
Survey in Service-Centric Networking

D. Mansour, T. Braun

Technical Report IAM-14-004 , 28. November 2014

Institut für Informatik und angewandte Mathematik, www.iam.unibe.ch

Survey in Service-Centric Networking

Dima Mansour, Torsten Braun

Technical Report IAM-14-004 , 28. November 2014

CR Categories and Subject Descriptors:
C.2.1 [Computer-Communication Networks]: Network Architecture and
Design;
C.2.2 [Computer-Communication Networks]: Network Protocols;
C.2.3 [Computer-Communication Networks]: Network Operations;
C.2.4 [Computer-Communication Networks]: Distributed Systems;

General Terms:
Design, Management, Measurement, Performance

Additional Key Words:
Service-Centric Networking, Content-Centric Networking, Systematic
Survey

Institut für Informatik und angewandte Mathematik, Universität Bern

Abstract
Information-Centric Networking (ICN) considers the content as the build-
ing block of the network instead of hosts. This allows clients to request
content objects by their names but not by the addresses of their providers.
One limitation of ICN is that it does not naturally support services. Service-
Centric Networking considers services as first-class citizens in the network
shifting the current Internet architecture towards a service-centric style. In
this paper, we discuss and compare several approaches in Service-Centric
Networking with respect to goals, architectures, naming schemes, and de-
sign decisions. We demonstrate the results and the future challenges of
those approaches in general to be considered as guidelines for future re-
search in the Service-Centric Networking field.

Contents
1 Introduction 1

2 Information-Centric Networking 3
2.1 Data-Oriented Network Architecture 3
2.2 Content-Centric Networking 4
2.3 Combined Broadcast and Content Based Routing 5
2.4 Discussion . 5

3 Major Research Projects in
Service-Centric Networking 7
3.1 CCNxServ . 7

3.1.1 Objectives . 7
3.1.2 Naming Scheme . 7
3.1.3 Architecture . 8
3.1.4 Discussion . 9

3.2 SoCCeR . 10
3.2.1 Objectives . 10
3.2.2 Naming Scheme . 11
3.2.3 Architecture . 11
3.2.4 Discussion . 13

3.3 Serval . 13
3.3.1 Objectives . 13
3.3.2 Naming Scheme . 14
3.3.3 Architecture . 14
3.3.4 Discussion . 15

3.4 Other Approaches in Service-Centric Networking 16
3.4.1 Named-Function Networking 16
3.4.2 Object-Oriented Service-Centric

Networking (SCN) 16

4 Discussion 18

5 Conclusions 21

References 22

Introduction 1

1 Introduction
Today’s Internet architecture was mainly designed to allow hosts to re-
motely access resources on other hosts. It follows a host-to-host or host-
centric communication model where each host has a name (identity) and
an address (location).
This architecture is well-suited for the early use case scenarios of the In-
ternet, but it introduces many limitations in the current use cases [1], which
are manifested by the development of the new web applications, the huge
increase in the delivered content (e.g. YouTube, BitTorrent), and the need
to address mobility and security issues.
Many research trends focus on moving from the current Internet architec-
ture to a new one to meet the new usage requirements of the Internet [2].
All these research works argue that content is what matters in the current
Internet, but not where it resides. To approach this vision, the communica-
tion framework is changed by binding the client to the content itself instead
of the content providers’IP address.
Upon this idea, Information-Centric Networking (ICN) is proposed. It is
a networking paradigm that centers around distributed content to be the
main building block of the new Internet architecture. The argument here
is that named content has become a better abstraction than named hosts
for solving today’s communication problems. Many projects develop this
approach further, e.g., CCN [3], DONA [4], NetInf [5], and PURSUIT[6].
The idea of ICN is a revolution in the networking world. But there is a
limitation behind this idea, which is manifested when the client requests
services, but not content. ICN supports content, but it does not really
support services.
Service-Centric Networking is a new and promising paradigm for the fu-
ture Internet architecture, which is built on the fact that services are better
abstraction for current Internet applications than content. Content is just a
subset of services and what applies to services can easily apply to con-
tent, not the other way around. There are some projects concerned with
services like SoCCeR [7], CCNxServ [8], and Serval [9]. We are going to
give a thorough overview of those approaches, and discuss the pros, cons,
and design decisions behind each one to reach a well-built conclusion of
what any Service-Centric Networking project should address in the future.
In Section 2, we give a short technical background for some projects in the
field of Information-Centric Networking and related naming schemes. In
Section 3, we discuss in more detail each of the surveyed Service-Centric
Networking projects. In Section 4, we discuss the design decisions behind

2 IAM-14-004

the architectures and naming schemes of the surveyed projects. Then, we
provide guidelines for further research in Service-Centric Networking and
we address future challenges. In Section 5, we review and conclude this
article.

