
Algorithms for Generalized Digital Images

Represented by Bintrees

Hanspeter Bieri

Igor Metz

IAM-91-001

March 1991



Algorithms for Generalized Digital Images Represented by

Bintrees

Hanspeter Bieri

�

Igor Metz

�

Abstract

Generalized digital images, subsequently called hyperimages, represent a variation of

the conventional digital images which implies pixels of di�erent dimensions within the same

image. The extent of a hyperimage is the disjoint union of all pixel extents it contains, which

are relatively open unit cubes with respect to the euclidean topology of the underlying space.

This approach is independent of any speci�c dimension of image and space, respectively, and

allows strict partitioning of images into subimages, not just subdividing.

Since the storage required by a d-dimensional hyperimage of resolution n

d

is � 2

d

n

d

when

using a binary matrix representation, a more space e�cient bintree representation is inves-

tigated. Algorithms for the Boolean operations, the computation of elementary topological

properties and the computation of some important measures of d-dimensional hyperimages

(volume, surface, Euler characteristic) are presented. Because of the nature of bintrees, the

implementation of these algorithms, too, can be performed independently of any speci�c

dimension of image and space.

1 Binary Digital Images and Hyperimages

A d-dimensional binary digital image can most easily be modelled by a d-dimensional binary

array. Each element of the array represents a (d-dimensional) pixel which is normally called

"black" ("white") if the element's value is 1 (0). For most purposes it is necessary to

introduce topological notions (adjacency, connectedness, etc.) for digital images and to

study their properties. This is the main topic of digital topology [KR89]. Depending on the

speci�c point of view, pixels are then normally understood as elements of Z

d

, as points with

integer coordinates in R

d

, or as d-dimensional closed unit cubes. The resulting di�culties

are well-known and rather easily explained (cf. [Pav82], [BN84], and especially [Kov89]).

[Bie90] avoids these di�culties by giving up the requirement that all pixels of a digital

image have to be of the same type. As this approach does not conform to the conventional

de�nitions of digital images [Fiu89], the resulting "images" are called generalized binary

digital images or hyperimages. [Bie90] starts from the pixel understood as a d-dimensional

closed unit cube and replaces it by pixels which are relatively open unit cubes of dimensions

0; 1; :::; d. For the case d = 2, Figure 1 shows that an "old" pixel is the disjoint union of

9 "new" pixels of which four are 0-dimensional, four 1-dimensional, and one 2-dimensional.

It is practical to distinguish between the "horizontal" and "vertical" 1-dimensional "new"

pixels. Consequently we get for d = 2 four types of pixels which we denote by the symbols �,

|, j, 2. Figure 2 shows a conventional 2-dimensional binary digital image, with its 36 pixels

understood as closed unit squares. Figure 3 shows the corresponding hyperimage where

the numbers of pixels belonging to the four types are 49, 42, 42, and 36. The two �gures

clearly show the most important advantage of hyperimages compared to conventional digital
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Figure 1: An "old" pixel partitioned by 9

"new" pixels.

Figure 2: A conventional digital image.

Figure 3: A hyperimage (not normalized).

Figure 4: A hyperimage to be represented

by a bintree.

images: The "old" pixels in Figure 2 form only a subdivision of the whole image (di�erent

"old" pixels are not necessarily disjoint sets), whereas the "new" pixels in Figure 3 form a

partition of the hyperimage.

Like a conventional digital image, also a hyperimage can most easily be modelled by a

d-dimensional binary array. Again, every element of the array represents a pixel which is

understood as a unit cube � R

d

. But now, all these unit cubes are relatively open and

their dimension is no longer necessarily = d. In order to get a normalized representation, we

assume without loss of generality that the �rst element in the array (i. e. the element with

all its indices = 1) represents a d-dimensional pixel and that the number of elements along

each axis is odd. With the �rst assumption, an element represents a d-dimensional pixel i�

all its indices are = 1 mod 2. All other elements represent (relatively open) faces of such

d-dimensional unit cubes, with dimensions 2 f0; : : : ; d� 1g. They are uniquely determined

by the requirement that all pixels together must form a partition of the extent of the whole

hyperimage which is a d-dimensional box � R

d

. For a normalized hyperimage this box is an

open set.

[Bie90] shows that the euclidean topology of R

d

induces on every d-dimensional hyperim-

age a �nite topology which can easily be described, e. g. by characterizing the smallest open

neighborhood of every pixel type. This topology allows the design of elegant algorithms. It

also represents a natural illustration of the main proposition in [Kov89]. A more complicated

but equivalent approach has been proposed in [Kha70, KKM].

