
Performance Evaluation of Service Support in
Content-Centric Networking

D. Mansour, T. Braun

Technical Report IAM-14-003 , 24. November 2014

Institut für Informatik und angewandte Mathematik, www.iam.unibe.ch





Performance Evaluation of Service Support in
Content-Centric Networking

Dima Mansour, Torsten Braun

Technical Report IAM-14-003 , 24. November 2014

CR Categories and Subject Descriptors:
C.2.1 [Computer-Communication Networks]: Network Architecture and
Design;
C.2.2 [Computer-Communication Networks]: Network Protocols;
C.2.3 [Computer-Communication Networks]: Network Operations;
C.2.4 [Computer-Communication Networks]: Distributed Systems;

General Terms:
Design, Management, Measurement, Performance

Additional Key Words:
Service-Centric Networking, Content-Centric Networking, Service Or-
chestration, Layered Architecture.

Institut für Informatik und angewandte Mathematik, Universität Bern





Abstract
NextServe is a Service-Centric Networking approach built on top of
Content-Centric Networking (CCN). NextServe allows for the publishing
and invocation of remote services on top of the name-based CCN routing.
NextServe has a human-readable naming scheme that supports caching,
parameter passing, and service aggregation.
In this report, we enhance the architecture and the naming scheme of
NextServe to support heterogeneous applications, services, and proto-
cols. We evaluate the performance of NextServe regarding service re-
sponse time and caching. We show that NextServe has an insignificant
overhead and supports CCN caching efficiently.





Contents
1 Introduction 1

2 Content-Centric Networking 2

3 NextServe Framework 4
3.1 NextServe Naming Scheme . . . . . . . . . . . . . . . . . . 4
3.2 NextServe Architecture . . . . . . . . . . . . . . . . . . . . 6

4 Evaluation 8
4.1 Testbed Specifications . . . . . . . . . . . . . . . . . . . . . 9
4.2 Experiment Specifications . . . . . . . . . . . . . . . . . . . 10
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3.1 Throughput Evaluation (No Cache) . . . . . . . . . . 10
4.3.2 Response Time Evaluation (with Cache) . . . . . . . 12

5 Related Work and Discussion 14

6 Conclusions 15

References 16





Introduction 1

1 Introduction
Current Internet protocols use IP addresses for routing messages. Clients
have to connect to hosts identified by host names and IP addresses to re-
trieve data. Information-Centric Networking (ICN), on the other hand, uses
content names for addressing, i.e., no location based identifiers. This ap-
proach is manifested in many research projects like Content-Centric Net-
working (CCN) [1], Data-Oriented Network Architecture
(DONA) [2], and Publish-Subscribe Internet Routing Paradigm (PSIRP)
[3]. The main motivation behind these projects is that named content is
a better abstraction for today’s communication problems, like security and
mobility issues, than named hosts.
Other projects like Service-Centric Networking (SCN) [4][5], Serval [6],
CCNxServ [7], and Named Function Networking (NFN) [8] try to extend
the idea of ICN towards providing in-network services making services at
the core of the communication model. Each project of those has its own
protocol, naming scheme, and architecture and cannot interact with the
conventional architectures or protocols making it very hard to combine the
current Internet architecture with future Internet architectures.
We believe that in the first phase of deploying any future Internet architec-
ture there should be room for coexistence and cooperation between legacy
and future Internet architectures. Otherwise, costs will make it unrealistic
to deploy a new communication model.
In our previous research [9], we developed a framework called NextServe
to support services over CCN. Parameters of published services were ei-
ther local parameters sent directly from the client, published content, or
other atomic services. In this paper, we enhance the naming scheme and
extend the architecture of NextServe [9] to support services over CCN with
minimal overhead, as well as to support other conventional communication
protocols like FTP and HTTP for parameter retrieval. We also conduct ex-
periments to measure the NextServe overhead and the service response
time under various request rates and cache conditions.
The rest of the paper is organized as follows: We give a short technical
background on CCN in Section 2. Then, we present the NextServe frame-
work, its naming scheme, and its architecture in Section 3. In Section 4,
we evaluate the performance and the cache usage in NextServe on a local
testbed. Then, we discuss the related work in the field of Service-Centric
Networking in Section 5. Finally, we conclude this paper in Section 6.