Information-Centric Networking 3

DONA CCN CBCB
Naming Scheme Flat Hierarchical Attribute-values
Human-readable Names No Yes Yes
Authentication Self-Certifying Signature Signature
Communication model Find/Data Interest/Data Publish/Subscribe
Caching responsibility RH Content Router Limited to the scope

Table 1: Comparison between some ICN projects

2 Information-Centric Networking
Information-Centric Networking (ICN) aims to change the Internet
architecture in to make it more efficient and suitable for nowadays com-
munication requirements. We present a short overview of several ICN
projects. Table 2 summarizes the main naming and architectural features
of those projects.

2.1 Data-Oriented Network Architecture
Data-Oriented Network Architecture (DONA) [4] replaces DNS name res-
olution with a name-based anycast primitive that sits above the IP layer.
The content is associated by a Principal (publishing entity), which is as-
sociated with a public key pair. There is a Resolution Handler (RH) for
each domain, which is a register for all nodes that are authorized to serve
data. The DONA communication model relies on two packets: FIND and
DATA. A FIND packet handles the name of the content requested by the
client. Client requests are routed by name to find the closest copy in a
hierarchical style, which is supported by the RH infrastructure. The DATA
packet takes the reverse path of the corresponding FIND packet handling
the data.
DONA proposes a flat and self certifying naming scheme based on hier-
archically organized name resolution. Each content object in DONA has
a name of the form P:L, where P is the cryptographic hash of the owner’s
public key and L is an owner assigned label. The owner is responsible for
the uniqueness and granularity of L. This flat naming scheme satisfies the
need of authentication and integrity. When a client asks for a content ob-
ject with the name P:L, it receives the triple <data, public key, signature>.
Then, it can immediately verify that the data did indeed come from the
publisher by checking that the public key hashes to P (authentication) and
that the signature was generated using that public key (integrity).

4 IAM-14-004

2.2 Content-Centric Networking

Another important project is Named-Data Networking (NDN) or Content-
Centric Networking (CCN) [10], which is implemented under the name
CCNx [11]. In CCN, content objects are identified by names, which follow
a hierarchical structure. Content providers publish their content objects by
announcing them to the content routers. Those content routers maintain a
special type of table called Forwarding Information Table (FIB). This table
maps content names to the next hops (faces). FIB tables are similar to
ordinary routing tables in current IP network routers, but routing is based
on content names rather than host’s IP addresses.

In CCN, the client sends an Interest message containing the requested
content name, which content routers use to select the appropriate face
or faces to forward the request. This Interest packet leaves trails as bread
crumbs. When the Interest packet reaches the content provider it returns a
Data packet, which goes back in the reverse path to the requester following
the aforementioned bread crumbs.

Content routers also maintain another type of tables called Content Store
(CS), which serves as a buffer memory (cache) for the retrieved content
objects. This is possible due the fact that content objects are self-identified
and self-authenticated and might be useful for many clients in a given time
window. So content routers first lookup the cache for the requested content
before forwarding the Interest packets to next faces.

The hierarchical names in CCN are composed of multiple components ar-
ranged in a hierarchy. A component can be any string of arbitrary length.
CCN only proposes the structure and anticipates that naming standards
will emerge and become standardized through the development of differ-
ent types of applications. Names also contain information like versions and
segment numbers. To provide content authenticity and integrity, name to
content mappings are digitally signed and delivered with the content. CCN
names are human friendly due to the hierarchical structure (similar to Inter-
net URLs) with support of versioning and chunking data. For example, the
name could be: ccn://SlideShare/ Presentations/Dima/scn/v3/part1. This
name means that we ask for the first part of the third version of the content
ccn://SlideShare/ Presentations/Dima/scn.

Information-Centric Networking 5

2.3 Combined Broadcast and Content Based
Routing

Combined Broadcast and Content Based routing or (CBCB) [12][13] has
a publish/subscribe architecture, where publishers publish their contents
using messages and subscribers advertise their interests using predi-
cates.The published messages are propagated over a broadcast tree from
their sources. The message is delivered to all the client nodes that ad-
vertised predicates matching the message using predicates themselves to
prune the branches of the broadcast tree to ensure delivery of the mes-
sage to interested nodes only. Each message (content name)in CBCB
name is a group of type-attribute-value triplets. For example: suppose
that there is a content name: Wiley.com/Laurie/Info Cent Net.pdf, the cor-
responding attributes for this name are: [FileType <String>= pdf, Title
<String>=Information-Centric Networking, Author <ListOfString> = Lau-
rie, Organization <String> = Wiley, Year <Integer>=2011]. These names
are used by content providers to publish the content. Clients subscribe to
content by sending predicates that have a query form. A predicate is basi-
cally a disjunction of conjunctions on individual attributes. Each predicate
describes what the client wants by specifying constraints on the content
attributes. For example, the request for this content could be:
[FileType = pdf∧Y ear >= 2011∧Organization = Wiley]. Content names
and predicates are used by the routers to match subscriptions to publica-
tions. This naming scheme is unique and helpful since it allows for the de-
scription of content to be embedded within the name itself. It enables au-
tomatic content discovery and filtering. But, on the downside, this scheme
neither ensures name uniqueness nor enforces secure content names.