While the concept of hyperimages is not restricted to any speci�c dimension, the following

sections will only deal with algorithms for hyperimages of dimension d = 2. This restriction

is insigni�cant and its only purpose is ease of demonstration. The nature of the underlying

data structures, i.e. arrays and bintrees, allows likewise an immediate generalization of these

algorithms to higher dimensions.
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2 Matrix and Bintree Representations

Representing a hyperimage by a binary array is straightforward as we have seen above. Given

a m � n binary array Mat1 representing a conventional binary image, we generate from it

a (2m + 3)� (2n+ 3) binary array Mat2 which represents the corresponding normalized

hyperimage. The conversion procedure works as follows:

� Allocate a binary array Mat2[1..2m+3, 1..2n+3].

� For each element Mat1[i,j] which is set to true, set to true all elements Mat2[i',j']

with i

0

2 f2i; 2i+ 1; 2i+ 2g, j

0

2 f2j; 2j + 1; 2j + 2g. Set all other elements to false.

(Please note that in all �gures the �rst matrix element, i. e. the one having both indices

= 1, is shown in the lower left corner.)

To determine the type of a pixel in the resulting array the indices can be used:

i

0

j

0

type of pixel

odd odd 2

odd even j

even odd |

even even �

After that, to reduce the amount of space used to store hyperimages we are going to

use a hierarchical data structure technique to represent this kind of spatial data. We pre-

fer bintrees [ST85] to quadtrees [Sam90] because they allow an elegant implementation of

algorithms which perform independently of any speci�c dimension of image or space. We

further decide to use pointer bintrees instead of linear bintrees mainly because it is easier to

implement pointer based algorithms. Pointer based algorithms have been viewed as being

storage wasters, but fairly compact pointer based implementations are possible [SW89].

A straightforward implementation of a bintree node in C

++

[Lip89] might look as follows

1

:

enum tNodeType fGRAY, WHITE, BLACKg;

struct tNode f

tNode �left, �right;

tNodeType NodeType;

tNode(tNodeType nt, tNode� l, tNode� r)

f NodeType = nt; left = l; right = r; g

g;

To convert a binary array Mat2 representing a hyperimage which corresponds to a m�n

binary digital image into a pointer based bintree, we proceed as follows:

� Allocate a 2

k

� 2

k

binary array Mat3 where k = dlog(max(2m+ 3; 2n+ 3))e.

� Embed Mat2 in Mat3 such that Mat3[i,j] = Mat2[i,j] for i = 1; : : : ; 2m+ 3, j = 1; : : : ; 2n+ 3

and Mat3[i,j] = false for all other values of i and j.

� We can now consider this new binary array as an ordinary 2

k

� 2

k

image array and

convert it into a pointer bintree using any known method [Sam90].

The enlarged hyperimage represented by the array Mat3 which is used to construct the

bintree for our previous example is shown in Figure 4.

1

The record tNode de�nes a so-called constructor , a function having the same name as the record. The

constructor is used in conjunction with the new operator for memory allocation. It is called automatically to

initialize the record slots after the memory for the record has been allocated.
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3 Boolean Operations

Boolean or set-theoretic operations are often used as basic functions for modelling tasks

in image processing or computer graphics. Since all Boolean operations on bintree repre-

sentations of hyperimages are based on the same idea, we present only one of them: the

intersection operator. Boolean operations on hyperimages do not need to consider the pixel

types, their bintree implementations are identical, therefore, to those corresponding to con-

ventional binary images.

The algorithm traverses the two input bintrees in parallel and examines corresponding

nodes yielding the output bintree. An implementation in C

++

is shown below. The example

in Figure 5 shows the intersection of the two digitized letters A and B.

tNode�

Intersect(tNode �tree1, tNode �tree2)

f

if ( (tree1!NodeType == tree2!NodeType) && (tree1!NodeType == GRAY)) f

== Both subtrees are gray. Compute the intersection of their corresponding

== subtrees and put the pointers to the results into variables 'left' and 'right'.

tNode �left = Intersect(tree1!left, tree2!left);

tNode �right = Intersect(tree1!right, tree2!right);

if ((left!NodeType == right!NodeType) && (left!NodeType 6= GRAY)) f

== Both nodes are leaves, and they have the same color. Delete

== one of them and return the other,

delete right; == 'right' not needed any more

return left;

g

else == Return a tree which has 'left' and 'right' as its subtrees.

return new tNode(GRAY, left, right);

g

== One of the subtrees is a leaf and is white.

if ((tree1!NodeType == WHITE) jj (tree2!NodeType == WHITE))

return new tNode(WHITE, NULL, NULL);

if (tree1!NodeType == BLACK)

return copy(tree2); == Return a copy of tree2

else

return copy(tree1); == Return a copy of tree1

g

tNode�

copy(tNode �t)

== Returns a copy of the tree rooted at 't'.

f

if (t == NULL)

return NULL;

else

return new tNode(t!NodeType, copy(t!left), copy(t!right));

g
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Figure 5: The intersection of the two digi-

tized letters A and B.

