
Reliability Evaluation and Diagnostics with
Propositional Directed Acyclic Graphs

J. Jonczy, R. Haenni

Technischer Bericht iam 09-004 vom 24. Juni 2009

Institut für Informatik und angewandte Mathematik, www.iam.unibe.ch

Reliability Evaluation and Diagnostics with
Propositional Directed Acyclic Graphs

Jacek Jonczy, Rolf Haenni

Technischer Bericht iam 09-004 vom 24. Juni 2009

CR Categories and Subject Descriptors:
[I.2.4 Knowledge Representation Formalisms and Methods]: Representa-
tion languages; [C.4 Performance of Systems]: Reliability, availability, and
serviceability; [G.3 Probability and Statistics]: Reliability and life testing;
[G.2.2 Graph Theory]: Network Problems;

General Terms:
Theory, Reliability, Design, Algorithms

Additional Key Words:
reliability theory, network reliability, modular systems, diagnostics, propo-
sitional directed acyclic graphs, algebraic path problems

Institut für Informatik und angewandte Mathematik, Universität Bern

Abstract
The theories of reliability and diagnostics, despite their close relationship,
have been mostly treated as two separate fields in the literature. How-
ever, it has been shown in the past few years that their dual character
can be exploited in the context of modular systems. Such systems have
a great practical impact on reliability computation and diagnostics, since
their structure can be used to significantly reduce the computational effort
needed for their evaluation. It is also known that the underlying structure
function can be represented in a compact way by Propositional Directed
Acyclic Graphs (PDAGs), which form a powerful Boolean representation
language. Recently, PDAGs have been also applied successfully in the
context of network reliability.
The present paper continues this line of research and proposes several
extensions. First, we introduce a unifying formal model for system de-
scription, reliability evaluation, and diagnostics. Besides the formal speci-
fication of modular systems and reliability networks, the model allows net-
works and modules to be combined arbitrarily, leading to so-called hybrid
systems. The underlying computational machinery provided by PDAGs al-
lows to evaluate reliability in a convenient and efficient way. Second, we
provide concise algorithms for both generating structure functions with re-
spect to network reliability problems as well as for PDAG manipulations,
and we also examine their complexity. Third, we show that posterior prob-
abilities of system elements can be efficiently computed using PDAGs for
diagnostic purposes, in particular in modular systems.

Contents
1 Introduction 1

1.1 The Theories of Reliability and Diagnostics 2
1.1.1 Reliability . 2
1.1.2 Diagnostics . 4

1.2 The Structure of Complex Systems 6
1.2.1 Modularity of Systems 6
1.2.2 Networks . 7
1.2.3 The Structure Function and Computational Aspects 8

1.3 Contributions and Outline 9

2 A Unifying Formal Model for Modular Systems and Reliability
Networks 11
2.1 Preliminaries . 11
2.2 Coherent Systems . 12

2.2.1 Deterministic Properties of Coherent Systems . . . 13
2.2.2 Probabilistic Properties of Coherent Systems 13

2.3 Modular Systems . 18
2.4 Reliability Networks . 22

2.4.1 Network Model . 22
2.4.2 Network Reliability Problems 23

2.5 Hybrid Systems . 25
2.5.1 Hybrid Networks . 26
2.5.2 Hybrid Systems . 27

3 Reliability Evaluation 30
3.1 Representing the Structure Function 30

3.1.1 Existing Methods . 30
3.1.2 Propositional Directed Acyclic Graphs 32

3.2 Modular System Reliability 34
3.3 Network Reliability . 37

3.3.1 Generating the Structure Function 38
3.3.2 Computing Network Reliability 47

3.4 Hybrid System Reliability 51

4 Diagnostics 54
4.1 The Basic Setting . 54
4.2 Computing Posterior Probabilities 55

5 Conclusion & Future Research 59

A Proofs 60

References 64

Introduction 1

1 Introduction

Failures in complex technical systems are inevitable; there is probably no
communication network, power plant, or production system which oper-
ates free of failures throughout its whole life time. Despite the overwhelm-
ing advances of the past years in modern technologies, it is still virtually
impossible to produce hundred per cent reliable technical equipment. As
a consequence, failures of system components are caused by material
deterioration, construction flaws, unexpected random failures, or other de-
fects. A system failure on its part may be caused by potentially any faulty
component or a combination thereof. As a matter of fact, the spectrum of
today’s dependable systems is large and their correct operation is accord-
ingly crucial for economy and society. To guarantee thus a high level of
reliability, such systems demand a careful and profound analysis. This is
the subject of reliability theory: the investigation of the behaviour (correct
functioning) of a system given the behaviour of its components. We give a
brief overview of reliability in the first part of Section 1.1.
But this is only one part of the game. Another fundamental problem arises
when the system (or some parts thereof) is (are) observed to be malfunc-
tioning. The goal is then to determine all possible diagnoses that explain
the cause of the observed malfunction. Typically, when the system breaks
down, one needs to know which component(s) is (are) responsible for the
crash. This in general non-trivial task is called diagnostics and is an impor-
tant field in Artificial Intelligence research. We look more closely on this
topic in the second part of Section 1.1.
In the light of reliability and diagnostics, it is fundamental to study the inter-
nal structure of a system since it affects its dynamic and static properties,
typically the fault-tolerance and vulnerability. Consequently this has a sig-
nificant impact on reliability analysis and diagnostics. In the context of this
paper, two structure-related issues are of particular importance: modules
and networks. They are both discussed in Section 1.2.
It turns out that both reliability analysis and diagnostics are closely inter-
connected problems. Surprisingly, existing literature often lacks this view;
the fields are mostly discussed separately. Exceptions include [1, 2] and
[3]. In the latter, the authors already proposed a common computational
framework for reliability and diagnostics in the context of modular systems.
This paper continous the approach from [3] and extends the framework by
considering reliability networks, hybrid systems (a combination of modular
systems and reliability neworks), and multistate systems as further sub-
jects of analysis. This results in a new unifying framework for reliability

2 iam 09-004

and diagnostics in the context of modular, network, hybrid, and multistate
systems.

1.1 The Theories of Reliability and Diagnostics
This section presents a short overview of reliability and diagnostics. It pro-
vides a classification of approaches and surveys the respective techniques
used in the context of each model. The goals are to underline the relation-
ship between reliability and diagnostics and to help the reader to better
position our approach with respect to existing methods.

1.1.1 Reliability

In the early 1960s reliability gained enormous attention, resulting in a wide
range of mathematical models and analysis techniques, including distri-
bution functions, renewal theory, importance measures, and optimization
techniques. Many of them still form the theoretical fundament in today’s
reliability theory. Important branches of reliability like network reliability,
software reliability, and system reliability use and share many of these
methods. See [4] and [5] for excellent historical surveys of reliability the-
ories. Despite their variety both in theory and application, reliability meth-
ods focus on a common goal: to assess the reliability of a given system.
At this point we shall look at the notion of reliability more closely. Reliability
is generally concerned with the ability of a system to carry out a desired
operation. The definition of reliability according to ISO 8402 (1986, 3.18)
goes in a very similar direction:

The ability of an item to perform a required function under
stated conditions for a stated period of time. The term “re-
liability” is also used as a reliability characteristic denoting a
probability of success or a success ratio.

Inspired by this definition we make a first general distinction between static
and dynamic models of reliability. The study of dynamic models is moti-
vated by the fact that physical systems usually alter in the course of time.
These models take this into account by investigating various lifetime distri-
butions of a system. Probably the most important measure in the research
of dynamic models is the reliability function, also known as survivor func-
tion. It expresses the probability of an item to operate without failure for
a given amount of time. Closely related is the failure rate, which reveals

Introduction 3

information about an item’s conditional probability of failure (on the limit),
after a certain period of survival. The failure rate has played an essen-
tial role in past efforts to provide a proper mathematical classification of
reliability functions, which finally resulted in the well-known IFRA closure
theorem for coherent systems. Dynamic models allow a more realistic and
accurate analysis of a system’s behaviour, but they are inherently more
complex than static models. The latter assume a fixed time interval or
point in time, which reduces the probability distributions to single probabil-
ity values. Of course this is a considerable simplification, but it allows to
concentrate on the structure of a system and to leave out certain aspects
like material deterioration which are not relevant for certain applications.
A common categorization encountered in reliability as well as in diagnos-
tics are qualitative and quantitative methods. Qualitative methods primar-
ily aim at accurately representing a system’s structure function. Roughly
speaking, the structure function describes the logical dependence be-
tween the operation of a system and the operation of its constituent com-
ponents. There exist two fundamental representations of the structure
function, namely pathsets and cutsets. A pathset is a subset of compo-
nents whose operation guarantees the system operation, and a cutset is a
subset of components whose failure implies system break-down. Pathsets
and cutsets are thus dual representations. In monotone systems it suffices
to consider minimal pathsets and minimal cutsets, as we shall see later.
Much more sophisticated representations exist; we return to this topic in
more detail in Subsection 3.1. From a quantitative point of view, one is
interested in computing some meaningful measure of system operation or
failure, whether its nature is dynamic or static. The range is considerable
and goes from a simple probability of operation (or failure) and continues
with reliability functions, failure rates, system state distributions, expecta-
tion value of operation, and many more. Besides applying exact methods,
such measures are often approximated using Monte-Carlo techniques, or
estimated using bounding techniques.
Another distinction is made between a success-oriented and a failure-
oriented approach. In the former, one examines different scenarios of
correct system behaviour (the success space), while in the latter one
concentrates on various failure scenarios (the failure space). This is re-
flected by two popular diagram-based methods, namely Reliability Block
Diagrams (RBD) and Fault Tree Diagrams (FTD).1 Both are often used in
the context of modular systems, see Subsection 1.2. The key difference

1As long as not quantified, diagram-based models such as RBD and FTD are some-
times refered to as non-state-space models.

4 iam 09-004

between these methods is that block diagrams represent the system’s suc-
cess space while fault trees represent the failure space, resulting in the
same dual relationship as between pathsets and cutsets. RDBs graphi-
cally represent the logical (reliability-wise) arrangement of a system’s com-
ponents which however may differ from how the components are physically
arranged. Usually, an RBD is constructed bottom-up, i.e. starting from
the lowest-level components, and successively grouping them together to
modules which are in turn grouped to even larger modules. In this way, the
success state of the system or module is expressed in terms of the suc-
cess states of its individual components. The dual representation provided
by fault trees allows a failure-driven view by logically arranging events in
form of a tree: the nodes represent undesired events (often failures of
system elements) and are connected by logical gates (and, or, etc.) to
higher-level nodes. The construction is usually top-down: the system fail-
ure (called top-level event) is expressed in terms of intermediate events (its
causing or initiating events), and so on, until component failures (called ba-
sic events) are reached. The construction of a fault tree is usually part of
an elaborate process known as fault tree analysis (FTA).
Normally it is easy to convert a fault tree into a corresponding RBD, with
some exceptions though.2 The converse however is in general more diffi-
cult, especially if complex (e.g. network-like) configurations are involved.
Both RBD and FTD have been and still are extensively used by engineers
for reliability and risk assessment of industrial systems, and they are in-
tegrated in many reliability-oriented software tools. Since these methods
are diagram-based, they offer an excellent and intuitive means to under-
stand, model, and analyse complex systems. Their usage is thus by far
not restricted to scientists and engineers, but is also very common among
system designers and operators, managers, and other people involved in
systems analysis. Throughout this paper we will also make use of FTDs
and RBDs, but only for illustrative purposes.

1.1.2 Diagnostics

Let us now turn the attention to diagnostics, the second topic of interest
in this paper. Diagnostics is concerned with the malfunctioning of sys-
tems, or more precisely with finding the causes of a system’s undesired
behaviour. Most approaches are model-based, collectively known under
the term model-based diagnostics. In a model-based approach, a suit-
able description (the model) of the original, physical system (the artifact)

2The xor gate for instance has no RBD equivalent.