2.4 Discussion
There are three main naming schemes in ICN: Attribute-Value Pairs Based
[13], Flat [4][5][6], and Hierarchical [3]. All three schemes can be aggre-
gated to some extent, to improve routing table scalability. CCN/NDN per-
forms prefix aggregation on hierarchical names.
CBCB uses attribute-value pairs to prune unnecessary branches of the
broadcast tree. Predicates with common attributes at a CBCB router can
be combined to reduce the number of routing table entries. Flat names
used by DONA in the form P:L can be aggregated at the publisher level
or can use DHT based lookup services, where storage load is distributed
uniformly between the resolution nodes.

6 IAM-14-004

Another point to note here is that the use of a cryptographic hash in a con-
tent name hides the underlying content semantics from human users and
makes the names difficult to remember. This fact makes self-certifying flat
names less human friendly. On the other hand, hierarchical and attribute-
value pair based naming schemes are more human friendly, because
they are easier to remember and they provide more information about
the content semantics. But this human friendliness comes at the cost
of some challenges: ensuring global uniqueness, security binding, and
authenticity[14].

Major Research Projects in Service-Centric Networking 7

3 Major Research Projects in
Service-Centric Networking

There are few ongoing research projects that consider services instead
of content as the core principal of the new Internet architecture based
on the fact that services are better abstractions than content for Internet
communication.
The projects discussed hereafter, represent the current state of the art in
the field of service-centric networking. They share many objectives but
differ in details such as naming and architecture design decisions. The
main goal is the same, which is to achieve a new Internet architecture to
better support the deployment, fault tolerance, load balancing, and mobility
of services.
We will present objectives, architecture, and naming scheme for each
project with some discussions to extract the best requirements in order
to build a suitable and strong infrastructure for future works in this field,
especially regarding architecture and service names.

3.1 CCNxServ

3.1.1 Objectives

CCNxServ[8] is built on top of a CCN implementation (CCNx) to make
CCN support dynamic services. Most of the CCNx functionality and im-
plementation are kept intact (minimal changes) but new components are
added to provide service support.

3.1.2 Naming Scheme

Since CCNxServ is based on CCN, it adopts the same hierarchical struc-
ture of the names as CCN. The naming scheme is ContentName + Ser-
viceName, where ContentName is exactly like in CCN. ServiceName is
the name of the service module that should be invoked on the requested
content. For instance, suppose that the client asks for a video content ob-
ject (BugsLife.mp4) and an advertisement service (ads), which takes the
content as a parameter to display an advertisement for five minutes inside
the video. The request looks like: ccnx://BugsLife.mp4 + ad.

8 IAM-14-004

3.1.3 Architecture

The CCNxServ architecture has two essential elements as shown in Fig-
ure 1: The first one is the controller CCNxServiceProxy, which is respon-
sible for intercepting Interest messages and making two separate Interest
messages: one of them with the content name and the other with the ser-
vice name. Then, it forwards the files of the content (content file) and the
service module (JAR file) to the service framework (NetServ[15]), which
is the second element that is responsible for applying the service on the
content.

CCNx

Service
Proxy

Service
Framework
(NetServ)

1) Service Request

2) Content Interest
3) Content Data

4) Service Module Interest
5) Service Module Data

6) Install and execute
service module on the content

7) Service Reply (Data)
8) Service Reply (Data)

Figure 1: General overview of the CCNxServ architecture in its main ele-
ments.

To describe the approach, we follow the process in Figure 1 for the last ex-
ample (ccnx://BugsLife + ad). We can summarize the process as follows:

1. The client sends the service request to the CCNx network. This
request contains the content name and the service name.

2. The control element (ServiceProxy) intercepts the request and cre-
ates two Interest packets. It sends the first Interest to the CCNx
network. This Interest contains the content name.

3. ServiceProxy fetches the corresponding content file (possibly from
the cache).

4. ServiceProxy sends the second Interest containing the service name
to the CCNx network to get the service module.

5. ServiceProxy gets the service module as a Jar file of the requested
service.

6. Now the ServiceProxy has the content file and the service module.
So it installs them on the service framework (NetServ) to execute the
service on the content.

Major Research Projects in Service-Centric Networking 9

7. The result from NetServ is sent back to the CCNx network.

8. The result is sent back from the ServiceProxy to the client via the
CCNx network.

Basically CCNxServ was developed as a proof of concept that services
can be implemented over CCNx. That is why the implementation of the
“framework” is actually specific for the examples written in [8] and the im-
plementation of the “framework” is actually based on the FileProxy exam-
ple that is shipped with the CCNx project [11].