Figure 6: The boundary of the hyperimage

in Figure 5.

4 Topological Operations

We will describe algorithms for the construction of the boundary , the interior and the closure

of a hyperimage which are again hyperimages (cf. [Bie90]). The algorithms, as presented in

this paper, operate in situ, i. e. they modify the input tree.

All three algorithms consist of two steps which both include a bintree traversal in pre-

order. The �rst step partitions the given hyperimage into extents which wholly belong to

the exterior , to the boundary or to the interior , respectively, of the black part of the image.

The second step is a postprocessing step and converts the intermediate result of the �rst

step into a bintree representing the boundary, the interior or the closure, respectively, of the

given hyperimage.

4.1 First step: Partitioning the image

Every leaf in the bintree represents an extent of the given hyperimage. The goal of this �rst

step is to determine if a node represents an extent which wholly belongs to the exterior , to

the boundary or to the interior , respectively.

During this step we traverse the tree in preorder. Figure 7 deals with the black leaves and

Figure 8 with the white leaves we may meet. The extent represented by a leaf (�rst column)

and its surrounding pattern (second column) are examined, and an appropriate action (third

or fourth column, respectively) is taken. Either the node can be marked by a B (boundary),

an I (interior) or an E (exterior), or it has to be re�ned by an additional bintree. This latter

case is indicated by a bold arrow.

We will not dicuss all cases shown in Figures 7 and 8 in detail. Discussing two of them

should be enough to make the procedure evident.

1. Let the leaf reached represent a black extent of type � (�rst line in Figure 7). If all

its neighbours are black, then this leaf is marked as belonging to the interior of the

hyperimage. Otherwise it will be marked as belonging to the boundary.

2. Let the leaf reached represent a quadratic black extent of length > 1 (last two lines in

Figure 7).
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Figure 7: Partitioning of black extents.
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Figure 8: Partitioning of white extents.
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If the upper extent is not black we re�ne this node, i. e. we replace it by a bintree

consisting of three nodes, and recursively check the left and the right leaf.

Else if the upper right extent and the right extent are both black, the node is marked

as belonging to the interior of the hyperimage.

Otherwise we re�ne this node, i. e. we replace it by a bintree consisting of three nodes,

and recursively check the right leaf. The left leaf will be marked as belonging to the

interior of the hyperimage.

4.2 Computing the Boundary

To compute the boundary, we must �rst partition both the white and the black extents of a

hyperimage (= �rst step, consisting of one traversal). In the postprocessing step we traverse

the intermediate tree and colour all nodes black which have been marked by a B. All other

nodes will be coloured white. Neighbouring regions of the same colour will be merged. The

result is a hyperimage which is the boundary of the input hyperimage. An example is shown

in Figure 6.

This procedure can be simpli�ed for hyperimages, which have been generated from con-

ventional binary images. In this case it is su�cient to consider only the black extents, as

such hyperimages are always closed.

4.3 Computing the Interior

To compute the interior of a hyperimage, we only need to partition its black extents. In

the postprocessing step we traverse the intermediate tree and change the colour of all black

nodes which have been marked by a B to white, and merge neighbouring regions of the same

colour. The result is a hyperimage which is the interior of the input hyperimage.

4.4 Computing the Closure

To compute the closure of a hyperimage, we only need to partition its white extents. In

the postprocessing step we traverse the intermediate tree and change the colour of all white

nodes which have been marked by a B to black, and merge neighbouring regions of the same

colour. The result is a hyperimage which is the closure of the input hyperimage.

5 Algorithm for some Geometric Properties of Hyperimages

The area, the surface and the Euler number of digital images can be computed by means

of the so-called quermassintegrals [BN84]. Hyperimages are more suited to apply this tech-

nique than conventional digital images, for quermassintegrals are additive functionals and to

compute them recursively is easier for images which can be partitioned into subimages (i. e.

di�erent subimages are really disjoint) than for images which can only be subdivided.

Let E be any pixel of dimension d 2 f0; 1; 2g in a 2-dimensional hyperimage. The values

W

r

(E) = (�1)

r+d

(

r+d

2

)

(

r+d

d

)

!

r

;

where r = 0; 1; 2 and !

0

= 1; !

1

= 2; !

2

= � are the quermassintegrals of E.

Let n

�

; n

|

; n

j

, and n

2

be the number of pixels of type �, |, j, and 2, respectively.

As quermassintegrals are additive, the quermassintegral W

0

;W

1

;W

2

of a hyperimage can be

computed simply by the following equation:

W

i

= W

i

(�)n

�

+W

i

(|)n

|

+W

i

(j)n

j

+W

i

(2)n

2

(i = 0; 1; 2)

Quermassintegrals are useful in image analysis mainly because they are related to the

area A, the circumference C and the Euler number � of an image in the following way:
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A(R) = W

0

(R);

C(R) = 2W

1

(R);

�(R) =

1

�

W

2

(R);

where R denotes the �gure or black region of the respective (hyper)image. Computing the

above values for the black region of the hyperimage in Figure 5 results in an area of 112, a

circumference of 160, and an Euler number of 3.