Introduction 5

is available.3 The level of granularity or detail of the model may vary sig-
nificantly, depending on the availability of empirical data about the artifact
and also on the particular purpose of the model, e.g. troubleshooting or
model refinement. The model may comprise the logical interconnectivity
of the components, component definition, input and output of components,
structure and design information, signal flow, and so on. Such a descrip-
tion is usually expressed in some formal language, typically sentences in
constraint or first-order predicate logic, see [6, 7, 8, 9, 10]. The ultimate
goal of the diagnostic task is to find all possible explanations for the be-
havioral discrepancy between the predicted behaviour of the model and
the observed behaviour of the artifact. In the literature, different notions
exist for the concept of explanations: [7] use the term minimal candidates,
while [6] defines equivalent minimal diagnoses. The minimal candidates or
diagnoses correspond to minimal sets of faulty components. Later, due to
the discovered inadequacy of the concept of minimal diagnoses, the term
kernel-diagnoses has been introduced by [8].
The methods for diagnostics as described above are mostly qualitative,
but they are sometimes combined with quantitative methods. As for the
qualitative part, the inference of candidates or diagnoses is typically ac-
complished by means of assumption-based truth maintenance systems
(ATMS), at least in earlier literature: see [7] and [11]. Later approaches
use probabilisitic argumentation systems (PAS), as in [9]. Quantitative
methods include Bayesian techniques or minimum entropy methods, see
[7]. The latter are used in conjunction with the incremental process of
candidate generation, in which successive measurements are necessary
to identify the set of effectively faulty components. The minimum entropy
method allows the diagnostician to decide what measurement is the best
to make next: it is the one that minimizes the expected entropy of the
candidate probabilities resulting from this measurement.
Generally, diagnostics can be approached from two different sides. From
an engineering perspective, diagnostics consists in troubleshooting techni-
cal systems to identify broken components. From a scientific point of view,
the objective is rather to successively refine the model of a physical system
based on empirical data. In either case, the observed model-artifact differ-
ences are crucial for the ultimate task: in the case of troubleshooting the
model is assumed to be correct, so any model-artifact discrepancies indi-
cate failures within the artifact, while in the case of model refinement the
artifact is assumed to work properly, hence observed differences require

3In the engineering domain, often very accurate models of physical devices such as
electronic circuits exist, based on structural information about the original device.

6 iam 09-004

the model to be adapted.
In this paper we adopt the former approach for diagnostics, that is we pre-
sume the correctness of the model so that any observed failures indicate
malfunctions of the artifact. As for the model, we use a compact structure
function representation, in fact the same as for reliability. The structures
and computations resulting from reliability evaluation are then reused for
diagnostics for which we apply a probabilistic (Bayesian) approach.

1.2 The Structure of Complex Systems
Besides the stochastic properties of system components, the way in which
they are assembled may have a significant impact on the overall system
performance. To know the structure of a system is thus essential with
regard to reliability analysis and diagnostics. In this subsection we briefly
survey two common system architectures, namely modular systems and
(reliability) networks.

1.2.1 Modularity of Systems

Technical systems often consist of components which themselves also
constitute proper subsystems. Such subsystems may in turn comprise
even smaller subsystems, and so on. This allows to look at the sys-
tem from different levels of granularity: on the highest (or most coarse)
level, the system consists simply of components which are considered as
a whole, so that any underlying details are hidden. The system operation
then just depends on the operation of those components. On a deeper
(or finer) level however these components are considered themselves as
systems which contain other subsystems or components. Then such a
component is considered operational only if the underlying subsystem is
operational. The decomposition of a system into smaller subsystems, also
called modules, can be continued recursively until atomic components are
reached, i.e. elements which cannot be further decomposed. This pro-
cess leads to a so-called modular decomposition of the system, see [12].
Since modules are supposed to be mutually disjoint in terms of atomic
components they comprise, a modular decomposition of a system may be
represented in form of a hierarchical structure which is in fact a tree, called
organizing tree. The root of this tree is formed by the top-level module and
describes the overall system, intermediate nodes correspond to modules,
and the leaves represent (atomic) system components.

Introduction 7

The modular view of a system obviously has great practical importance
since many technical systems are built up from nested modules. An im-
portant advantage of a modular structure is that in case of a defect it is
often sufficient to exchange the faulty module as a whole without affecting
the rest of the system. Moreover, a modular structure reduces the com-
putational effort in both reliability analysis and diagnostics compared to a
non-modular structure, as we shall see in the sequel.

1.2.2 Networks

Numerous technical large-scale systems appear in form of networks, typ-
ically communication and transportation networks, electrical power net-
works, and many others. Several decades ago, with the advent of net-
works as new, decentralized system architecture (e.g. to build fail-proof
computer networks), considerable efforts have been invested in the explo-
ration of various network topologies and the reliability analysis of the re-
sulting networks. Since then, a wide range of models and techniques has
been devoted especially to the computation of the reliability of networks,
collectively known under the term network reliability, see [13, 14, 15, 16].
Today the task of network reliability computation arises in two fundamen-
tally different situations. In the first case, one wishes to assess the relia-
bility of a physical network, i.e. an existing technical system, based on its
structure and stochastic properties. In the second case, some collection of
data is modelled in terms of a graph or network, so that any relevant prob-
lems (queries) to be solved with respect to this data can be formulated as
network reliability problems.4

The standard representation of networks by means of graphs allows to
view a network simply as a set of nodes and edges. This is a simple model,
but it is sufficient for many applications. Hence not surprisingly, graph
problems and network problems are intimately related. As a consequence,
the broad palette of graph-theoretical methods can be used to solve basic
network reliability problems. Unfortunately, such methods are often not
scalable in practice since their complexity grows exponentially with the
network size. This has lead to the fact that theoretical complexity bounds
for network reliability computations are often obtained by analogy with the
solution of corresponding graph problems. This has been explored by [17]
to show that most relevant network reliability problems are #P-complete in

4Such applications include certification or trust graphs, networks of biological data,
social networks, citation networks, and many others.

8 iam 09-004

the general case.5

To assess the reliability of a network, many reliability measures have been
introduced which can be divided in separate classes: performability, vul-
nerability, connectivity, and many others. Most research in network reliabil-
ity however is devoted to connectivity-based measures. As the name sug-
gests, these measures are concerned with the connectivity of a specified
subset of network nodes. We shall stick to connectivity-based measures
in this paper as well.

1.2.3 The Structure Function and Computational As-
pects

The key to all reliability computations is the structure function of the sys-
tem: once the component reliabilities are known, the structure function
allows to compute the reliability of the system. This raises two questions:
first, how to obtain the structure function, and second, once the structure
function is given, to what extent does the system layout affect the structure
function and hence subsequent computations.
In a modular system, the physical structure is reflected in the logical struc-
ture, hence the structure function. This means that the structure function
can be directly derived from the organizing tree. Reliability computation
can be then performed bottom-up: starting at the leaves, compute the re-
liabilities of intermediate modules, and continue recursively until the root
is reached at which the overall system reliability is obtained. The crucial
point is now that a modular decomposition allows to compute the relia-
bility of the system by computing intermediate structure functions which
are possibly much less complex than the overall (non-modular) structure
function. This reduces the computational effort needed for exact reliabil-
ity analysis with respect to a non-modular approach which is #P-hard in
general. The module reliabilities can be computed independently of each
other, and furthermore the tree structure of the system guarantees that the
respective computations remain feasible. We show how this works in Sub-
section 3.2. Modularity also comes into play for the diagnostic task, as we
will see in Section 4: once the system and module reliabilities have been
computed, we can use these results to compute posterior probabilities of
modules and components given some observations about the system.
In contrast to a modular system, a network does not inherently reveal a
logical structure unless a specific reliability problem has been specified.

5It is nevertheless desirable to compute the exact reliability in certain applications,
although this is only feasible for small-scale networks or other restricted network classes.

Introduction 9

So the structure function of a network depends on two criteria: on the one
hand, it is affected by the network topology, and on the other hand it is
determined by the specified problem, that is, some reliability measure. In
the general case, exact network reliability computation is provably infea-
sible with respect to most reliability measures, see [17]. For this reason,
research concentrates more and more on polynomial-time methods for re-
stricted network classes or on approximation techniques. Our approach
is based on a compact structure function representation and can be used
in fact for both exact6 and approximate reliability computation, though the
emphasis lies on exact computation in this paper.
In systems analysis it is very common to consider binary systems, i.e.
systems which can assume two possible states: operational or failed. This
means that the underlying structure function is a Boolean function. Since
the explicit specification of this function may become prohibitive in case
of large systems (the number of configurations grows exponentially with
respect to the number of variables), there is a strong need for sophisti-
cated techniques to represent and manipulate Boolean functions. A novel
and competitive technique based on Probabilistic Directed Acyclic Graphs
(PDAGs), see [18], is the method of choice in this paper. Of particular
importance is the subclass of decomposable and deterministic PDAGs,
which are more compact with respect to many other representations and
allow efficient probability computations. We return to this topic in more
detail in Subsection 3.1.

1.3 Contributions and Outline
This paper presents a probabilistic approach for reliability and diagnos-
tics. For the representation of the structure function we use the above
mentioned subclass of PDAGs which is superior with respect to similar
techniques. This serves as common framework for both reliability and di-
agnostics and allows the corresponding computations to be carried out
efficiently. The method underlines the inherent duality between these two
disciplines and also combines qualitative (structure function representa-
tion) and quantitative (reliability computation) features. Another contribu-
tion is a unifying formal model for modular systems, reliability networks,
and hybrid systems which provides a formal basis for the subsequent sys-
tem evaluation and allows networks and modules to be nested and com-
bined arbitrarily. Algorithms are presented for generating structure func-

6In the general case, the structure function representation must be appropriately trans-
formated to allow exact reliability computation to be carried out efficiently.

10 iam 09-004

tions with respect to network reliability problems and subsequent PDAG
manipulations, and their complexity is discussed. Furthermore, it is shown
how posterior probabilities are efficiently obtained for diagnostics purposes
in the context of modular systems.
The remaining part of this paper is organized as follows. Section 2 intro-
duces basic notions and the formal model for our computational frame-
work. Based on this model, Section 3 treats the reliability analysis of mod-
ular systems, reliability networks, and hybrid systems which combine mod-
ules and networks. In Section 4 it is shown how the results from Section 3
can be used to compute diagnostic queries and to find the most probable
diagnoses. Finally, Section 5 concludes the paper by highlighting the key
results and discussing open research problems.

Formal Model for Modular Systems and Reliability Networks 11

2 A Unifying Formal Model for Modular
Systems and Reliability Networks

This section provides the mathematical ground for reliability analysis and
diagnostics. We start by introducing basic notions and discuss coherent
systems in detail. After this we give two introductory examples: a coher-
ent and a non-coherent system. Then we continue with a formal system
description of modular systems, networks, and hybrid systems.

2.1 Preliminaries
We adopt in this paper the view of a stochastic binary system, or SBS
for short [16]. The system consists basically of a set C = {c1, . . . , cm} of
m ≥ 1 components where each component ci ∈ C assumes either of two
possible states: operative or failed. We associate with each component
ci a Boolean variable xi which takes the value 1 if ci is operative and 0 if
ci is failed. These m Boolean variables collectively constitute the Boolean
state vector x = (x1, . . . , xm). A system state is then one of the 2m possible
configurations (instantiations) of this Boolean vector. We denote the set of
all such configurations by Ωm = {0, 1}m, also called the state space.
In view of the reliability analysis presented later in this paper, we interprete
the state of each component as a random variable and we moreover as-
sume all those variables to be statistically independent.7 We assume the
existence of a mapping r : C → [0, 1] which assigns to every component
ci ∈ C a reliability value r(ci) = P (xi = 1). This represents the probabil-
ity8 that component ci is working as expected for a given amount of time
or a fixed point in time. The failure probability of a component ci is then
q(ci) = 1 − r(ci) = P (xi = 0), where q = 1 − r is the complementary
mapping of r.
Further we define a Boolean function9 f : Ωm → {0, 1} which maps m
Boolean state variables to an overall system state, namely

f(x) =

{
1 if x is an operative system state,
0 if x is a failed system state,

7The independence assumption applies to all atomic elements encountered in this
paper (including atomic vertices and edges).

8This is also called probability of operation, probability of success, reliability, or avail-
ability of ci.

9See [20] for an extensive discussion on Boolean functions.

12 iam 09-004

i.e. f(x) = 1 iff the system is working correctly, and f(x) = 0 otherwise.
The function f is called the structure function and represents the system’s
success state, while f c = 1 − f is the complementary structure function
representing the system’s failure state. From now on, we denote an SBS
by Σ = (C, r, f), or shorter by Σ = (C, f) when the probabilities are not
relevant in a given context.
Finally, we denote by Rel a general reliability evaluation function, and we
interpret f(x) as a random variable. For a given system Σ = (C, r, f) the
general computational problem of interest in reliability can be thus stated
as the problem of computing the value

Rel(Σ) = P (f(x) = 1) = 1− P (f(x)c = 1), (1)

given some representation of f and stochastic information with respect to
the system components. The reliability Rel(Σ) of a system Σ is thus de-
fined as the probability of the system to be in an operational state. Section
3 explores the computation of system reliability employing our proposed
representation of the structure function.

2.2 Coherent Systems
In reliability theory, the structure function f is often required to be mono-
tone which is the defining characteristic of a monotone system. This is the
case if the following holds for all Boolean vectors x1,x2 ∈ Ωm:

x1 ≤ x2 =⇒ f(x1) ≤ f(x2), (2)

i.e. f is non-decreasing in each argument, and moreover it holds that
f(1) = 1 and f(0) = 0, where 1 = (1, . . . , 1) and 0 = (0, . . . , 0). A mono-
tone system is called coherent if all its components are relevant, i.e. none
are irrelevant. A component ci is irrelevant when its operation is insignif-
icant for the system operation. This means that for vectors x[1i] and x[0i]

with the i-th component xi being 1 and 0, respectively, f(x[1i]) = f(x[0i]).
The assumption of monotonicity (or coherence) appears to be very rea-
sonable in many cases: it basically states that repairing a failed compo-
nent within an operative system cannot lead to system failure, and con-
versely the failure of a component cannot make a failed system operative.
In practice, probably most systems of interest can be described by coher-
ent models. Nevertheless, coherence cannot be assumed in general; for
this reason we refrain from imposing that requirement in our model since
we allow for non-coherent structures in our framework as well, see Exam-
ple 2.