3.1.4 Discussion

There are many advantages of the CCNxServ implementation:

• This architecture allows CCNxServ to benefit from all CCNx function-
alities like routing and caching.

• With the adopted naming scheme, it is possible to aggregate ser-
vices easily. We can invoke a service on the result of another ser-
vice as a parameter (e.g, ccnx://content + service1 + service2). In
this case, the result of ccnx://content + service1 goes as a parameter
to service2.

• Merging CCNx and NetServ provides dynamic deployability of ser-
vices.

But there are some limitations with CCNxServ as well:

• The combination of the CCNxServ and NetServ implementations
might be a problem, because the authors did this combination deci-
sion with the hope that NetServ, which is initially built for IP networks,
can be reworked to support CCN. In other words, CCNxServ project
can be fully-implemented only if NetServ supports CCNx.

• The CCNxServ architecture relies on NetServ. This introduces a
problem with service implementation diversity. CCNxServ forces all
services to be implemented in a unified style that suits service virtual-
ization. That means any CCNxServ services should be implemented
in Java, implement a very specific interface, and be available in a
jar file. Services cannot be implemented in any language other than
Java and all the code of the services should be encapsulated in a
Jar file making CCNxServ almost not realistic, because usually ser-
vices are interfaces to entire systems (e.g., e-banking, Google Maps,
Amazon e-store).

10 IAM-14-004

• There might be performance issues with the CCNxServiceProxy and
the Service Framework components. Each service module needs to
be migrated, deployed, and then executed in the NetServ framework.
This process will introduce significant performance overhead.

• As noted in [14], there are some legal issues since service code
needs to be migrated and executed on different nodes. Not all ven-
dors allow the execution of their services on hosts out of their control.

• With the current CCNxServ implementation, services can accept
only one parameter, which is a content object in the form of a file.
This is a very simple case and real-world scenarios are much more
complicated.

• Both content and service have the same name prefix. In other words,
a client can not ask for a service on a certain content object unless
the service comes from the same content owner.

3.2 SoCCeR

3.2.1 Objectives

The Service Over Content-Centric Routing (SoCCeR) [7] is a Service-
Centric Networking project trying to tackle some of the limitations of CCN
that stand in the way of adding service support. In CCN there might be
redundant content retrievals when the router FIB table has no entry for
that specific content object and uses broadcast to find the content object
or the content object is not in the router Content Store (CS) and the router
FIB table has many route entries for the content object. In those cases the
Interest packet might reach many content object replicas, all of which will
respond with content packets but only one will reach the client.
This redundancy becomes very expensive (network traffic, memory con-
sumption, CPU time, and energy) when we deal with services, because
when a client sends an Interest message requesting a service, all service
replicas will execute the service but only one replies to the client. When re-
questing content, this redundancy is not a big problem because there is no
processing involved, but with services it might create significant overhead.
SoCCeR aims to extend CCN to support services by incorporating Ant
Colony Optimization (ACO) [16] in service routing. This allows routers to
select the best face from the list of FIB faces (satisfying service requests)

Major Research Projects in Service-Centric Networking 11

by providing them with some parameters like available bandwidth and ser-
vice load traffic. Briefly, the goal of SoCCeR is to forward service requests
to the best available service replica.

3.2.2 Naming Scheme

SoCCeR extends the CCN protocol to support services. The authors’ first
step was to work on the routing protocol and service instance selection
using Ant Colony Optimization ACO. The project supports the same nam-
ing scheme as CCN. In this sense, services in SoCCeR do not accept
parameters and service names are exactly like content names.

3.2.3 Architecture

Pheromone Table

p0ph1
ph2

service S1
PheromoneFace

0
1
2

Propability

p1
p2ph3

p0ph0
ph2

service S2
PheromoneFace

0
1

Propability

p1

FIB Table
Faces
0,1,3,7

Name
Content1

0S1
S2 1

Content2 1,2,5

CCN

SoCCeR SoCCeR

CCN

Pheromone Table

FIB Table

p0 > p1 > p2
p1 > p0

Interest Ants

Data Ants

SoCCeR NodeSoCCeR Node

Figure 2: General overview of SoCCeR architecture and the correspond-
ing routing tables.

12 IAM-14-004

The main idea is to make routers able to select the best face in the list of
FIB faces according to the requested service by providing them with some
parameters like available bandwidth and service load traffic. Each node
in the network contains a SoCCeR control layer above the CCN layer.
The SoCCeR control layer has access to the announced services and
each SoCCeR node has a pheromone table, which consists of the ser-
vice name, the associated faces, the corresponding pheromone values,
and the probabilities to determine the best face according to calculated
pheromone values as shown in Figure 2. The content entries in the FIB
are not changed, while service entries are changed by adding the highest
probability values (in the pheromone table) for each face. Consequently,
the service request will be sent to the face with the highest probability. In
Figure 2 there are three faces for Service1 (S1) but the probability of face0
is bigger than of face1 and face2. So, the request will be sent to the clos-
est instance over face0. At the same time, the request for service2 (S2) is
sent over face1, because it has the biggest probability in the pheromone
table.