2 IAM-14-003

2 Content-Centric Networking
The Content-Centric Networking architecture [1] retrieves content objects
by name and not by location. In CCN, the consumer sends an Interest
message with the name of the requested content. The CCN router for-
wards the Interest over the network using name-based routing. When the
content publisher receives the Interest, it sends back the corresponding
content as a Data packet, which follows the bread crumb of the Interest
packet.
When a CCN router receives an Interest packet, it follows the steps in Fig-
ure 1. It checks whether the requested content object is already processed
and stored in the Content Store (CS). If it is, it sends it back to the con-
sumer without forwarding the Interest to the content publisher. This is the
caching mechanism in CCN. If there is no cached data in the CS for the
requested named content, the router checks the Pending Interest Table
(PIT) to determine whether another Interest for the same named content
already exists. If there is a corresponding entry in the PIT the router just
updates the PIT entry by adding the incoming face of the Interest. If there
is no similar entry with the same requested named content in the PIT, the
router registers the name in the PIT and forwards the Interest via the faces
specified in the Forwarding Information Base (FIB).



Content-Centric Networking 3

Receive an 
Interest message

Check if the 
corresponding 

data exists in CS

End

Start

Check if there is 
an entry in PIT

Check if there is 
an entry in FIB

Retrieve data from CS 
and send it to the 

interested face

Add the interested face 
to the corresponding 

entry

Add a new PIT entry

Send the Interest via 
FIB faces

Yes

Yes

Yes

No

No

No

Figure 1: Processing an incoming Interest in the CCN Router



4 IAM-14-003

3 NextServe Framework
Previously [9], we introduced NextServe as a Service-Centric Networking
approach built on top of CCN. It facilitates the request of services by name.
We extend the architecture of NextServe and modified the naming scheme
for services to support multiple protocols besides CCN.

3.1 NextServe Naming Scheme

/prefix1/prefix2/.../prefixN/!{“Param1” : “Value”,
                                           “Param2” : “Value”,
                                                            .
                                                            .            }

Figure 2: The general structure of a service name in NextServe

The new naming scheme for services in NextServe, which is presented
in this paper, is human-friendlier and more expressive. It consists of the
service name, which is a hierarchical CCN name, followed by “!”, and fol-
lowed by the service parameters in JSON [10] format (JavaScript Object
Notation) as described in Figure 2.
For example, suppose we have a service that takes three parameters;
the first parameter is an image file, the second parameter is an integer
representing the width, and the third parameter is an integer representing
the height. This service scales the specified image file to the specified
dimensions and returns the scaled image file. The Interest name of this
service can be as described in Figure 3.

/unibe/cds/scaleImage/!{ “file” : “ccnx:/dir/imgs/profile.bmp”,
                                        “width”  : “300”,                                                            
                                        “height” : “200” }

Figure 3: An example of a service with local parameters and published
content parameters.



NextServe Framework 5

Also suppose that we have a service that takes an image file of any for-
mat and transforms it into JPEG. In NextServe, we can pass the result of
the “scaling” service as a parameter to the JPEG conversion service. The
Interest name of such request is as in Figure 4. Note that the name pre-
fixes of the two services can be different without restricting the ability to
combine them.

/scn/toJPEG/!{ “image” : “/unibe/cds/scaleImage/!{ “file” : “ccnx:/dir/imgs/profile.bmp”,
                                                                            “width”  : “300”,                                                            
                                                                            “height” : “200” }” }

Figure 4: An example of a service that takes the result of another service
as a parameter.

This naming scheme is a combination of the hierarchical structure of CCN
names [1] and the attribute-value naming scheme in the Combined Broad-
cast and Content-Based routing (CBCB) [11]. It also has some similarities
with the current HTTP query format and RESTful web APIs. In that sense,
NextServe is not a novel idea itself but rather a novel application of a novel
combination of known techniques in a novel context.
This naming scheme has the following features:

• The service publisher publishes the service under the service name
only without the parameter part. When a CCN router receives a ser-
vice Interest, it takes only the service name into account without the
service parameters for routing the Interest. This is necessary be-
cause the parameter values change from one Interest to another and
they should not affect service routing. But still, the full name is taken
into account when the CCN router checks the Content Store (CS)
or the Pending Interest Table (PIT). In other words, routing is based
only on the service name and caching is based on the service name
with parameters.