Formal Model for Modular Systems and Reliability Networks 13

2.2.1 Deterministic Properties of Coherent Systems

Intimately related with every coherent system are the notions of pathset
and cutset. A pathset P ⊆ C is a subset of components whose opera-
tion makes the system operative, independently of the states of the other
components. A cutset C ⊆ C on the other hand is a set of components
whose failure yields system failure, independently of the states of remain-
ing components. A pathset P is called minimal if no proper subset of P
is a pathset. Minimal pathsets are sometimes called minpaths. Minimal
cutsets are defined analogously and are called mincuts. We denote the
set of all minpaths by P, and the set of mincuts by C . In the context of
a coherent system, the knowledge of minpaths or mincuts is sufficient to
describe the structure function. Speaking in these terms, we can identify
an irrelevant component as one that belongs neither to a minpath nor to a
mincut, and thus can be removed as far as reliability is concerned. So for
coherent systems it holds that

⋃

P∈P

P =
⋃

C∈C

C = C.

Two basic cases of coherent systems arise when P = C is the system’s
only pathset, and similarly when C = C is the system’s only cutset. In the
former case, the system is operative only if all components are operative
at the same time. In the latter case, it is sufficient for one component to
work correctly to make the system operative. The resulting systems are
then called series system and parallel system, respectively. This leads
us to a more general structure called k-out-of-n system where k ≤ n.
Such a system is supposed to work correctly only if at least k of its totally
n components are operative. It can be easily verified that a k-out-of-n
system has exactly

(
n
k

)
minpaths and

(
n

n−k+1

)
mincuts. Note that a series

and a parallel system are special cases of a k-out-of-n system for k = n
and k = 1, respectively.

2.2.2 Probabilistic Properties of Coherent Systems

We shall discuss now another interesting property of monotone structure
functions which allows to conveniently deal with interval-valued probabil-
ities instead of fixed-valued probabilities. Relaxing the uniqueness as-
sumption for probability values has gained a lot in importance in statistical
reasoning research and Artificial Intelligence. It is inherent for instance
in the theory of imprecise probabilities [21] and in the context of credal

14 iam 09-004

networks [22]. The following discussion is thus not especially related to
reliability, but rather refers to monotone Boolean functions in general and
has, as we shall see, direct impact on reliability computation of coherent
systems.
Recall the set C = {c1, . . . , cm} of components together with the corre-
sponding Boolean variables x1, . . . , xm representing the component states.
These Boolean variables span the space Ωm of all m-dimensional Boolean
vectors. Consider further the probability space (Ωm, P(Ωm), P), where Ωm

is the sample space of interest and P is a probability measure defined
by P : P(Ωm) → [0, 1]. In Subsection 2.1 we have assumed fixed-valued
success probabilities r(ci) = P (xi = 1) such that r(ci) ∈ [0, 1] for all com-
ponents ci. This is so far the classical approach in reliability. Now we
consider also probabilities r(ci) which assume arbitrary (but unknown) val-
ues in a closed real interval [ai, bi] ⊆ [0, 1] associated with each component
ci ∈ C. This leads to the following family of probability measures:10

P = {P : P(Ωm)→ [0, 1] such that P (xi = 1) = r(ci) ∈ [ai, bi]} (3)

From now on we abbreviate the probability P (xi = 1) by P (ci) both for
fixed-valued and interval-valued probabilities. The general problem is now
to determine the probability P (E) of an arbitrary event E ∈ P(Ωm) given
the probabilities P (ci). For this we define P (E) such that P ∈ P to be the
probability of E given that P (ci) = bi, and similarly P (E) where P ∈ P is
defined as the probability of E given that P (ci) = ai, for all i = 1, . . . ,m.
Here we call P the upper probability and P the lower probability. In any
case, having specified the probabilities P (ci) and assuming them to be
independent, the probability measures P (given fixed-valued probabilities),
P (given upper interval-bound probabilities), and P (given lower interval-
bound probabilities) are uniquely determined.
Let us go back to the context of Boolean functions and consider an arbi-
trary BF f : Ωm → {0, 1} and the event

E = {ωi ∈ Ωm : f(wi) = 1} (4)

which occurs whenever f evaluates to 1 given a m-dimensional Boolean
vector ωi ∈ Ωm. Let us assume interval-valued probabilities P (ci). Now
the crucial observation is the following: when the Boolean function f un-
der consideration is monotone, the upper probability P (E) corresponds
exactly to the largest possible probability of E, and analogously the lower

10In the literature of credal sets such family P is also called closed convex set of prob-
ability measures, see [23].

Formal Model for Modular Systems and Reliability Networks 15

probability P (E) corresponds exactly to the smallest possible probability
of E. This result is captured by the following theorem:

Theorem 2.1. Let be E ∈ P(Ωm) the event (4) and P the set of probability
measures specified by (3). If the Boolean function f from (4) is monotone,
then

(1) P (E) = min
P∈P

P (E) and (2) P (E) = max
P∈P

P (E).

Proof: see appendix.

This finding obviously has immediate consequences for monotone (or co-
herent) systems. To make it concrete, let be Σ = (C, r, f) a coherent
system for which the component reliabilities P (ci) have been specified by
intervals [ai, bi]. When we set P (ci) = bi, then P (f(x) = 1) yields the
maximum system reliability, and similarly for P (ci) = ai in which case we
obtain the minimum reliability. In this way we get the interval-valued sys-
tem reliability Rel(Σ) ∈ [P (f(x) = 1), P (f(x) = 1)], independently of the
representation of the structure function f . This will be illustrated at the end
of Example 1.

Remark In complex inference structures such as (compiled) credal net-
works where the underlying Boolean function is non-monotone, an exact
computation of the upper and lower probabilities as described above is not
possible. At the best these probabilities can be approximated, cf. [24].

Example 1. As an introductory example consider a simple mountain
transit system. The overall system called alp-transit A consists of a moun-
tain pass p and an underground transport system U . The latter consists of
a railway section R which in turn devides into independent tracks r1 and r2,
and a tunnel system t. The ability of the system to handle the transalpine
(over- or underground) traffic load is expressed by the state of A. The latter
is supposed to be operative if either p or the underground U are functioning
as desired. For U to be accessible, both the tunnel and the railway system
must be in service. The operation of R is guaranteed if at least one of the
tracks is serviceable. This configuration and the success behaviour of the
system is shown in Fig. 1a as an RBD, and the FTD in Fig. 1b depicts the
system’s failure-driven behaviour. The system is monotone and we can
easily derive its minpaths: {p}, {r1, t}, {r2, t}— and its mincuts: {r1, r2, p}
and {t, p}.

16 iam 09-004

A (alp-transit)
U (underground)

R (railway)

r1

r2

t

p

(a)

OR

AND

AND

¬r1 ¬r2

¬t

¬p

¬A

¬U

¬R

(b)

Figure 1: The alp-transit example as RBD (a) and as FTD (b).

We want to further investigate the behaviour and reliability of the system.
For this we let the component names also denote corresponding Boolean
variables which express the respective component states.11 The Boolean
variable A shall denote the overall system state. The functional relation-
ship between the component states and the system state is established
by the structure function f such that A = f(r1, r2, t, p). Further we assume
the system components to operate independently of each other with the
following probabilities:

r(r1) = r(r2) = 0.9, r(t) = 0.8, r(p) = 0.7.

To compute the reliability of our sample system Σ = ({r1, r2, t, p}, r, f),
we may in a first attempt consider all possible configurations of f which
reveals eleven success states and five failure states. Summing over all
success states yields the system reliability Rel(Σ), while by summing over
all failure states we obtain the failure probability — or by simply computing
1 − Rel(Σ). We decide in favour of the former approach since there are
less failure states than success states, and so we get the following sum of
products and its probability:

P (A = 0) = q(r1) · q(r2) · q(t) · q(p) + r(r1) · q(r2) · q(t) · q(p)
+ q(r1) · r(r2) · q(t) · q(p) + r(r1) · r(r2) · q(t) · q(p)
+ q(r1) · q(r2) · r(t) · q(p)
= 0.0006 + 0.0054 + 0.0054 + 0.0486 + 0.0024

= 0.0624.

11For simplicity, this convention applies to all examples throughout the paper.

Formal Model for Modular Systems and Reliability Networks 17

This is the unreliability or failure probability of the system. To obtain the
reliability, we compute

Rel(Σ) = P (A = 1) = 1− P (A = 0) = 1− 0.0624 = 0.9376.

Obviously, this is not a very efficient approach. Alternatively we can use
the above minpaths or mincuts for reliability computation which requires
less effort. We consider the mincuts since there are only two of them and
make them disjoint by adding the negation of t to the first mincut. This
results in the Boolean formula (¬t∧ r1 ∧ r2 ∧ p)∨ (t∧ p) in sum-of-disjoint-
products form, based on which we obtain the failure probability

P (A = 0) = r(t) · q(r1) · q(r2) · q(p) + q(t) · q(p)
= 0.0024 + 0.06 = 0.0624,

which can be subtracted from 1 to get the system reliability P (A = 1) =
0.9376. In view of Subsection 2.2.2, let us repeat this computation by as-
signing now interval probabilities to components instead of fixed values.
So let be

r(r1) ∈ [0.8, 0.9], r(r2) ∈ [0.8, 0.9], r(t) ∈ [0.7, 0.8], r(p) ∈ [0.6, 0.7].

Considering again the sum-of-disjoint-products formula from above and
complementing the obtained failure probabilities, we get the upper proba-
bility P (A = 1) = 0.9376 and the lower probability P (A = 1) = 0.8688, and
hence the interval-valued system reliability Rel(Σ) ∈ [0.8688, 0.9376].
So far, these standard approaches are applicable in the context of any
coherent system. We will show later in Subsection 2.3 how the modularity
of a system can be exploited to make the represention and evaluation
of the structure function much easier. To conclude this subsection, we
present another example which illustrates a typical system that lacks the
property of monotonicity.

Example 2. Consider a simple traffic light system for a two-road cross-
ing. Both roads are one-way, and there is a two-signal (red, green) traffic
light for either direction (1) and (2), i.e. there are two sets a and b of traffic
lights in total, as depicted in Fig. 2. For simplicity, a and b also denote cor-
responding Boolean variables such that a = 1 if the traffic light is green,
and a = 0 if it is red ; the same holds for b. The reliability of the system
is defined in terms of traffic flow: the system is operative only if the traffic
flows without interruption and free of collision. This is the case only if one

18 iam 09-004

light is on green while the other light is on red at the same time. Formally
this leads to the system Σ = ({a, b}, f) such that f is specified as follows:

f(a, b) = (a ∧ ¬b) ∨ (¬a ∧ b).

The structure function f describes the xor function, which clearly violates
property (2). It can be still conveniently represented in form of a cd-PDAG
as depicted in Fig. 4, based on which the reliability is easily computed us-
ing the framework from Section 3. The complementary structure function
expressing the system failure is illustrated by the (non-coherent) fault-tree
in Fig. 3.

a b

(1)

(2)

Figure 2: A road
crossing.

AND

blockade

OR

traffic collapse

a

a green

AND

accident

b

b green
a

a red

b

b red

Figure 3: Non-coherent
fault-tree for the crossing
example.

∧

¬ ¬

∨

∧

a b

Figure 4: cd-PDAG
for f in the crossing
example.

Remark In general, whenever not logic is necessary to describe the sys-
tem’s structure function, the result is a non-coherent system. This is typi-
cally the case in the context of fault tree design when gates like not, nor,
nand, and xor are used.12 All these gates have a natural representation in
terms of cd-PDAGs.

2.3 Modular Systems
Consider a stochastic binary system Σ that consists of a number of sub-
systems Σi, which are supposed to be arranged according to a predefined
hierarchical structure, the so-called organizing tree. This construction is
reflected by the system structure function f , as we shall see later. There
are two different kinds of subsystems: atomic subsystems (called compo-
nents) ci with assigned stochastic properties, and those subsystems that

12Fault-tree gates involving not logic are sometimes called non-coherent gates, result-
ing in a corresponding non-coherent fault-tree.

Formal Model for Modular Systems and Reliability Networks 19

constitute proper systems which are further decomposable into yet other
subsystems whose structure follows the organizing tree. Such subsystems
are also called modules. The set of all subsystems Σi shall be denoted by
S, and C ⊂ S denotes the subset of atomic subsystems. We define further
two selector functions with respect to each subsystem in S, namely

comp : S → P(C) and succ : S → P(S),

where P(S) denotes the power set of S. Given a subsystem Σi, comp(Σi)
returns the set of underlying components which make up the subsystem
at its lowest level. If Σ0 denotes the top-level subsystem (i.e. the enclosing
system), then the component set of the whole system is obtained through

comp(Σ0) =
m⋃

i=1

comp(Σi).