Actually, SoCCeR requires modifying the CCN Interest and Data packets
to enable the SoCCeR control layer to work. Each SoCCeR node cre-
ates periodically an Interest Ant containing the current timestamp. Then it
sends this Interest to all faces. This process is repeated until the Interest
Ant finds the target service. When the service node receives the Interest
Ant it creates a Data Ant with a copy of the current timestamp and some
status information like memory and service load. Then, it sends it back
to the requesting SoCCeR node, tracking the bread crumb of the Interest
Ant. In this case each node calculates the round trip time between itself
and the service node using the status information and the time in the Data
Ant. In addition, it refreshes the pheromone value for the face on which
the data arrived. In this way, the pheromone table of each SoCCeR node
is updated by its own Data Ant as well as any Data Ant generated by other
nodes.

Each face probability represents the attractiveness of that face being tra-
versed by an Interest Ant. And this probability is calculated from the
pheromones that serve as the parameters for the probability formula. The
pheromone updates are an inverse function of path metrics and service
status. Currently, only two pheromones are considered in calculating the
face probabilities, which are the network delay and the service replica’s
workload. But still, the approach allows considering additional factors eas-
ily, because the formulas, which calculate the probabilities based on the
pheromones, are normalized and weighted.

Major Research Projects in Service-Centric Networking 13

3.2.4 Discussion

The advantages of SoCCeR can be summarized as follows:

• Routing is a decentralized probabilistic optimization heuristic, elimi-
nating the problem of single point of failure.

• The approach is scalable by nature and inherently implements load
balancing.

• Routers are very responsive to service failures and migration due
to the fact that Ant Interests, Ant Data, and evaporation effects are
always updating the pheromone tables.

But still, SoCCeR has some limitations:

• SoCCeR does not support sessions or stateful services, where con-
sequent service requests need to go to the same service instance.
This also complicates authentication and authorization mechanisms.

• There are many control messages (Ants) traversing the network con-
stantly. This might increase traffic overhead.

3.3 Serval

3.3.1 Objectives

Nowadays, we have plenty of services over the Internet provided by data
centers that contain thousands of machines. Currently, when a client looks
up a service using DNS, this client binds to the service provider location
very early in the connection establishment phase. Actually, the client might
be bound to a special machine called the load balancer. This load balancer
is responsible for choosing the best service replica that should serve the
client. In this way, the load balancer becomes a single point of failure. Also
service fault tolerance, replica migration, replica addition, and upgrading
are very challenging tasks. Moreover, this situation introduces a problem
on the client side. The problem is that when the client machine changes
between interfaces (WiFi, 3G, Ethernet, etc), the flow also breaks and the
connection should be reestablished.
Serval [9] is trying to tackle those problems by providing better abstraction
for services in the TCP/IP protocol stack. The Serval protocol stack
provides special interfaces to deal with service allocation and connection.

14 IAM-14-004

connect(serviceID)

Data delivery
semantics

demux(serviceID,
 flowID)

forward(IP)

Application

Transport

Network

Service Access

Replica

Replica

Replica

Data Center

Internet

Service Router

Router

1) connect(serviceID)

2) connect

3) communicate

Figure 3: General overview of Serval architecture with the new Serval
protocol stack.

3.3.2 Naming Scheme

In Serval, every service has an ID (name), which consists of three parts:
Provider-prefix + Provider-specific + Self-certifying. The provider prefix
(like Google for example) is obtained by an authorized Internet body like
IANA. The provider-specific part comprises to the specific service name
(like calendar or GMail). The self-certifying part represents a hash of
the public key and the service prefix allowing the services to be self-
authenticating without relying on a central certifying authority. The nam-
ing scheme in Serval combines a hierarchical structure with a flat naming
structure. An example service name could be: google.gmail.153AB119.