W

r

(�);W

r

(|);W

r

(j) and W

r

(2) must only be computed once. The values of n

�

; n

|

; n

j

and n

2

which are necessary, too, to compute the quermassintegrals can be determined by a

simple procedure which traverses the bintree in preorder.

PROC Count Pixel Types(tree : POINTER TO tNode; VAR n

�

,n

|

, n

j

, n

2

: INTEGER);

BEGIN

IF tree!NodeType = GRAY THEN

Count Pixel Types(tree!left, n

�

, n

|

, n

j

, n

2

);

Count Pixel Types(tree!left, n

�

, n

|

, n

j

, n

2

);

ELSIF tree!NodeType = BLACK THEN

IF "maximum depth of tree is reached" THEN

CASE Type Of(tree) OF

�: n

�

:= n

�

+ 1;

|: n

|

:= n

|

+ 1;

j: n

j

:= n

j

+ 1;

2: n

2

:= n

2

+ 1;

END CASE;

ELSIF "depth of maximum�1 is reached" THEN

CASE Type Of(tree) OF

�

j : n

�

:= n

�

+ 1;

n

j

:= n

j

+ 1;

|

2 : n

|

:= n

|

+ 1;

n

2

:= n

2

+ 1;

END CASE;

ELSE

"From current depth and resolution compute width and height of binbox

represented by this node";

FOR i 2 f�;|; j;2g DO

n

i

:= n

i

+

width

2

height

2

;

END FOR;

END IF;

END IF;

END PROC;

6 Short Experimental Analysis of Space and Time Complexity

To compare the space requirements for implementing conventional images with those for

hyperimages, we have performed some experiments. The input for the experiments consists

of a set of 23 digitized uppercase letters with resolution 32�32 and a set of 79 cross-sections of
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Figure 9: A sample from the dataset "Al-

phabet": the capital letter A.

Figure 10: A sample from the dataset "CT

data": cross-section no. 43.

a human pelvis generated from computed tomographic (CT) data with resolution 128� 128.

Figures 9 and 10 show samples from both datasets.

While the binary array representation of a 2-dimensional hyperimage always consumes

4 times more space than the representation of the corresponding conventional image, the

bintree representation needs "only" � 2:35 times more space on the average for the dataset

mentioned above. This aspect is of some interest for the respresentation of large images. The

plots in �gures 11 and 12 show the number of internal nodes used to store the conventional

images and the hyperimages of our dataset.

Bintrees representing single cross-sections from the CT dataset have some 6000 nodes

on the average. This gives an average space requirement of 54000 bytes using the node

structure described earlier with two pointer �elds and one nodetype �eld

2

. To store the

same hyperimage in a bit array, we will need (2� 128 + 3)

2

= 67081 bits, or 8386 bytes. To

store the hyperimage bitwise is very space e�cient, but will yield considerable execution-time

penalties. For this reason one would probably implement the hyperimage using a byte array,

which will yield a space requirement of 67081 bytes. In order to perform the topological

operations, space requirements will even double as we need a second array to store the result

of the operation.

It is evident, that the execution time of all algorithms presented in this paper is linear with

respect to the number of nodes of the input tree, as each node in the input tree is only visited

once or twice. Execution time measurements have con�rmed this statement. Figures 13 and

14 show scatterplots of the execution times measured on a Sun SPARCstation 1 using the

GNU C

++

Compiler version 1.37.2.

Operations on hyperimages can be much faster with array representations than with

bintree representations. Using the digitized alphabet as input, our experiment showed that

the array representation resulted in a roughly 10 times faster execution (on the average) than

the bintree representation. Using the CT data as input, the factor was about 4. Since we

didn't dispose of images with a higher resolution, we duplicated the pixels in the CT dataset

2

This calculation is quite naive, as it ignores the fact that the memory allocation scheme of the underlying

operating system requires some administrative overhead per allocated chunk, plus an alignment adjustment. This

overhead can be reduced using a memory allocation scheme which is adapted to this speci�c application area.
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Figure 12: Space requirements for dataset "CT data"
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in order to blow-up the images to a 256 � 256 resolution. For these blown-up images the

execution times were almost equal for the two representations.

7 Conclusions

We have shown that the bintree representation of hyperimages reduces the space require-

ments and that it allows to implement e�ciently many algorithms which are important for

hyperimages. One other positive aspect of using bintrees is that all our algorithms can

easily be generalized to higher dimensions. The application of the methods to three- or

four-dimensional images should prove to be of practical interest.
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