The function succ(Σi) returns the set of all direct descendants of Σi, also
called the successor set, within the logical structure of Σ. From a local
point of view, the operation of Σi depends directly on the operation of its
immediate subsystems succ(Σi). Note that for atomic subsystems Σi we
have succ(Σi) = ∅ and comp(Σi) = {ci}. Given that, we may express the
nested structure of a subsystem as follows:

Σi =

{
ci if Σi ∈ C,
({Σi1 , . . . ,Σik}, hi) if Σi ∈ S \ C,

(5)

where subsystems Σi1 , . . . ,Σik constitute the successor set succ(Σi) and
are recursively defined according to (5). Further, with each subsystem Σi

a local structure function hi is associated, which is defined as follows:

hi : Ω|succ(Σi)| → {0, 1}, (6)

where Ω|succ(Σi)| denotes the set of all Boolean vectors xi associated with
the direct descendants of Σi. The local structure function establishes thus
the relationship between the operation of a subsystem Σi and the opera-
tion of its constituent elements on the uppermost level.
The tree structure of the system implies that the respective component
sets of different subsystems are mutually disjoint. This is only the case if
each subsystem appears in exactly one successor set. In other words, for
any two subsystems Σi and Σj with i 6= j we have

comp(Σi) ∩ succ(Σj) = ∅ ⇐⇒ succ(Σi) ∩ succ(Σj) = ∅. (7)

20 iam 09-004

Such subsystems Σi are also called modules or modular subsystems.
Given a system Σ and its top-level structure Σ0, the nested decomposi-
tion

Σ0 = ({Σ1, . . . ,Σk}, h0),

where the Σi are defined according to (5), is called modular decomposition
of Σ. A component ci trivially constitutes a module, in which case hi plays
the role of a unary Boolean function corresponding to the Boolean variable
xi. Any system Σ has two trivial modular decompositions, one consisting
of atomic elements only, and another consisting of the system itself. These
special decompositions are of course not very useful.
We also define for every subsystem a non-local structure function φ : S →
{0, 1}, which is recursively specified in terms of corresponding local struc-
ture functions:

φ(Σi) =

{
xi if Σi ∈ C,
hi(φ(Σi1), . . . , φ(Σik)) if Σi ∈ S \ C,

(8)

such that succ(Σi) = {Σi1 , . . . ,Σik}. The non-local structure function of
Σi constitutes the structure function of the subsystem represented by the
whole subtree rooted at Σi down to its bottom elements. Now we come to
the main definition of this section:

Definition A modular system is a system Σ = (S, f), where S =
{Σ0 ,Σ1 , . . . ,Σn } is the set of subsystems which are defined according
to (5), and the structure function f is specified by

f(x) = f(x1, . . . , xk) = φ(Σ0), (9)

the non-local structure function of the top-level module, defined according
to (8). The vector x = (x1, . . . , xk) is associated with the component states
for all ci ∈ C ⊂ S.

The system structure function f reflects thus the hierarchy of local struc-
ture functions hi of the entire system, whereas h0 expresses the operation
of Σ0 in terms of its immediate submodules only.
In the particular case when there is only one non-atomic subsystem Σ0,
the local structure function h0 becomes the (non-local) structure function
of the corresponding (non-modular) system Σ′ = (C, h0). Conversely, every
non-modular system Σ = (C, f) is equivalent to the modular system Σ′′ =
({Σ0 , c1, . . . , cn}, f), where succ(Σ0) = C = {c1, . . . , cn}.

Formal Model for Modular Systems and Reliability Networks 21

Example 3. Recall the alp-transit example from Subsection 2.2. To make
it more challenging, it has been extended resulting in the following mod-
ified system: the overall system A consists now of two modules U (un-
derground) and P (mountain pass). The mountain pass consists of two
sections, a rather steep and dangerous ascending part p1 and a smoother
and more safe descending part p2. As before, the underground system
is divided into a railway section R and a tunnel system T . Module R still
consists of two independent tracks r1 and r2, but T now splits up in three
equal tunnel components t1, t2, and t3. Thus the system consists now
of five modules and seven components. The new configuration is illus-
trated by the organizing tree in Fig. 5a, and the behaviour of the alp-transit
system is reflected in the RBD in Fig. 5b. Note that the configuration of
module T is now a 2-out-of-3 structure: at least two out of the three tunnel
sections must be in service to be able to manage the traffic load.

A

U

R

P

r1 r2t1 t2 t3

p1 p2 T

(a)

A (alp-transit)

P (pass)

U (underground) T (tunnel)
R (railway)

r1

t1

t2

t3

p1 p2

2/3

r2

(b)

Figure 5: (a) Organizing tree of the extended alp-transit system, and (b)
the corresponding RBD.

In terms of the above formal setting we obtain the system Σalptransit =
(S, f) with the set of subsystems S = {A,U, T,R, P, r1, r2, p1, p2, t1, t2, t3}
and structure function f . The top-level module A corresponds to the root
node in the organizing tree. As before, we let the names of the subsystems
also denote the corresponding Boolean state variables. Like in Example 1
variable A represents the state of operation of the entire alp-transit system
which can be expressed in terms of the component states by the global
structure function: f(r1, r2, p1, p2, t1, t2, t3) = A.
By following the modular structure of the system and using Def. 2.3, we
can express the system state in terms of the subsystem states using the

22 iam 09-004

corresponding local structure functions:

A = hA(hU(hR(r1, r2), hT (t1, t2, t3)), hP (p1, p2)),

where the local structure functions can be written as Boolean formulae
conforming to the RBD in Fig. 5b:

hA(U, P) = A = U ∨ P,
hU(R, T) = U = R ∧ T,
hP (p1, p2) = P = p1 ∧ p2,

hT (t1, t2, t3) = T = (t1 ∧ t2) ∨ (t1 ∧ t3) ∨ (t2 ∧ t3),

hR(r1, r2) = R = r1 ∨ r2.

Finally, by inserting the local structure functions into each other, we obtain
the (expanded) global structure function which represents the structure
function of the entire system:

A = f(r1, r2, p1, p2, t1, t2, t3)

=
[

(r1 ∨ r2) ∧
(

(t1 ∧ t2) ∨ (t1 ∧ t3) ∨ (t2 ∧ t3)
)]
∨ (p1 ∧ p2).

In Subsection 3.2 we will demonstrate how to use PDAGs for the represen-
tation of local and non-local structure functions and for efficient reliability
computation. In Section 4 we show how to use these results to compute
the posterior probabilities of possible diagnoses.

2.4 Reliability Networks
In this section, we discuss systems which in general do not exhibit a mod-
ular structure: networks. We assume a probabilistic network model, which
allows to define reliability networks, stochastic networks which assume
random failures of its components. After this, we discuss network reliabil-
ity problems which determine the logical structure of a reliability network.

2.4.1 Network Model

A network can be naturally represented by a mathematical graph N =
(V, E), where V = {v1, . . . , vn} is a set of vertices or nodes13 and E ⊆ V×V
of (directed or undirected) edges. We assume that edges represent pairs

13The terms vertices and nodes will be used interchangably throughout the rest of the
paper.

Formal Model for Modular Systems and Reliability Networks 23

of nodes. In case the pairs are ordered, the network is directed and we
write eij = (vi, vj) to denote the directed edge from vi to vj. Then s(eij) = vi
denotes the edge’s source node while t(eij) = vj denotes its target node.
If we consider the pairs to be unordered, the network is undirected and
an edge joining vi and vj is written as eij = {vi, vj}. When it is clear from
the context which nodes are connected by an edge, we number the edges
by an index just as we do with vertices. Given a directed network and two
of its nodes vs and vt, an ordered set P = {e1, e2, . . . , er} ⊆ E of edges is
called network path from vs to vt if s(ek+1) = t(ek) for all 1 ≤ k < r, such
that s(e1) = vs and t(er) = vt. If all nodes along the path are distinct, the
path is named simple. A simple path clearly contains no cycles.
These are so far deterministic properties of a network. In a probabilistic
network model, we assume stochastic information associated with the net-
work components to be available. In such model, the main goal consists
in computing the average performance of the network, under the presence
of random failures. This leads us to the following definition:

Definition A reliability network is a finite (stochastic) graph N = (V, E, r)
where V and E are respective sets of nodes and edges, and r is a mapping
that assigns to each network component an operation probability (or relia-
bility). Further, the nodes and edges are assumed to be subject to random
and independent failures which occur with probabilities q = 1− r.

When the probabilities are not relevant in a given context, we just refer by
N = (V, E) to a reliability network. A reliability network in which all vertices
and edges are assumed to be atomic will be called simple network.

2.4.2 Network Reliability Problems

So far we have described the physical structure and stochastic properties
of a network. But what is the logical structure of a network? To obtain the
logical structure (i.e. the structure function), we need to specify a certain
reliability problem (or query) with respect to the given network. We con-
sider connectivity measures as network reliability problems of interest in
this paper, in particular the family of K-terminal measures. For a directed
network, the most general such measure is called source-to-K-terminal
connectivity, denoted by conn∀K . This is the probability that for a given
set of terminal nodes K ⊆ V with |K| = k and a specified source node
s ∈ K there is an operating network path from s to each node in K. Two
important special cases of this measure arise for k = 2 and k = |V|: in the
former case we get the source-to-terminal connectivity (or s, t-connectivity

24 iam 09-004

for short) denoted by conns,t, and in the latter we obtain the source-to-
all-terminal connectivity, denoted by connV.14 Another measure we con-
sider here is the source-to-any-terminal connectivity, denoted by conn∃K ,
which is the probability that there is a directed path from s ∈ K to some
(not necessarily all) nodes in K. Note that the measure conns,t is then a
special case of both, conn∀K and conn∃K . All these measures have corre-
sponding counterparts in an undirected network. With respect to network
reliability evaluation discussed in Subsection 3.3, we shall focus on the s,t-
connectivity measure, although other above-mentioned problems are also
covered by our method.
A reliability network N for which a specific reliability problem (query) Q
has been determined is denoted by

N [Q] = (V, E, r, g),

where g denotes the corresponding structure function. The reliability of
N [Q] is then determined by computing the value Rel(N [Q]) as stated in
(1) by evaluating the structure function g. For example, N [conns,t] denotes
a network which has been instantiated with the s, t-connectivity measure.
To simplify the discussion of the proposed reliability analysis in Subsec-
tion 3.3, we consider in this paper only directed networks with edge fail-
ures. The following transformations show that such networks are suffi-
ciently powerful on a conceptual level [14]: First, undirected networks are
easily transformed into directed networks by replacing every undirected
edge by two corresponding opposing directed edges. Each directed edge
inherits then the failure probability (and other stochastic properties) of the
original undirected edge. This is allowed as far as reliability is concerned
since such transformation preserves the network reliability15. Second, any
network with node failures is polynomial-time reducible into an equivalent
directed network with edge failures only. Hence we assume from now on
perfect nodes so that any network failures are due to edge failures.

Example 4. Consider the directed network depicted in Fig. 6a and sup-
pose we are interested in the probability that there is an operating path

14The conns,t measure may be applied for routing problems, e.g. when a message or
packet needs to be routed between two specified network nodes. The connV measure
may be appropriate in situations in which nodes are equally important with respect to
receiving a message from the source node. This is the case in a broadcast network for
instance.

15This claim holds for many reliability measures, e.g. connectivity measures, stochastic
path problems, network flow measures.

Formal Model for Modular Systems and Reliability Networks 25

from v1 to v4, i.e. the v1, v4-connectivity. The RBD of the network with the
imposed reliability problem is shown in Fig. 6b. The minpaths are the fol-
lowing: {a, b}, {a, c, f}, {e, f}, {e, d, b}, and the mincuts are: {a, e}, {b, f},
{a, c, f}, and {e, d, b}. Note that the minpaths correspond precisely to the
simple paths from source node v1 to terminal node v4 in the given network.
As in Example 1, we could similarly use the minpaths or mincuts as basis
for reliability computation. However, we present in Subsection 3.3 more
sophisticated approaches to generate a compact PDAG representation of
the structure function directly from the network.

v2

v1

v3

v4

a b

c d

e f

(a)

a

c d

b

e f

(b)

Figure 6: (a) A simple reliability network, and (b) the corresponding RBD
for the v1, v4-connectivity.

2.5 Hybrid Systems
Models of large real-world systems are abstractions of their complex in-
tern structure: they hide the details of underlying elements or subsystems.
The idea is to leave out certain aspects which may not have a significant
impact on the correct behaviour of the system. With the goal of reliability
analysis in mind, one is interested in models that are precise and, at the
same time, that hide (to a certain extent) the system’s underlying com-
plexity. Consequently, one is faced with the tradeoff between constructing
an accurate model of the physical system on the one hand, and on the
other hand keeping the model as simple as possible to assure the sys-
tem analysis to be feasible. So we could ask the question what may give
reason to increase the level of granularity of a model. It may happen for
instance that one observes an element to fail more often than predicted,
which makes this element being subject to more intense investigation. In
such situation it may be useful to refine the model, i.e. to recursively go
deeper into the element’s intern structure and to provide a separate model
for the corresponding subsystem, which may be of very different nature as
the enclosing system.