3.3.3 Architecture

Serval introduces some changes in the TCP/IP protocol stack. Serval in-
troduces a new layer called service access layer (SAL) between the In-
ternet and the transport layers as shown in Figure 3. The transport layer
responsibility of demultiplexing is moved to the SAL. The application layer
has the responsibility for connection establishment with the serviceID. The
SAL does the demultiplexing based on the serviceID and the flowID but not
based on the IP address and the port number. The service access layer
(SAL) has two types of tables: service table and flow table. The service
table maps serviceIDs to service replicas and the flow table maps flowIDs
to sockets or interfaces.
Serval changes the TCP/IP stack of clients and data centers. It adds a
new element, which is a service router, to move the functionality of load
balancers and proxies to the service router. Each service provider an-
nounces the availability of the service and all the replicas to the service

Major Research Projects in Service-Centric Networking 15

router. Suppose that there is a client request for a Gmail service. Then,
the service name has the form (google+gmail+534AB3). The client asks
the service router about a certain service. The service router chooses the
best available service replica and forwards the request to it through a net-
work (IP) router. The replica then answers back to the client, bypassing
the service router. This is just for the first packet, then all remaining pack-
ets can be demultiplexed by the flow table based on destination flowIDs,
without requiring the SAL header. This means that the remaining packets
do not go through the service router anymore as shown in Figure 3.
Serval makes it easy for data centers to implement load balancing, migra-
tion, upgrading, and fault tolerance because of the late binding between
the serviceID and the service replica and also because of the idea of a
flowID, which makes it possible for another replica to carry out the ses-
sion in case of a failure in the original replica. Because Serval supports
sessions using flowIDs, clients can move among connectivity interfaces
(WiFi, 3G, etc.) without interrupting the flow, which can be re-established
and resumed easily.

3.3.4 Discussion

Serval has many advantages:

• The Serval service naming provides uniqueness, allows for prefix
matching for scalability, and provides a way for self-authentication.

• The way Serval is implemented provides data centers with easy
load balancing, fault tolerance, and service maintenance (service dy-
namism).

• The idea of keeping a table for flowIDs, provides a way to implement
un-interruptible flows and sessions.

• Serval is a fully implemented project (The Serval website [17] works
using Serval infrastructure).

A few design decisions resulted in some disadvantages:

• There is a compatibility issue due to the fact that the TCP/IP stack
is dramatically changed. This can cause problems with deployability
and cost-efficiency, because all service providers and service clients
need to change their networking stacks.

• No caching mechanism is implemented in Serval.

16 IAM-14-004

3.4 Other Approaches in Service-Centric Net-
working

Service-Centric Networking is capturing the attention of many research
groups that have already many interesting projects with great potentials.

3.4.1 Named-Function Networking

Named Function Networking (NFN) aims to find a naming scheme to sup-
port services using CCN infrastructure. Service Naming in NFN [18] is
inspired by the λ-expression language. The authors use this expression to
formalize hierarchical service names. Actually, naming in NFN is similar to
CCNxServ with the advantage of allowing the service and the content to
have different naming prefixes (publishers).
The corresponding grammar for the λ-expression:
f(g(dat)), has the following NFN name: [ccn:nfn|/name /of/data |
/name/of/g | /name/of/f]. Suppose that we have this example
in λ-expression: /util/compress/zip /codec/mpeg4 (/disney/BugsLife))
applies two functions (mpeg4 and zip) on the parameter (dis-
ney/BugsLife). The corresponding NFN name for this example will be:
[ccn:nfn|/disney/BugsLife|/codec/mpeg4|/util/compress /zip]. The limita-
tion of this approach is that the service name can get complicated when
there are many parameters and service calls combined when we deal with
more complex real-world scenarios.

3.4.2 Object-Oriented Service-Centric
Networking (SCN)

In [19], the authors discuss how to name services in ICN and how to
carry out name resolution in the case of coupled and decoupled ICN ap-
proaches. They also discuss how to define and support routing metrics.
Besides, they focus on what the requirements of service management are
by extending ICN forwarding concepts like where and when to deploy ser-
vices in the network and how we can adapt and terminate services in a
Service-Centric Networking environment.
Another proposed design for Service-Centric Networking in [20] is built
based on an object-oriented approach. In this approach, called SCN, the
requested content or service are named as objects in a hierarchical struc-
ture in the CCN naming scheme. The authors proposed to list the service

Major Research Projects in Service-Centric Networking 17

object names in the routing header and then the service request is for-
warded to the first object name, then to the second and so on. In this
approach, servers are selected according to two parameters: the distance
between the client and the server and the distance between the server and
the required data.
In [21], the authors confirm the capability of CCN to support services. They
introduce a method to invoke a service, which could be requested by CCN
clients with the same name structure used by CCN. In their work, the au-
thors discuss three approaches to implement services over CCN: to im-
plement the service in the core of CCNx, at the publisher side, or as a
separate application. They inspect the advantages and disadvantages of
each approach to reach the conclusion that implementing the service as
a separate application is easier than others. The authors implemented a
prototype service as a proof of concept. Also, the authors note that there is
a disadvantage in this scenario. The problem is that when a client requests
a service on a content object (as a parameter), the reply to the client will
be signed by the service publisher but not by the content publisher.