• The service Interest name is user-friendly and expressive.

• NextServe allows for service overloading. Two services might have
the same name but with different parameter names or different num-
bers of parameters as in method overloading in object-oriented pro-
gramming languages.



6 IAM-14-003

• As explained in the example in Figure 4, service parameter values
can be simple values, content names, JSON objects, or even service
names. Also parameter values can be HTTP URIs, FTP URIs, or any
other URI-based content names.

3.2 NextServe Architecture
The NextServe framework follows the layered architecture as shown in
Figure 5. It consists of three layers: The Communication Protocols layer,
the Service Publishing layer, and the Services layer.

Service 
Publishing 

Layer

Name 
Parser

CCN 
Connector

Parameter
Retriever

Service
Publisher

CCN

Services

HTTP 
Adaptor

FTP 
Adaptor

FTP HTTP

Figure 5: NextServe architecture

The Services layer (at the top) contains the concrete implementations of
the published services. The Service Publishing Layer (in the middle) con-
tains all the necessary components responsible for publishing services,



NextServe Framework 7

handling Interests and service parameters, in addition to invoking service
implementations. The lowest layer contains the CCN core and other sup-
ported communication protocols.
The service publisher component is the only component that interacts with
the service implementation. When an Interest is received by the CCN con-
nector, it forwards it to the service publisher. The service publisher uses
the name parser to extract information about the service implementation to
invoke, as well as the values of the service parameters. If there is a param-
eter that needs to be fetched from remote nodes (content or service), the
parameter retriever issues requests or Interests through the appropriate
adapter and passes the fetched values to the service publisher to invoke
the service implementation.
In CCN, each Data packet corresponds to one Interest message only. Con-
tent objects can be composed of multiple packets (chunks). In that case,
the client sends an Interest for each chunk. In NextServe, the client sends
only one Interest to request a service and the Service Publishing Layer
establishes a stream over CCN to get all the chunks corresponding to the
service reply transparently from the client to keep the packet segmentation
implicit.
It is worth noting that services do not always produce the same results for
the same parameter values. Some services depend on external factors
outside the control of the client (time, database, etc.). For that reason,
the client can explicitly direct the service request not to be retrieved from
the cache but from the service provider itself. This is done by setting the
”AnswerOriginKind” flag in the Interest to 0 (do not use the cache) or to 1
(use the cache when possible).



8 IAM-14-003

4 Evaluation

Client 3 Router C Router B

/SCN/services/pdf_to_text/!{ 
“pageNumber”: “2”,
“pdf”: “/library/repository/cv.pdf”}

/SCN/services/pdf_to_text/!{ 
“pageNumber”: “2”,
“pdf”: “/library/repository/cv.pdf”}

/library/repository/cv.pdf

/library/repository/cv.pdf

/library/repository/cv.pdf

/library/repository/cv.pdf

/SCN/services/pdf_to_text/!{ 
“pageNumber”: “2”,
“pdf”: “/library/repository/cv.pdf”}

/SCN/services/pdf_to_text/!{ 
“pageNumber”: “2”,
“pdf”: “/library/repository/cv.pdf”}

/library/repository/cv.pdf

/library/repository/cv.pdf

Interest MessageData Message

Figure 6: Processing of an example service request (Interest) in our
testbed.

We conducted experiments using the NextServe framework on top of
CCNx 0.8.0. Everything was deployed on a local testbed to evaluate the
overall performance of SCN over CCN in terms of the following aspects:

• What is the overhead of NextServe regarding response time?

• How is the response time distributed among CCN, NextServe, and
service functionality?



Evaluation 9

• How beneficial is including the parameters in the Interest of a service
request considering cache utilization?