26 iam 09-004

In view of the above considerations we extend the formal framework of
modular systems and reliability networks introduced so far in a way that
allows them to be combined and nested arbritrarily, resulting in what we
call hybrid systems16 and hybrid networks.

2.5.1 Hybrid Networks

Let us first consider networks whose constituent elements — nodes and/or
edges — can exhibit non-simple structures. For example, the nodes of a
communication network may be transmitting stations which are further de-
composable into more complex subsystems. Similarly, the connections of
a transportation network may abstract away from more complicated struc-
tures like for instance traffic control systems or tunnel systems. In such
a setting, we can still adopt the usual abstract appraoch, i.e. to regard a
network in its basic structure as a set of nodes and edges, but with the
additional feature that elements may now have a modular structure: they
can be decomposed into further components or modules in the sense of
Subsection 2.3, or they may constitute networks. Given that a network
consists of vertices Vi and edges Ej, we can formalize this idea as follows:

Vi =





vi atomic node,
Ni[Qi] = (Vi, Ei, gi) reliability network,
Σi = ({Σi1 , . . . ,Σik}, hi) modular system,

(10)

and similarly

Ej =





ej atomic edge,
Nj[Qj] = (Vj, Ej, gj) reliability network,
Σj = ({Σj1 , . . . ,Σjr}, hj) modular system.

(11)

Hence vertices and edges can be atomic elements, or they can represent
self-contained modular systems or networks. In the latter case, the net-
work may be simple or hybrid, see next definition. A modular system is
defined according to Definition 2.3. We will see below that the above sub-
systems may exhibit in fact an even more complex structure. But first let
us define a hybrid network:

16In this context, the notion of a hybrid system should not be confused with the same
term known from physics, where a hybrid system refers to a dynamic system that exhibits
continuous as well as discrete dynamic behaviour.

Formal Model for Modular Systems and Reliability Networks 27

Definition A hybrid network is a reliability network N = (V, E, r) where
V and E are finite sets of (possibly non-atomic) nodes and edges such
that their members are specified according to (10) and (11), and r is the
reliability assignment function. With each vertex Vi ∈ V and edge Ej ∈ E
corresponding structure functions fVi

and fEj
are associated as follows:

fVi
(xi) =





yi if Vi = vi,

gi(xi) if Vi = Ni[Qi],

hi(xi) if Vi = Σi,

fEj
(xj) =





zj if Ej = ej,

gj(xj) if Ej = Nj[Qj],

hj(xj) if Ej = Σj,

where yi and zj are respective Boolean variables associated with atomic
nodes and edges.

A hybrid network reduces to a simple network if Vi = vi for all 1 ≤ i ≤ n
and Ej = ej for all 1 ≤ j ≤ m. The set of components of a hybrid network
N consists of the relative component sets of its modular elements:

comp(N) =

(n⋃

i=1

comp(Vi)

)
∪
(m⋃

j=1

comp(Ej)

)
.

Note that Property (7) is still valid for all modular vertices and edges, but
also applies to these systems among each other.

2.5.2 Hybrid Systems

Another kind of hybrid system is obtained by considering also the con-
verse case: networks being integral parts of modular systems. To be more
precise, we can allow for modular systems which contain (simple or hy-
brid) networks besides regular modules and components. This means
that modular systems and networks can be nested arbitrarily. In the gen-
eral case in which the system consists of more than one subsystem, the
restriction applies that a network cannot constitute the top-level subsytem
Σ0 since the overall structure of the system is supposed to be modular.
Given a system Σ consisting of subsystems Σi, the decomposition (5) of
each Σi can be now extended as follows:

Σi =





ci if Σi is a component,
({Σi1 , . . . ,Σik}, hi) if Σi is a module,
Ni[Qi] = (Vi, Ei, gi) if Σi is a (hybrid) network (i 6= 0),

(12)

where subsystems Σij are recursively specified according to (12). In order
to fully specify the structure function of such a system, a specific measure

28 iam 09-004

Qi must be imposed with respect to each involved network Ni. Based on
the above decomposition the following definition extends the notion of a
modular system:

Definition A hybrid system is a system Σ = ({Σ0,Σ1, . . . ,Σm}, f) consist-
ing of subsystems Σi which are specified according to (12), for which the
(non-local) structure function φ is given by

φ(Σi) =





xi if Σi is a component ci,
hi(φ(Σi1), . . . , φ(Σik)) if Σi is a module,
gi if Σi is a (hybrid) network Ni[Qi] (i 6= 0),

and the system structure function f is given by

f(x) = φ(Σ0),

where vector x is associated with the states of components ci.

The fundamental property of modular systems is supposed to apply here
as well, so that a hybrid system without networks simply reduces to a
modular system in the sense of Def. 2.3. Another special case occurs
when a hybrid system consists only of one single subsystem, i.e. Σ =
({Σ0}, f). When Σ0 is a network N with structure function g = f , then the
whole system Σ reduces to the network N [Q] = (V, E, f).

Example 5. Let us illustrate these concepts by a new example. Con-
sider for this the simple transport network depicted in Fig. 7 connecting
four Swiss cities: Berne (b), Zurich (z), Chur (c), and Lugano (l). The la-
bels put in parantheses next to edge names refer (roughly) to the actual
highways that join the cities.

e1 e3

e2 e4

Berne Chur

Lugano

Zurich

b

z

c

l

E5

(A1)

(A2)

(A3)

(A9) (A13)

Figure 7: A simple transportation network with four atomic edges and one
modular edge.

Formal Model for Modular Systems and Reliability Networks 29

The picture in Fig. 7 reveals that not all connections are atomic: there
are four atomic edges e1, e2, e3, e4 and one modular edge E5. We let the
modular edge be the alp-transit system from Example 3. This leads to a
hybrid network with four atomic vertices, four atomic edges, and one mod-
ular edge. In addition, suppose we are interested in getting from Berne
to Chur. The appropriate network reliability measure in this case is thus
the b, c-connectivity. Formally, the whole system can be now expressed as
follows:

N [conn{b,c}] = ({b, z, c, l}, {e1, e2, e3, e4, E5}, g),

where g(e1, e2, e3, e4, E5) is the corresponding network structure function
and E5 = Σalptransit.

30 iam 09-004

3 Reliability Evaluation
This section is devoted to reliability analysis based on the formal setting
established in the previous section. We adopt a success-oriented and
probabilistic approach. Furthermore we follow a static reliability analysis,
i.e. we consider the reliability of a system in a fixed point in time17. The
following subsection establishes the computational core for reliability com-
putation and diagnostics. Its main concern is an efficient representation
and manipulation of Boolean functions.

3.1 Representing the Structure Function
In binary systems, the representation of the structure function f is reduced
to the problem of representing a Boolean function. The most pragmatic
way of representing the structure function is simply to consider all possible
system states, also called complete state enumeration. But this becomes
impracticable with a large number of components. With regard to efficient
reliability computation, applying more sophisticated representation tech-
niques is thus crucial. Subsection 3.1.1 briefly surveys the most important
existing methods, and after that Subsection 3.1.2 presents in more detail
the technique promoted in this paper.

3.1.1 Existing Methods

A common approach in reliability analysis to handling complex structure
functions is to translate some system description, usually available in form
of a block diagram or fault tree, into corresponding pathsets or cutsets.
From the point of view of propositional logic, this corresponds to a rep-
resentation of the underlying Boolean function in form of a Disjunctive
Normal Form (DNF), or Conjunctive Normal Form (CNF) for a dual rep-
resentation. In the context of model-based diagnostics, DNFs are used to
represent minimal explanations or minimal conflicts.
A DNF representation of a Boolean function has two major drawbacks.
The first comes from the fact that the number of terms grows exponen-
tially with the number of Boolean variables. To overcome this diffulty, more
compact representations have been proposed for reliability analysis, most
prominent thereof is the family of Binary Decision Diagrams (BDD), see

17Conceptually, it would be possible to consider time-dependent probability values. But
to keep the discussion simpler we refrain from doing so in this paper.

Reliability Evaluation 31

[25], and [26] for multistate systems. The second problem of a DNF is
the lack of support for efficient probability computation. The classic ap-
proach to tackle this problem is to apply the inclusion-exclusion principle
known from combinatorics and probability. This leads to a representation
with disjoint terms, also called disjoint DNF. However, this transformation
suffers an exponential blow-up in the number of terms. An improvement
of this process can be achieved by applying the domination method [27]
which considers non-cancelling terms from the beginning, resulting in a re-
duced inclusion-exclusion expansion. Further effort has been invested to
solve the disjointness problem resulting in so-called sum-of-disjoint prod-
ucts (SDP) methods — notably the algorithms of Abraham [28] based on
single-variable inversion, and Heidtmann [29, 30] based on multi-variable
inversion. An extension of the Heidtmann algorithm for non-monotone BF
has been also discussed in [31].
When represented as a directed graph or tree, however, the resulting struc-
tures in most SDP approaches exhibit the flatness property18, leading to
a breadthwise expansion and hence a relatively high space demand. This
problem is eliminated in so-called free or ordered BDDs (OBDD), which
also support probability computation in polynomial time with respect to
their size [32]. In the context of network reliability, OBDDs are often gener-
ated from pathsets, cutsets, and edge expansion diagrams [33], or directly
from the graph, see [34, 35].
A similar but even more powerful approach to the SDP problem is provided
by Propositional Directed Acyclic Graphs (PDAG) [18]. The method proved
very useful for reliability and diagnostics [3] and recently also in the context
of network reliability evaluation [36]. Of particular interest are members of
a certain subclass of PDAGs which are decomposable and deterministic.
These two properties guarantee probability computations to be carried out
in polynomial time with respect to the PDAG size. This is crucial since cal-
culating probabilities is an essential operation in the context of reliability
analysis and diagnostics. The key feature that sets this particular PDAG
family apart from similar techniques like OBDDs and disjoint DNFs is their
superior succinctness (i.e. compactness) and at the same time their ability
to still support probability computations (and a number of further opera-
tions) in polynomial time. This is the main motivation why PDAGs consti-
tute the core of our framework for reliability analysis and diagnostics. A
short introduction to PDAGs is presented in the following subsection.

18Flatness implies a depth of at most two; this property is discussed in more detail in
[18].

32 iam 09-004

3.1.2 Propositional Directed Acyclic Graphs

Propositional Directed Acyclic Graphs (PDAGs) form a graph-based lan-
guage for the representation of Boolean functions (BF) [18]. The main at-
tention lies on the compactness of the representation provided by PDAGs,
which include BDDs, NNFs, CNFs, DNFs, and many other Boolean repre-
sentation languages as special cases. They are a powerful and flexible tool
with many applications in different areas, such as Bayesian networks, for-
mal verification, system reliability and diagnostics, network reliability, and
many more. In the sequel, we provide a formal introduction to PDAGs.
Consider a Boolean function f : {0, 1}n → {0, 1} and a set V of n Boolean
variables. Let us further define the satisfying set JfK = {x ∈ {0, 1}n :
f(x) = 1} of f , which is the set of n-dimensional Boolean vectors x for
which f evaluates to 1. The goal is to find an efficient representation for
JfK. This motivates the following definition [18]:

Definition A PDAG is a rooted, directed acyclic graph such that:

1. Leaf nodes are represented by # and labeled with > (true), ⊥ (false),
or x ∈ V

2. Non-leaf nodes are represented by ∧ (logical and), ∨ (logical or), or ¬
(logical not); ∧-nodes and ∨-nodes have at least one child, ¬-nodes
have exactly one child.

By convention, PDAGs are denoted by lower-case Greek letters. The set
of all possible PDAGs with respect to V constitutes a language which is
denoted by PDAGV , or just PDAG when the variable set is clear from the con-
text. Leaves labeled with > (⊥) represent the constant BF which evaluates
to 1 (0) for all x ∈ {0, 1}n. A leaf labeled with x ∈ V is interpreted as
the assignment x = 1, i.e. it represents the BF which evaluates to 1 iff
x = 1. The BF represented by a ∧-node evaluates to 1 iff the BFs of all its
children evaluate to 1. Similarly, a ∨-node represents the BF that evalu-
ates to 1 iff the BF of at least one child evaluates to 1. Finally, a ¬-node
represents the complementary BF of its child, i.e. the BF that evaluates
to 1 (0) iff the BF of its child evaluates to 0 (1). The PDAG representation
of a BF is not canonical, i.e. a BF may have several (logically equivalent)
PDAG representations. Conversely, each PDAG ϕ represents exactly one
BF. The BF f represented by a PDAG ϕ is denoted by fϕ. The set of all
variables included in the PDAG ϕ is denoted by vars(ϕ), and the set of all
child-PDAGs of ϕ is denoted by children(ϕ). The number of nodes of ϕ is
denoted by #(ϕ), and the number of its edges is called its size and written
|ϕ|.