18 IAM-14-004

CCNXServ Serval SoCCeR NFN

Number of parameters One No params No Params Multiple

Types of parameters Content - - Any

Human-readable Names Easy Hard Easy Hard

Naming scheme Hierarchical Flat+Hierarchical Hierarchical Hierarchical+Lambda

Architecture dependencies CCN+NetServ Modified TCP/IP stack CCN CCN

Service code migration Yes No No No

Changes in TCP/IP stack No Yes No No

Routing CCN Routers Service Routers CCN Routers CCN Routers

Session support No Yes No No

Scalability No Yes Yes Yes

Table 2: Comparison among the different SCN projects

4 Discussion
The main goal of the surveyed projects in Section 3 is the same. It is to
change the current Internet architecture and provide better abstractions
that suit the current Internet use. This abstraction is the notion of services
instead of hosts. Table 2 summarizes and compares the main aspects
among the surveyed projects.
CCNxServ and SoCCeR are built on top of CCN trying to extend its func-
tionality to support services. Serval has been built from scratch, signif-
icantly modifying the TCP/IP protocol stack. Even though, we can see
the similarity of the three architectures. They all have services with many
replicas, they all have service routers, and they all route service requests
based on service names or IDs. From the discussed advantages and dis-
advantages of the surveyed projects, we can provide some recommenda-
tions for successful future research works in the field of Service-Centric
Networking.

• A Service-Centric Networking architecture should be distributed as
much as possible. So, routing, service allocation [22], and service
execution should be handled in a distributed manner.

• The naming structure should be hierarchical (to be human readable)
with a self-authenticating mechanism to avoid using a central certify-
ing authority.

• Any Service-Centric Networking approach should integrate easily
with the current Internet architecture to ease the deployment phase

Discussion 19

and decrease costs.

• Sessions should be supported based on the fact that most services
require sessions.

• Usually, services are interfaces for entire systems. For example,
Google Maps service has a huge system behind, which is composed
of many complex components like maps, images, GPS, advertise-
ments, and transportation. In this sense, service code should not be
migrated or at most can be migrated to replicas authorized by the ser-
vice provider only. In other words, services should still be executed
within the control of their providers.

• The Service-Centric Networking approach should not interfere with
how services are implemented but only with how services are pub-
lished.

• Services should be treated like methods in any programming lan-
guage. They accept any number of parameters, can be aggregated,
take parameters of any data type, and return results of any data type.
Also, aggregating services should be supported [22]. Any limitation
on those requirements makes the approach infeasible.

• Service routers should be stateful and provide caching capabilities.

Whereas Service-Centric Networking is a new trend, there are still many
research challenges that should be addressed:

• Scalability: We are dealing with named services and content instead
of named hosts. The number of services and content items are much
bigger than the number of hosts. This leads to the fact that scalability
is a big issue in routing and naming.

• Legal Issues: Caching service implementation or results might intro-
duce some legal issues that should be studied further. For example,
YouTube does not legally allow the ISPs to cache videos.

• Costs: Since Service-Centric Networking is revolutionizing the Inter-
net architecture, deploying any new approach will introduce tremen-
dous costs. This poses some questions about the deployability of
Service-Centric Networking.

• Security: Security should be on the level of services and content but
not on the level of hosts. This should trigger many research activities
about authentication, authorization, and data secrecy.

20 IAM-14-004

5 Conclusions
In this paper, we gave a thorough introduction about Information-Centric
Networking in general and Service-Centric Networking in particular. We
motivated how Service-Centric Networking is a promising networking
paradigm for the future Internet. Services in this paradigm are first-class
citizens. Service replicas can be added, removed and updated easily be-
cause client communication with services is not bound to locations but
rather to names and identities. Then we surveyed three major Service-
Centric Networking projects. We examined and explored their implementa-
tions, limitations, and advantages. We demonstrated the lessons learned
from our study in the form of general guidelines and what should and
should not be done. This study can serve as a guidance for future re-
search works in Service-Centric Networking.

References 21

References
[1] T. Zahariadis, D. Papadimitriou, H. Tschofenig, S. Haller, P. Daras,

G. Stamoulis, and M. Hauswirth, “Towards a future internet architec-
ture,” in The Future Internet, vol. 6656 of Lecture Notes in Computer
Science, pp. 7–18, Springer Berlin Heidelberg, 2011.

[2] J. Pan, S. Paul, and R. Jain, “A survey of the research on future inter-
net architectures,” Communications Magazine, IEEE, vol. 49, pp. 26–
36, July 2011.

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of
the 5th international conference on Emerging networking experiments
and technologies, CoNEXT ’09, (New York, NY, USA), pp. 1–12, ACM,
2009.

[4] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network ar-
chitecture,” SIGCOMM Comput. Commun. Rev., vol. 37, pp. 181–192,
Aug. 2007.

[5] C. Dannewitz, J. Golic, B. Ohlman, and B. Ahlgren, “Secure nam-
ing for a network of information,” in INFOCOM IEEE Conference on
Computer Communications Workshops , 2010, pp. 1–6, 2010.