4.1 Testbed Specifications
We ran our evaluation experiment on three physical machines as shown
in Figure 7. Each machine has an AMD Opteron 252 CPU (1-core,
2600MHz) and 8GB of RAM. Each machine runs Linux Debian 7.0
“wheezy ” and Debian Xen Hypervisor for kernel-based virtualization.

CCN Router Service
ContentClient

Client 1

Client 2Client 3

Virtual Machine

Physical Machine

Router A

Router B

Router C

Figure 7: Overview of the testbed infrastructure.

As shown in Figure 7, each node (client, service provider, content provider,



10 IAM-14-003

and router) runs on a kernel-based virtual machine with 2GB of RAM. Each
node also runs “ccnd”, which is the routing daemon for CCNx. All network
connections are Ethernet 1Gbps.

4.2 Experiment Specifications
The experiment is composed of a service provider, a content provider, and
three clients. The service name is “/SCN/services/pdf to text”. It takes two
parameters; the PDF file content name and the page number. Then the
service returns, as a string, the text of the specified page in the specified
PDF file.
The content provider publishes many PDF files to the CCN network with
the name prefix “/library/repository/ ” followed by the file name. Each of the
published files is 200KB of size to avoid affecting the evaluation in an un-
expected way. Files with different sizes takes different times for processing
and communicating over the network.
Figure 6 explains how a client issues an Interest message for the
pdf to text service with a content name as a parameter. After receiving the
Interest, the service provider issues an Interest for the specified content,
fetches the corresponding Data message, executes the service functional-
ity, and sends back the result as a Data message.

4.3 Results

4.3.1 Throughput Evaluation (No Cache)

In this experiment, we disabled CCN caching and made the clients request
the service at different rates, scaling from one request per second to 25
requests per second. In other words, the service provider first receives
1 request per second for five seconds. Then it receives 2 requests per
second for five seconds, then 3 requests per second for five seconds, and
so on up to 25 requests per second. We made sure that all sent Inter-
ests reach the service provider by changing the service parameters so
that no Interest is duplicated in the PIT of any CCN router. After that we
take the average of measures of response times, service execution times,
and NextServe overheads at each request rate. Note that for each re-
quest: Response Time = Service Execution Time + NextServe Overhead
+ CCN Overhead. Response time is the end-to-end time from the moment
a client issues a service Interest until it receives the reply. Service execu-
tion time, NextServe overhead, and CCN overhead are the times spent in



Evaluation 11

0	
  

500	
  

1000	
  

1500	
  

2000	
  

0	
   5	
   10	
   15	
   20	
   25	
  

M
ill
is
ec
on

ds
	
  

Requests	
  per	
  Seecond	
  

Response	
  Time	
  

	
  Service	
  Execu6on	
  Time	
  

	
  NextServe	
  Overhead	
  

Figure 8: The measures of response time, service time, and NextServe
overhead at different request rates.

the services layer, the service publishing layer, and the CCN layer corre-
spondingly as in Figure 5.
Figure 8 shows the measurements of the various types of overhead in
the experiment. There are many observations regarding this experiment.
First, as expected, the per-Interest overhead of NextServe at the service
provider node is constant (≈0.5 ms) and statistically insignificant. Second,
the service execution time is also constant (≈57 ms). Third, and most im-
portantly, the response time is constant (≈75 ms) for up to 17 requests per
second. After that, the response time starts to increase linearly. We found
out that the main reason for this result is that CCNx is not multi-threaded.
This is a big problem in the current CCNx implementation because the
CPU cores are not well-utilized. So each incoming request must wait until
all previous requests have been handled. This explains the linear increase



12 IAM-14-003

in response time after 17 requests per second, which is in our scenario the
maximum service throughput of the service (the number of requests pro-
cessed per second). In the current implementation of CCNx, the service
throughput can be computed as follows:

ServiceThroughput ≈ 1000

ServiceT ime(millisecond)
.

It is also worth noting that the CCN overhead is constant as long as the
request rate is below the service throughput.