Reliability Evaluation 33

Decomposability and Determinism. PDAGs can be characterized by a
number of different properties, but in the context of this paper, the following
two are particularly relevant:

• Decomposability : holds if the variable sets of the children of each
∧-node α in ϕ are pairwise disjoint (i.e. if children(α) = {β1, . . . , βl},
then vars(βi) ∩ vars(βj) = ∅ for all i 6= j);

• Determinism: holds if the children of each ∨-node α in ϕ are pairwise
logically contradictory (i.e. if children(α) = {β1, . . . , βl}, then βi∧βj ≡
⊥ for all i 6= j).

A decomposable and deterministic PDAG is called cd-PDAG. We use
cd-PDAG to refer to the corresponding language which is a sub-labguage
of PDAG. Figure 4 shows a simple cd-PDAG.
Other sub-languages are obtained by considering further properties:
d-DNNF (decomposable and deterministic negation normal forms) is the
sub-language of cd-PDAG satisfying simple-negation, FBDD (free BDDs) is
the sub-language of d-DNNF satisfying decision and read-once, OBDD (or-
dered BDDs) is the sub-language of FBDD satisfying ordering, and d-DNF
(disjoint DNF) is the sub-language of d-DNNF satisfying flatness and simple-
conjunction.19

Succinctness. A language L1 is more succinct than another language
L2, L1 � L2, if any sentence α2 ∈ L2 has an equivalent sentence α1 ∈ L1

whose size is polynomial in the size of α2. A language L1 is strictly more
succinct than another language L2, L1 ≺ L2, iff L1 � L2 and L2 6� L1. With
respect to the above-mentioned languages, we have the following proven
relationships [18]:

PDAG ≺ cd-PDAG � d-DNNF
{≺ FBDD ≺ OBDD

≺ d-DNF
.

For the particular application of this paper, it is important to note that
cd-PDAG, which supports efficient probability computations (see next sub-
section), is more succinct than both OBDD and d-DNF (sum of disjoint prod-
ucts). Examples of Boolean functions with polynomial representations in
cd-PDAG but exponential representations in d-DNF are the parity functions
(odd or even) or k-out-of-n structures.

19For a more comprehensive overview we refer to [37].

34 iam 09-004

Computing Probabilities. The above discussed properties decompos-
ability and determinism are sufficient for a language to offer efficient (i.e.
polynomial-time) probability computations. Let P (x = 1) denote the given
marginal probability of a variable x ∈ V being true. If we assume the
Boolean variables in V to be mutually independent, and if ϕ is a cd-PDAG,
then the probability P (fϕ) = P (ϕ) of the Boolean function fϕ can be com-
puted by the following recursive procedure:

P (ϕ) =





∏
i P (βi) if ϕ is a ∧-node with children βi,∑
i P (βi) if ϕ is a ∨-node with children βi,

1− P (β) if ϕ is a ¬-node with child β,
P (x = 1) if ϕ is a #-node labeled with x ∈ V ,
1 if ϕ is a #-node labeled with >,
0 if ϕ is a #-node labeled with ⊥.

(13)

In other words, decomposability and determinism allow to replace ∧-nodes
and ∨-nodes by products and sums, respectively. Within the language
cd-PDAG, probability computations are thus possible in time linear to the
size of a given cd-PDAG, presumed that addition and multiplication require
constant time. Given the above succinctness relationships, it is clear that
cd-PDAG is the most suitable language for probability computations. This
motivates the use of cd-PDAGs for the purposes of reliability analysis and
diagnostics.
Another important advantage of cd-PDAGs is the flexibility to obtain their
negations just by adding a ¬-node on top (or remove ¬-nodes from the
top). In the context of this paper, this feature allows us to easily switch
between the the structure function and its complement, i.e. between the
success space and the failure space, respectively.

3.2 Modular System Reliability
For the reliability analysis of a modular system Σ = ({Σ0,Σ1, . . . ,Σm}, f),
we assume each local structure function hi(a) ssociated with the corre-
sponding subsystem Σi to be represented by a local cd-PDAG ψi. The de-
scendants succ(Σi) of Σi are the leaf nodes of ψi. Starting with the top-level
cd-PDAG ψ0, the tree structure now allows to replace in every ψi the leaves
which are labeled with a module by the cd-PDAG of the corresponding lo-
cal structure function. This is continued recursively until the leaves of the
organizing tree (i.e. components) are reached. The top-down procedure
of successively plugging toghether corresponding local cd-PDAGs leads

Reliability Evaluation 35

to the non-local cd-PDAG representing the structure function of the entire
system. Note that both decomposability and determinism are preserved
during this process. To formalize this idea, we define for each subsystem
Σi

ϕ(Σi) =

{
leaf node labeled with xi if Σi = ci (component)
ψi(ϕ(Σi1), . . . , ϕ(Σik)) if Σi = Σ (module)

(14)

to be its non-local (or global) cd-PDAG such that succ(Σi) = {Σi1 , . . . ,Σik}.
If Σi is a module (second case), ϕ(Σi) is obtained from the local cd-PDAG
ψi by replacing each of its leaf nodes Σij by the corresponding cd-PDAG
ϕ(Σij) for all j ∈ {1, . . . , k}. Hence ϕ(Σi) represents the non-local cd-
PDAG of the whole subsystem rooted at module Σi. In this way we obtain
ϕ(Σ0) which represents the global structure function f(x) of the top-level
module Σ0, which in turn corresponds to the structure function of the entire
system.

ϕ(Σ0
0)

ϕ(Σ1
1) ϕ(Σ1

k)ϕ(Σ1
2)

ϕ(Σ2
11

) ϕ(Σ2
1r

) ϕ(Σ2
21

) ϕ(Σ2
2s

) ϕ(Σ2
k1

) ϕ(Σ2
kt

)

x1 = ϕ(Σl
l−11

) xm = ϕ(Σl
l−1m

)xj = ϕ(Σl
l−1j

)xi = ϕ(Σl
l−1i

).

.

.

.

.

...
...

...
...

ψ0

ψ1 ψ2 ψk

...
...

.

Figure 8: The hierarchy of local cd-PDAGs ψi and the corresponding non-
local cd-PDAGs ϕ(Σi) according to the system’s organizing tree.

This leads to a hierarchical arrangement of local cd-PDAGs over several
levels. To illustrate this, we label additionally each subsystem Σi and its
corresponding local cd-PDAG ψi by a superscript representing the level
number n ∈ {0, 1, . . . , l}. Starting at level 0, we have the top-level local cd-
PDAG ψ0

0, then its children on level 1 denoted by ψ1
1, . . . , ψ

1
k, the children’s

children ψ2
1, . . . , ψ

2
t on level 2, and so on, down to the leaf nodes x1, . . . , xm

on the lowest level l. Figure 8 depicts this hierarchy of local cd-PDAGs for
the entire modular system.

36 iam 09-004

Given the component reliabilities and a cd-PDAG representation of the
structure function, we are able to compute the system reliability by recur-
sively propagating the intermediate module probabilities P (ϕ(Σi)) com-
puted according to (13) along the modular hierarchy up to the root, at which
we finally obtain the overall reliability Rel(Σ) = P (ϕ(Σ0)) of the modular
system Σ = (S, r, f).

Example 6. To illustrate the PDAG-based reliability evaluation of a modu-
lar system, recall the extended alp-transit system from Example 3. Figure 9
depicts the local cd-PDAGs representing the corresponding local structure
functions hA, hU , hP , hR, and hT .

∧

¬ ¬

∨

∧ ∧

t1 t2 t3

ψT

∧

¬ ¬

¬ψA

UPr2

ψR

∧

¬ ¬

¬

r1

∧
ψP

p1 p2

ψU
∧

T R

Figure 9: The cd-PDAGs of the local structure functions in the alp-transit
example.

The global cd-PDAG ϕ(A) is shown in Fig. 10 and is constructed by plug-
ging together the local cd-PDAGs in the following manner: ϕ(A) is obtained
from ψA by replacing its leaves labeled with P and U by the respective
non-local cd-PDAGs ϕ(P) and ϕ(U). ϕ(U) is obtained in turn from ψU by
replacing the leaves labeled with T and R by ϕ(T) and ϕ(R), respectively.
This process continues recursively until all the leaf-node labels represent
Boolean variables of atomic components.
For the reliability analysis we assume the following success probabilities
assigned to components:

r(p1) = 0.6, r(p2) = 0.7, r(t1) = r(t3) = 0.8, r(t2) = 0.9, r(r1) = r(r2) = 0.9.

Given these component reliabilities and the global cd-PDAG ϕ(A), the cal-
culation of the overall reliability of the alp-transit system happens by com-
puting the probability of ϕ(A):

Rel(Σalptransit) = P (A = 1) = P (ϕ(A)) = 0.9529.

The computation is illustrated in Fig. 10, where the (exact) probability val-
ues are restricted to four decimal places.

Reliability Evaluation 37

∧

∧

¬ ¬

¬

∧

∧

¬ ¬

∨

∧ ∧

∧

¬ ¬

¬

0.9 0.9

0.1 0.1

0.9

0.01

0.99
0.6 0.7

0.80.8

0.2 0.2

0.64

0.42

0.58

0.1440.144

0.928

0.9187

0.0813

0.0471

0.9529

r1 r2t1 t2 t3

p1 p2

Figure 10: The cd-PDAG ϕ(A) of the entire alp-transit system and the
computation of its probability.

3.3 Network Reliability

Based on the formal description of reliability networks presented in Sub-
section 2.4, we discuss in the following the evaluation of network reliability.
As for modular systems, it is based on a PDAG representation of the struc-
ture function which shall be called reliability pdag in the sequel. This sub-
section is divided into two major parts: Subsection 3.3.1 treats the prob-
lem of efficiently generating the reliability pdag for a previously specified
connectivity measure. In Subsection 3.3.2 we explain how the resulting
reliability pdag must be transformed to assure that the subsequent proba-
bility (reliability) computation becomes efficient. It will be of primary con-
cern to compute the s, t-connectivity measure, for whose structure func-
tion the appropriate reliability pdag needs to be found. The methods we
propose here create the reliability pdag directly from the network without
relying on intermediate representations. For this, we consider two distinct
approaches. The first method generates the reliability pdags for all pos-
sible source-terminal pairs in the network. The second provides a more
general representation with a specified source node. From this, the relia-
bility pdags for different connectivity measures can be derived. Finally, we
present a modified version of the second method specifically designed for
the case of acyclic networks.

38 iam 09-004

3.3.1 Generating the Structure Function

Algebraic Preliminaries. To establish the necessary formal ground for
the subsequent methods, let us introduce the class of Boolean functions
of arity at most n ≥ 0, which are defined as follows:

f : {0, 1}≤n → {0, 1}.

The set of all such functions is denoted by B≤n. Note that the 0-ary (con-
stant) Boolean functions 1 and 0 are also included in this set. Further as-
sume two binary operations ∨ and ∧ over the set B≤n. When interpreting
1 and 0 as logical truth values true and false, respectively, we can view ∨
as logical disjunction and ∧ as logical conjunction. Then the set B≤n forms
a semiring with addition ∨ and multiplication ∧, as well as zero element 0
and unit element 1. We refer to the resulting structure SB = (B≤n,∨,∧, 1, 0)
as the semiring of Boolean functions20.
Consider further a network N = (V, E) where V is the set of nodes such
that |V| = n and E is the set of all directed edges. With each eij ∈ E
we associate a corresponding Boolean variable xij such that xij = 1 if
edge eij is operative and xij = 0 if eij is down. Given the network N , its
connectivity matrix is defined by matrix A = (fij)n×n over the semiring SB,
i.e. with entries fij in B≤n. Initially, fij = xij if the corresponding edge
exists, i.e. if eij ∈ E, and fij = 0 otherwise. By appropriate manipulation
of the connectivity matrix, the following algorithms generate the structure
function with respect to the desired connectivity measure. The reliability
pdag relative to this structure function will be usually denoted by ϕ.

Connectivity of All Pairs. In some situations the connectivity between
all node pairs of a network can be of interest. This may be the case in the
context of routing problems for instance, where messages must be routed
reliably between all pairs of network sites. The following method makes
use of dynamic programming and generates efficiently the reliability pdags
for the s, t-connectivity — simultaneously for all possible source-terminal
pairs in the network.

20This semiring satisfies a number of properties which can be easily verified: it is com-
mutative, idempotent, bounded (1 being the maximum and 0 the minimum), and ordered
(its natural order is monotonic with respect to both ∧ and ∨).