[6] N. Fotiou, D. Trossen, and G. Polyzos, “Illustrating a publish-subscribe
internet architecture,” Telecommunication Systems, vol. 51, no. 4,
pp. 233–245, 2012.

[7] S. Shanbhag, N. Schwan, I. Rimac, and M. Varvello, “Soccer: ser-
vices over content-centric routing,” in Proceedings of the ACM SIG-
COMM workshop on Information-centric networking, ICN ’11, (New
York, NY, USA), pp. 62–67, ACM, 2011.

[8] S. Srinivasan, A. Singh, D. Batni, J. Lee, H. Schulzrinne, V. Hilt, and
G. Kunzmann, “Ccnxserv: Dynamic service scalability in information-
centric networks,” in Communications (ICC), 2012 IEEE International
Conference on, pp. 2617–2622, 2012.

[9] E. Nordström, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Y. Ko,
J. Rexford, and M. J. Freedman, “Serval: an end-host stack for

22 IAM-14-004

service-centric networking,” in Proceedings of the 9th USENIX confer-
ence on Networked Systems Design and Implementation, NSDI’12,
(Berkeley, CA, USA), pp. 7–7, USENIX Association, 2012.

[10] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of
the 5th international conference on Emerging networking experiments
and technologies, CoNEXT ’09, (New York, NY, USA), pp. 1–12, ACM,
2009.

[11] “Ccnx project.” http://www.ccnx.org/. Visited December 06, 2013.

[12] A. Carzaniga and A. L. Wolf, “Content-based networking: A new com-
munication infrastructure,” in NSF Workshop on an Infrastructure for
Mobile and Wireless Systems, no. 2538 in Lecture Notes in Com-
puter Science, (Scottsdale, Arizona), pp. 59–68, Springer-Verlag,
Oct. 2001.

[13] A. Carzaniga, M. Rutherford, and A. Wolf, “A routing scheme for
content-based networking,” in INFOCOM 2004. Twenty-third Annu-
alJoint Conference of the IEEE Computer and Communications Soci-
eties, vol. 2, pp. 918–928 vol.2, 2004.

[14] M. Bari, S. Chowdhury, R. Ahmed, R. Boutaba, and B. Mathieu, “A
survey of naming and routing in information-centric networks,” Com-
munications Magazine, IEEE, vol. 50, no. 12, pp. 44–53, 2012.

[15] J. W. Lee, R. Francescangeli, W. Song, J. Janak, S. R. Srini-
vasan, M. S. Kester, S. A. Baset, E. Liu, H. G. Schulzrinne,
V. Hilt, Z. Despotovic, and W. Kellerer, “Netserv framework de-
sign and implementation 1.0,” technical report, Columbia Univer-
sity, http://academiccommons.columbia.edu/catalog/ac:135424, May
2011.

[16] T. Stützle and M. Dorigo, “Ant colony optimization,” in Evolutionary
Multi-Criterion Optimization (M. Ehrgott, C. Fonseca, X. Gandibleux,
J.-K. Hao, and M. Sevaux, eds.), vol. 5467 of Lecture Notes in Com-
puter Science, pp. 2–2, Springer Berlin Heidelberg, 2009.

[17] “Serval project.” http://www.serval-arch.org/. Visited November 26,
2013.

References 23

[18] C. Tschudin and M. Sifalakis, “Named functions for media delivery or-
chestration,” in Packet Video Workshop (PV), 2013 20th International,
pp. 1–8, Dec 2013.

[19] T. Braun, A. Mauthe, and V. Siris, “Service-centric networking exten-
sions,” in Proceedings of the 28th Annual ACM Symposium on Ap-
plied Computing, SAC ’13, (New York, NY, USA), pp. 583–590, ACM,
2013.

[20] T. Braun, V. Hilt, M. Hofmann, I. Rimac, M. Steiner, and M. Varvello,
“Service-Centric Networking,” pp. 1–6, June 2011.

[21] E. Cheriki, “Design and implementation of a conversion service for
content centric networking,” Master’s thesis, Institute of Computer
Science and Applied Mathematics University of Bern, 2012.

[22] X. Huang, “Protocol and system design for a service-centric network
architecture,” Master’s thesis, University of Massachusetts, 2010.

	Introduction
	Information-Centric Networking
	Data-Oriented Network Architecture
	Content-Centric Networking
	Combined Broadcast and Content Based Routing
	Discussion

	Major Research Projects in Service-Centric Networking
	CCNxServ
	Objectives
	Naming Scheme
	Architecture
	Discussion

	SoCCeR
	Objectives
	Naming Scheme
	Architecture
	Discussion

	Serval
	Objectives
	Naming Scheme
	Architecture
	Discussion

	Other Approaches in Service-Centric Networking
	Named-Function Networking
	Object-Oriented Service-Centric Networking (SCN)

	Discussion
	Conclusions
	References