4.3.2 Response Time Evaluation (with Cache)

71.98	
  

66.022	
  

61.012	
  
58.7	
  

54.904	
  

48.866	
  

37	
   37.026	
   37.386	
   37.476	
  

0	
  

10	
  

20	
  

30	
  

40	
  

50	
  

60	
  

70	
  

80	
  

5	
   10	
   15	
   20	
   25	
   30	
   35	
   40	
   45	
   50	
  

Re
sp
on

se
	
  T
im

e	
  
(M

ill
is
ec
on

ds
)	
  

Percentage	
  of	
  Similar	
  Requests	
  (Answered	
  from	
  the	
  cache)	
  

Figure 9: The gain in response time when CCNx cache is enabled and the
request rate is at 15 requests per second. Confidence = 95%

In this experiment, we enabled CCNx caching. We wanted to see whether
NextServe preserves the cache support of CCN. We study the caching ef-
fect when there are similar requests to the service provider with the same



Evaluation 13

856.65	
  

636.45	
  

414.86	
  

314.65	
  

188.29	
  

54.23	
   37.36	
   36.97	
   37.37	
   37.13	
  

0	
  

200	
  

400	
  

600	
  

800	
  

1000	
  

1200	
  

5	
   10	
   15	
   20	
   25	
   30	
   35	
   40	
   45	
   50	
  

Re
sp
on

se
	
  T
im

e	
  
(M

ill
is
ec
on

ds
)	
  

Percentage	
  of	
  Similar	
  Requests	
  (Answered	
  from	
  the	
  cache)	
  

Figure 10: The gain in response time when CCNx cache is enabled and
the request rate is at 25 requests per second. Confidence = 95%

parameter values. We fix the request rate and study the response time
gain when there are similar requests issued by various clients. Those re-
quests will be retrieved from the closest node, to the client, running “ccnd”.
First, we fix the request rate at 15 requests per second, which is below
the service throughput, and run the experiment for 10 seconds for each
value of the percentage of similar requests. Figure 9 shows the averages
for each data point with a confidence interval of 95%. We can see the
decrease in response time when the percentage of similar requests in-
creases. Also we notice that the response time hits a lower limit of around
37 milliseconds when the percentage of similar requests is 35%. There is
no gain after that threshold because response time consists mostly of the
CCN overhead.
More interestingly, when we set the request rate above the service
throughput at 25 requests per second, the results in Figure 10 show that
the response time follows an exponential decay. In other words, the more
popular a service is, the more it benefits from CCN caching.



14 IAM-14-003

5 Related Work and Discussion
CCNxServ [7] is built to support services on top of CCN. However, CC-
NxServe does not allow for local parameters or service orchestration as
supported in NextServe. Also it requires the service and the parameter
content to have the same name prefix, introducing a major restriction on
service implementation and publishing.
Serval [6] is an approach to service-centric networking, which provides
special interfaces and layers in the TCP/IP stack to support service con-
nections, sessions, allocation, and load balancing. Serval achieves high
performance and mobility support, but it does not have any caching mech-
anism and it requires major changes in the TCP/IP stack.
To our knowledge, there are few, if any, evaluation studies of service sup-
port over CCN. On the other hand, performance of CCN was investigated
through many experimental studies. Carofiglio et al. [12] show that content
caching plays a significant role in the efficiency of content delivery in CCN.
They also proposed that dynamic storage allocation based on the popu-
larity of content enhances the storage efficiency in the CCN router cache.
The effect of the popularity of content on the cache performance was also
investigated by Rossi and Rossini [13]. Guimaraes et al. [14] showed that
even though CCN introduces an overhead of 19% compared to TCP/IP,
CCN outperforms TCP/IP when the number of consumers increases. The
same results were reported by Jacobson et al. [1].
All the aforementioned principles and conclusions apply to NextServe be-
cause it does not change the CCN communication model but rather uses
it as the underlying protocol for offering services.



Conclusions 15

6 Conclusions
In this paper, we presented the NextServe framework for supporting ser-
vices over CCN. NextServe acts as a middleware layer over CCN and
other conventional protocols. It allows for publishing services over CCN
and for retrieving content parameters over CCN, FTP, HTTP, and any other
URI-based content-name protocol. We showed how service orchestration
can be achieved through the simple and user-friendly naming scheme of
NextServe.
Performance of NextServe was evaluated regarding response time and
cache utilization. We showed that NextServe adds very little overhead
to CCN and benefits from the caching mechanism of CCN. This usage
of caching enhances the performance time significantly when there are
similar requests to the same service even when the request rate is higher
than the service threshold.