Reliability Evaluation 39

Algorithm 1: WFK Algorithm for All-Pairs Connectivity.
Input: connectivity matrix A = (fij)n×n, fij ∈ B≤n.
Output: A(n), the matrix of structure functions f (n)

ij for conni,j for all
1 ≤ i, j ≤ n.

begin1

A(0) ← A2

for k from 1 to n do3

foreach i, j ∈ {1, . . . , n} do4

if i, j 6= k then5

[A(k)]ij ← [A(k−1)]ij ∨ ([A(k−1)]ik ∧ [A(k−1)]kj)6

end7

end8

end9

return A(n)10

end11

By traversing successively each node vk ∈ V of the network (the outer loop,
line 3), the procedure shown in Alg. 1 constructs all possible “paths” going
through this node by considering all transitive connections between nodes
vi and vj via vk, the first two being different from vk (the inner loops, lines
4-6). A(k) denotes the matrix A after the k-th iteration of the outer loop,
and [A(k)]ij denotes its i, j-entry. In view of the reliability computation dis-
cussed in the next subsection, we assume at each stage k of the algorithm
the structure functions f (k)

ij ∈ B≤n to be represented by corresponding reli-
ability pdags ϕ(k)

ij , since all reliability computations will be carried out later
as PDAG-operations. Furthermore, by manipulating reliability pdags rather
than other structures, we ensure the space requirement of the algorithm
to remain in moderate bounds. This applies of course to all algorithms
presented in this subsection. The following theorem confirms that Alg. 1
indeed computes the desired structure functions:

Theorem 3.1. At the end of Algorithm 1, each entry f (n)
ij of the matrix A(n)

corresponds to the structure function for the vi, vj-connectivity measure for
all source-terminal pairs vi and vj in the network. Proof: see appendix.

The algorithm is inspired by various similar solution schemes, starting with
Kleene’s proof that any regular language can be represented by a regular
expression, Warshall’s algorithm for computing the transitive closure of a
Boolean matrix [38], and Floyd’s adaptation for finding shortest distance
paths [39]. Since these algorithms all follow the same general scheme,

40 iam 09-004

they can be viewed in fact as special cases of a single, more general algo-
rithm, which is sometimes refered to as generalized WFK (Warshall-Floyd-
Kleene) algorithm [40]. Several authors have recognized this generic pat-
tern and proposed axiomatized frameworks for its description, see the
comment at the end of this subsection. Also, the Gauss-Jordan method
from linear algebra can be adapted accordingly to this more general form.

Example 7. To illustrate the WFK algorithm for all-pairs connectivity, con-
sider the network N = (V, E) from Fig. 6a, where V = {v1, v2, v3, v4} and
E = {a, b, c, d, e, f}. The application of Alg. 1 to the network’s connec-
tivity matrix A = A(0) results in the sequence of matrices A(1) to A(4)

shown below. For a more compact illustration, the Boolean functions f (k)
ij

for k = 1, . . . , 4 are represented by nested Boolean formulae, conjunction
x∧ y is realized by juxtaposition xy, and disjunction x∨ y is abbreviated by
means of a comma: x, y.

A(0) =




v1 v2 v3 v4

v1 0 a e 0

v2 0 0 c b

v3 0 d 0 f

v4 0 0 0 0




A(2) =




0 a e, ac ab

0 0 c b

0 d cd f, bd

0 0 0 0




A(1) =




0 a e 0

0 0 c b

0 d 0 f

0 0 0 0



A(3) =




0 a, [d(e, ac)] e, ac ab, [(e, ac)(f, bd)]

0 cd c b, [c(f, bd)]

0 d cd f, bd

0 0 0 0




= A(4)

For example, inspection of the 1, 4-entry of matrix A(4) reveals the struc-
ture function representation for the v1, v4-connectivity. By expanding the
corresponding Boolean formula using the distributivity law and applying
appropriate simplifications21, we obtain exactly the four minpaths listed in
Example 4: ab, ef, acf , and edb. But here our goal is to retain the structure
of the nested formula by representing the Boolean function f

(4)
1,4 by a cor-

responding reliability pdag ϕv1,v4. A possible PDAG is shown in Fig. 11b;
the meaning of the grey nodes is later explained in Subsection 3.3.2. In

21The partial order of the semiring SB (induced by the idempotency axiom) causes
every BF g to be absorbed by a BF f which is “greater” w.r.t. this order: g 4 f ⇐⇒
g ∧ f = g ⇐⇒ g ∨ f = f .

Reliability Evaluation 41

the next subsection we present an alternative method for generating an
equivalent reliability pdag.

Remark To adapt the procedure from Alg. 1 to a generic form, we basi-
cally have to replace the ∨ and ∧ operations by general semiring addition
+ and multiplication ×, respectively, and to consider the initial matrix A of
values over an arbitrary closed semiring [40]. By an appropriate choice of
the operations + and ×, a large variety of path problems can be solved,
including the calculation of the transitive closure of a binary relation in a
graph [41, 38], shortest paths, maximum capacity paths, maximum reli-
ability paths, and many others. Hence, Algorithm 1 clearly fits into this
general solution scheme using the semiring of Boolean functions. The
calculation of the matrix A∗ of such optimal values (sometimes called the
closure of A) is commonly refered to as the algebraic path problem in
the literature. Several authors have established corresponding algebraic
frameworks with varying properties for the solution of path problems in
graphs and networks [40, 42, 43]. Possible applications of the resulting
general solution schemes go even beyond path problems and include the
computation of the inverse of a real matrix, or obtaining the regular lan-
guage accepted by a finite automaton. See [42] for a survey of interesting
applications. A similar algebraic approach has been developed by [15] and
applied to the computation of network reliability.

Generic Single-Source Connectivity. Instead of specifying from the
beginning the desired source and terminal nodes as in the above method,
we delay the choice of the terminal nodes to a later moment and fix at first
only the source node. The idea is to generate a special structure function
representation that contains enough information to allow every node to be
a potential terminal node. This enables us afterwards to determine several
terminal nodes at the same time. This is one of the advantages of this
method: it allows more flexibility with respect to conventional methods that
start with a fixed choice of terminal nodes.
Inspired by various elimination algorithms from linear algebra like Gauss
and Gauss-Jordan elimination, we set up an algorithm which succes-
sively eliminates all network nodes except one that has been dedicated
as source node at the beginning of the procedure. The result is a generic
expression that can be instantiated accordingly to produce the structure
function with respect to the source-to-any-terminal connectivity. The struc-
ture function for the s, t-connectivity is obtained as a special case.
The connectivity matrix A of a given network is defined as before, except
that we consider additionally for each node vi a Boolean variable λvi

called

42 iam 09-004

terminal selector. The value of the terminal selector determines whether
the corresponding node belongs to the terminal set or not: vi ∈ K if λvi

= 1,
and vi /∈ K if λvi

= 0. In summary, the initial matrix A = (fij)n×n is newly
defined as follows:

fij =





xij if eij ∈ E, i 6= j,
λvi

if i = j,
0 otherwise.

(15)

The role of the terminal selectors becomes more interesting when we later
look at the instantiation of the structure function representation obtained
by Alg. 2.

The following algorithm successively eliminates nodes from the network
similar to the Gauss algorithm. The initial elimination order is not im-
portant for the correctness of the algorithm, but may affect the shape of
the reliability pdag resulting at the end. In this respect it turns out to be
advantageous to order the nodes in the connectivity matrix in a manner
such that the non-zero entries are concentrated preferably in the upper
right half. This is achieved by arranging the network nodes in increasing
distance (number of intermediate edges) from the dedicated source such
that their corresponding matrix entries have increasing indices in the
matrix. In this way the source node’s entry has always the lowest matrix
indices, and ties are resolved randomly. The reverse order serves then as
elimination sequence.22

22This ordering heuristic is called Largest Distance First (LDF) in [36]. In an acyclic
network it leads to an upper triangular connectivity matrix.

Reliability Evaluation 43

Algorithm 2: Elimination Algorithm for Generic Single-Source Con-
nectivity.

Input: connectivity matrix A = (fij)n×n, fij ∈ B≤n.
Output: [A(1)]11, generic structure function for single-source connectivity.
begin1

A(n) ← A2

for k from n downto 2 do3

for i from k − 1 downto 1 do4

if [A(k)]ik 6= 0 then5

[A(k−1)]ii ← [A(k)]ii ∨ ([A(k)]ik ∧ [A(k)]kk)6

for j from 1 to k − 1 do7

if [A(k)]kj 6= 0 and j 6= i then8

[A(k−1)]ij ← [A(k)]ij ∨ ([A(k)]ik ∧ [A(k)]kj)9

end10

end11

end12

end13

end14

return [A(1)]1115

end16

To see how Alg. 2 works, let us view the elimination of a node from the
connectivity matrix as the removal of the corresponding vertex from the
network. When a vertex is eliminated from the network, we must make
up somehow for the paths that are affected by this removal. This is done
in two ways: First, when node vk is eliminated its reachability informa-
tion [A(∗)]kk is passed to all nodes vi having outgoing edges eik, thus up-
dating their respective reachability information [A(∗)]ii (line 6). In Exam-
ple 8, through the elimination of v4 two entries are updated: λ2 becomes
λ2 ∨ (b∧λ4), and λ3 becomes λ3 ∨ (f ∧λ4). Second, when vk has outgoing
edges ekj in the current connectivity matrix, we must make up for all tran-
sitive connections from nodes vi to vj via vk (cf. Alg. 1). This means that
every pair of edges eik and ekj with respective labels fik and fkj is replaced
by a new single edge eij with label fik ∧ fkj. This information is added to
the old label of edge eij, if there was such previously in the network (line
9). Consider again Example 8 and the elimination of v3: after this, the 1, 2-
entry of the matrix gets the new label a ∨ (d ∧ f). As in Alg. 1, all matrix
entries fij are represented at any time by corresponding reliability pdags
ϕij.

At the end of Alg. 2 we obtain what we call a generic reliability pdag, which

44 iam 09-004

does not represent yet a real structure function. We denote this reliability
pdag by ϕs where s = v1 is the chosen source node. This is where the ter-
minal selectors come into play: their values determine the exact meaning
of the result. To get the structure function for a specific problem with re-
spect to a given set K = {t1, . . . , tk} ⊆ V \{s} of terminal nodes, we must
instantiate the terminal selectors within ϕs accordingly. In the PDAG con-
text this amounts to conditioning ϕs with respect to the terminal selectors
as follows: all variables λti for all ti ∈ K are set to 1, whereas variables λvi

for all vi ∈ V \K are set to 0. Note that this is a linear time operation in the
size of ϕs. The resulting reliability pdag represents the structure function
for conn∃K and is denoted by ϕs,∃K . For K = {t} we get the reliability pdag
ϕs,t for conns,t as special case. The following theorem confirms this result:

Theorem 3.2. Let be ϕv1 the reliability pdag resulting from Alg. 2, i.e.
after eliminating variables v2, . . . , vn. Further assume the following instan-
tiation of the terminal selectors: λvn = 1 and λvi

= 0 for 1 ≤ i ≤ n − 1.
After appropriately conditioning ϕv1 with respect to this instantiation, the
resulting pdag ϕv1,vn represents the structure function for connv1,vn. Proof:
see appendix.

To obtain the structure function for conn∀K , we simply conjoin the reliability
pdags of the respective conn{s,ti} problems for all terminal nodes ti ∈ K.
Hence, after appropriate instantiation of ϕs we can construct the corre-
sponding reliability pdag ϕs,∀K = ϕs,t1 ∧ . . .∧ϕs,tk . Similarly, for K = V \{s}
we obtain the reliability pdag ϕs,V for connV.

Example 8. Consider again the four-node network from Fig. 6a and sup-
pose v1 has been chosen as source node. Alg. 2 sequentially eliminates
nodes v4, v3, v2 from the network (in this order), which is illustrated by the
sequence of matrices A = A(4), A(3), A(2), A(1) shown below. The matri-
ces are depicted in decreasing size, since at each step k of the algorithm
(outer loop), only entries with indices ≤ k are considered. Note that the
notational conventions from Example 7 apply here as well, and the λvi

are

Reliability Evaluation 45

abbreviated by λi.

A(4) =




v1 v2 v3 v4

v1 λ1 a e 0

v2 0 λ2 c b

v3 0 d λ3 f

v4 0 0 0 λ4




A(3) =



λ1 a e

0 λ2, bλ4 c

0 d λ3, fλ4




A(2) =

[
λ1, [e(λ3, fλ4)] a, ed

0 (λ2, bλ4), c(λ3, fλ4)

]

A(1) =
[
[λ1, e(λ3, fλ4)], [(a, ed)

(
(λ2, bλ4), c(λ3, fλ4)

)
]
]

At the end of the algorithm we are interested in the upper left entry
of matrix A(1): the generic structure function representation with source
node v1. The reliability pdag ϕv1 representing this function is depicted
in Fig. 11a. In order to obtain the structure function representation for
the v1, v4-connectivity, we instantiate the terminal selectors appropriately
within the Boolean formula of f (1)

11 and get as result ef, [(a, ed)(b, cf)] (cf.
for this Example 7). In terms of ϕv1 this amounts to setting the terminal se-
lectors within ϕv1 as follows: λ4 ≡ 1 and λ1 ≡ λ2 ≡ λ3 ≡ 0. After all possible
simplifications, this results in the instantiated reliability pdag ϕv1,v4 shown
in Fig. 11b. Note that the depicted reliability pdag is not unique; several
logically equivalent PDAGs are possible. For instance, the reliability pdag
for the structure function obtained in Example 7 would have another shape.

