M. Wahl, Fast and robust range data acquisition in a low-cost

environment, Proc. of ISPRS-Conference, SPIE Vol. 1395, Zurich, 496{503,

1990.

[28] R. W. Taylor, M. Savini, A. P. Reeves, Fast segmentation of range imagery

into planar regions, Computer Vision, Graphics, and Image Processing, Vol.

45, 42{60, 1989.

[29] H. S. Yang, A. C. Kak, Determination of the identity, position and orientation of

the topmost object in a pile, Computer Vision, Graphics, and Image Processing,

Vol. 36, 229{255, 1986.

[30] N. Yokoya, M. D. Levine, Volumetric description of solids of revolution in a

range image, Proc. of 10th Int. Conf. on Pattern Recognition, 303{307, 1990.

23