16 IAM-14-003

References
[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,

and R. L. Braynard, “Networking named content,” in Proceedings of
the 5th international conference on Emerging networking experiments
and technologies, CoNEXT ’09, (New York, NY, USA), pp. 1–12, ACM,
2009.

[2] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network ar-
chitecture,” SIGCOMM Comput. Commun. Rev., vol. 37, pp. 181–192,
Aug. 2007.

[3] N. Fotiou, D. Trossen, and G. Polyzos, “Illustrating a publish-subscribe
internet architecture,” Telecommunication Systems, vol. 51, no. 4,
pp. 233–245, 2012.

[4] T. Braun, V. Hilt, M. Hofmann, I. Rimac, M. Steiner, and M. Varvello,
“Service-Centric Networking,” in Communications Workshops (ICC),
2011 IEEE International Conference on, pp. 1–6, IEEE, June 2011.

[5] T. Braun, A. Mauthe, and V. Siris, “Service-centric networking exten-
sions,” in Proceedings of the 28th Annual ACM Symposium on Ap-
plied Computing, SAC ’13, (New York, NY, USA), pp. 583–590, ACM,
2013.

[6] E. Nordström, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Y. Ko,
J. Rexford, and M. J. Freedman, “Serval: an end-host stack for
service-centric networking,” in Proceedings of the 9th USENIX confer-
ence on Networked Systems Design and Implementation, NSDI’12,
(Berkeley, CA, USA), pp. 7–7, USENIX Association, 2012.

[7] S. Srinivasan, A. Singh, D. Batni, J. Lee, H. Schulzrinne, V. Hilt, and
G. Kunzmann, “Ccnxserv: Dynamic service scalability in information-
centric networks,” in Communications (ICC), 2012 IEEE International
Conference on, pp. 2617–2622, 2012.

[8] C. Tschudin and M. Sifalakis, “Named functions for media delivery or-
chestration,” in Packet Video Workshop (PV), 2013 20th International,
pp. 1–8, Dec. 2013.

[9] D. Mansour, T. Braun, and C. Anastasiades, “Nextserve framework:
Supporting services over content-centric networking,” in The 12th In-



References 17

ternational Conference on Wired and Wireless Internet Communica-
tions, Springer, 2014.

[10] D. Crockford, “The application/json media type for javascript object
notation (json),” RFC 4627, IETF, 7 2006.

[11] A. Carzaniga, M. Rutherford, and A. Wolf, “A routing scheme for
content-based networking,” in INFOCOM 2004. Twenty-third Annu-
alJoint Conference of the IEEE Computer and Communications Soci-
eties, vol. 2, pp. 918–928 vol.2, 2004.

[12] G. Carofiglio, V. Gehlen, and D. Perino, “Experimental evaluation of
memory management in content-centric networking,” in Communica-
tions (ICC), 2011 IEEE International Conference on, pp. 1–6, June
2011.

[13] D. Rossi and G. Rossini, “Caching performance of content centric net-
works under multi-path routing (and more),” Relatório técnico, Tele-
com ParisTech, 2011.

[14] P. H. V. Guimaraes, L. H. G. Ferraz, J. V. Torres, D. M. Mattos,
P. Murillo, F. Andres, L. Andreoni, E. Martin, I. D. Alvarenga, C. S. Ro-
drigues, et al., “Experimenting content-centric networks in the future
internet testbed environment,” in Communications Workshops (ICC),
2013 IEEE International Conference on, pp. 1383–1387, IEEE, 2013.


	Introduction
	Content-Centric Networking
	NextServe Framework
	NextServe Naming Scheme
	NextServe Architecture

	Evaluation
	Testbed Specifications
	Experiment Specifications
	Results
	Throughput Evaluation (No Cache)
	Response Time Evaluation (with Cache)


	Related Work and Discussion
	Conclusions
	References