Acyclic Networks. In practice, networks are often cycle-free and
relatively sparse, resulting in correspondingly few edges. It would be thus
desirable to take account of this observation by devising an algorithm
which relies solely on the number of edges as critical parameter. In
the particular case of a directed, acyclic network there is always an
ordering of nodes (which may be not unique) such that the network’s
connectivity matrix becomes upper triangular, i.e. if eij ∈ E, then i < j.23

Taking a closer look at Alg. 2, the whole third loop can be left out in
this case. Furthermore, the first two loops can be merged to a single
loop which iterates through edges only. The edge set is supposed to be
ordered by decreasing column index (first priority), and by decreasing

23Such node ordering is sometimes also called topological order.

46 iam 09-004

row index (second priority). We denote this order by π and the set of
edges ordered according to π is refered to as Eπ. The adapted procedure
results in Algorithm 3 shown below and takes besides the connectivity
matrix A, still defined by (15), also the set Eπ as input and loops through
it in the specified order, so that the elimination of nodes happens the
same way as it does in Alg. 2. Note that the essential part of Alg. 3 on
line 3 corresponds exactly to line 6 in Alg. 2. Since this new algorithm is
a special case of Alg. 2, the assertion of Theorem 3.2 applies here as well.

Algorithm 3: Elimination Algorithm for Generic Single-Source Con-
nectivity (Acyclic Version).

Input: 1. upper triangular connectivity matrix A = (fij)n×n, fij ∈ B≤n, and
2. Eπ.

Output: [A]11, generic structure function for single-source connectivity.
begin1

foreach eij ∈ Eπ in order π do2

[A]ii ← [A]ii ∨ ([A]ij ∧ [A]jj)3

end4

return [A]115

end6

∨

∧
λ3

f λ4

∨

∧
a

d e λ2

b

∧

c

∨

∨

∧

∧

∧

∨

∨

λ1

(a)

∨

∧

∧∧

∧

a

d e

b

f c

∨∨

(b)

Figure 11: (a) The generic reliability pdag ϕv1 from Example 8 for the net-
work in Fig. 6a. (b) The specific reliability pdag ϕv1,v4 after instantiating
the terminal selectors within ϕv1: λ4 ≡ 1, λ1 ≡ λ2 ≡ λ3 ≡ 0. The shaded
∨-nodes are not deterministic.

Notes on Complexity. Assuming that the basic operations ∨ and ∧ re-
quire constant time, the WFK algorithm for all-pairs connectivity (Alg. 1)

Reliability Evaluation 47

has a complexity of Θ(n3), which is an asymptotic tight bound. A non-
trivial lower bound is not known for this case. The algorithm can be de-
signed more efficiently by means of parallelization (e.g. by distributing the
computations over a mesh of connected processors), see [44], and by us-
ing further dynamic programming techniques [45]. In any case, the current
literature on these topics is rich and offers many possibilities for optimiza-
tion.
The algorithm for generic single-source connectivity (Alg. 2) has an
asymptotic (not tight) upper bound complexity of O(n3). It requires at most
n(n − 1)(2n − 1) / 6 ∨-operations and the same number of ∧-operations.
However, this is under the assumption that maximum possible fill-in oc-
curs, i.e. the connectivity matrix is assumed to be complete. In practice,
the effective number of operations is much smaller since they are only per-
formed in case of non-zero entries. So the theoretical worst-case complex-
ity O(n3) does not accurately reflect the relative efficiency of the algorithm
when applied to real problems.
In the case of acyclic (and possibly sparse) networks Algorithm 3 exploits
the fact that the number of edges reflects the network size much more
accurately than the number of nodes does. The running time is then Θ(m),
thus linear in the number of edges m. In terms of the number of nodes,
this corresponds to the upper bound complexity O(n2).

3.3.2 Computing Network Reliability

Assume we have generated the reliability pdag ϕ for one of the above de-
scribed network reliability problems. Based on this reliability pdag, we can
tackle the computation of network reliability. For this, recall that ϕ must
meet the decomposability and determinism properties discussed in Sub-
section 3.1.2 to allow efficient probability computation. Unfortunately, this
condition is not satisfied in general at this stage. Thus prior to reliabil-
ity computation, we must transform the reliability pdag ϕ into a logically
equivalent cd-PDAG. The whole process can be split into three consecu-
tive steps:

1. Transformation of the reliability pdag ϕ into a logically equivalent de-
terministic PDAG (d-PDAG), denoted by ϕd. This operation is linear
in the size of the PDAG.

2. Transformation of the d-PDAG ϕd resulting from the previous opera-
tion into a logically equivalent cd-PDAG denoted by ϕcd. This oper-
ation is computationally hard in general and may result in an expo-

48 iam 09-004

nentially larger representation of the new reliability pdag relative to
ϕd.

3. Exact probability computation based on the transformed reliability
pdag ϕcd. This operation is linear in the size of the cd-PDAG.

Before describing in more detail the above-mentioned stages, let us re-
mark that we can perform at this point alternatively an approximate relia-
bility computation by directly sampling from ϕ, making any further trans-
formations needless. Such a Monte-Carlo based approximation may be
suitable in case of very large networks, where the main issue is perfor-
mance rather than accuracy of the result.24

Step 1: Making the PDAG deterministic. To make the reliability
pdag ϕ deterministic, we traverse ϕ and replace each ∨-node ϕ1 ∨ ϕ2

by ¬(¬ϕ1 ∧ ¬ϕ2), where ϕ1 and ϕ2 are arbitrary sub-PDAGs. With
this, the determinism problem is solved since all ∨-nodes vanish, but
the new ∧-nodes are still not necessarily decomposable (this issue is
approached in the next step). For the following algorithms, we assume
to dispose of the predefined (self-explanatory) predicates with respect
to an arbitrary PDAG α: isPdagLeaf(α), isPdagOr(α), and isPdagAnd(α).
The transformation can be now cast into the following recursive procedure:

Algorithm 4: PDAG to d-PDAG Transformation.
procedure makeDeterministic(ϕ)1

begin2

if isPdagLeaf(ϕ) then3

break4

else5

if isPdagOr(ϕ) then6

ϕ ← ¬
(∧m

i=1 ¬ψi
)

where {ψ1, . . . , ψm} = children(ϕ)7

end8

foreach ψi ∈ children(ϕ) do9

makeDeterministic(ψi)10

end11

end12

end13

24This strategy is not specifically related to networks and may be applied in any case
in which the structure function is represented by a PDAG.

Reliability Evaluation 49

This algorithm runs in Θ(#(ϕ)+ |ϕ|) time, assuming that the node replace-
ment requires constant time. As an example, consider the reliability pdag
ϕv1,v4 depicted in Fig. 11b from Example 8: it has three ∨-nodes which are
not deterministic (indicated with shaded circles). Applying Alg. 4 to ϕv1,v4
results in the deterministic PDAG ϕd

v1,v4
depicted in Fig. 12a.

Step 2: Making the d-PDAG decomposable. To make the d-PDAG ϕd

resulting from Alg. 4 decomposable, we traverse this time ϕd and check
for each ∧-node ϕ1 ∧ ϕ2 whether decomposability holds. Whenever ϕ1

and ϕ2 have a common sub-PDAG ψ, i.e. if vars(ϕ1) ∩ vars(ϕ2) 6= ∅, de-
composability is not satisfied. In such a case, we decompose ϕ1 ∧ ϕ2 by
means of Shannon’s expansion with respect to some variable x ∈ vars(ψ),
which includes conditioning ϕ1 ∧ ϕ2 on x and ¬x.25 This procedure must
be recursively applied to each newly created ∧-node until decomposability
holds for all ∧-nodes, resulting in the cd-PDAG ϕcd. Computationally, this
is the hardest task of the entire transformation process and requires pos-
sibly exponential time. The pseudo-code in Algorithm 5 shows a recursive
procedure which takes a deterministic PDAG as input and transforms it
into a logically equivalent cd-PDAG.

To illustrate this transformation by an example, consider the d-PDAG
ϕd
v1,v4

from Fig. 12a obtained after step 1. The shaded ∧-node is not
decomposable since its children share the common variables e and f .
By choosing for instance e as pivot variable, we replace this ∧-node by
Shannon’s expansion with respect to e which yields the new PDAG shown
in Fig. 12b. This one is still not decomposable because the children of
the new shaded ∧-node have the variable f in common. After performing
a similar replacement relative to f , we obtain the decomposable PDAG
ϕcd
v1,v4

shown in Fig. 12c which allows efficient probability calculation.

25The choice of the variable x is arbitrary and can be taken according to some heuristic.
In fact, the expansion can be also performed with respect to the whole sub-PDAG ψ.

50 iam 09-004

Algorithm 5: d-PDAG to cd-PDAG Transformation.
procedure makeDecomposable(ϕ) // ϕ is assumed to be deterministic1

begin2

if isPdagLeaf(ϕ) then3

break4

else5

if isPdagAnd(ϕ) then6

I ←
⋂
ψ∈children(ϕ) vars(ψ)7

if I 6= ∅ then8

choose x ∈ I according to some heuristic9

ϕx ← ϕ |x // replace each occurence of x in ϕ by 110

ϕ¬x ← ϕ | ¬x // replace each occurence of x in ϕ by 011

makeDecomposable(ϕx)12

makeDecomposable(ϕ¬x)13

ϕ ← (ϕx ∧ x) ∨ (ϕ¬x ∧ ¬x) // Shannon’s expansion w.r.t. x14

else15

foreach ψ ∈ children(ϕ) do16

makeDecomposable(ψ)17

end18

end19

else20

foreach ψ ∈ children(ϕ) do21

makeDecomposable(ψ)22

end23

end24

end25

end26

Several aspects are left out in Algorithm 5 which are relevant though in a
real implementation. For instance, one would assume for each sub-PDAG
ψ of ϕ its variable set vars(ψ) to be stored in a hash table to make the test
on line 8 as efficient as possible. Furthermore, it would be probably more
convenient to perform both steps 1 and 2 together in one traversal of the
PDAG. But for the sake of clarity of the algorithms and to underline the
fact that to guarantee decomposability is the hard part, we have decided
to consider these transformations separately.

Step 3: Exact reliability computation. The last step of the evaluation
process consists in computing the probability of the reliability pdag ϕcd

resulting from step 2. This computation is exactly the same as for modular
systems or hybrid systems which we have seen before. At this point we are

Reliability Evaluation 51

∧

∧∧

∧

¬
∧

¬ ¬

¬
∧

¬ ¬

¬

¬ ¬

a

d e

b

f c

∧

(a)

¬
∧

¬ ¬
a d

∧

¬
∧

¬ ¬
b

f c

¬
∨

∧ ∧

e

¬
∧

a

¬

f

¬ ¬
∧

∧

(b)

¬
∧

¬ ¬
d

∧

¬
∧

¬ ¬
b

f c

¬
∨

∧ ∧

e

¬
∧

a

¬∧

f

¬ ¬
∧

b

a

(c)

Figure 12: (a) The d-PDAG ϕd
v1,v4

after making ϕv1,v4 deterministic. The
shaded ∧-node is not decomposable. (b) The transformed d-PDAG ϕd

v1,v4

after expanding the shaded ∧-node from (a) relative to e. The new shaded
∧-node is not decomposable. (c) The cd-PDAG ϕcd

v1,v4
obtained from (b)

after expanding its shaded ∧-node relative to f .

still free to assign arbitrary probability values to the edges, or to perform
sensitivity analysis if required.
To illustrate this last step, we consider once more our sample network ex-
ample used so far. For the computation of the v1, v4-connectivity, we need
to calculate the probability of the cd-PDAG ϕcd

v1,v4
depicted in Fig. 12c. To

simplify the calculation, suppose that the success probabilities are equal
for all edges: r(a) = r(b) = r(c) = r(d) = r(e) = r(f) = 0.9. Now
we can compute the probability of the given cd-PDAG (analogously to the
computation shown in Fig. 10) by recursively propagating the intermedi-
ate probabilities in ϕcd

v1,v4
up to the root at which the final probability is

obtained. With the above edge reliabilities, we get the overall network
reliability Rel(N [connv1,v4]) = P (ϕcd

v1,v4
) = 0.97848.

3.4 Hybrid System Reliability
The representation of structure functions by means of PDAGs allowed in
the previous subsections to evaluate system reliability in a convenient and
efficient way. Since modules and networks are the building blocks of hybrid
systems, the methods used so far can be transferred to hybrid networks
and hybrid systems.
Recall first the formal system description of hybrid networks and let the
structure functions fVi

and fEj
associated with vertices and edges be rep-

52 iam 09-004

resented by the corresponding cd-PDAGs ϑ(Vi) and ε(Ej) which are spec-
ified as follows:

ϑ(Vi) :=





leaf node labeled with yi if Vi = vi (atomic node),
ϕ(Σi) if Vi = Σi (module),
ϕ(Ni[Qi]) if Vi = Ni[Qi] (network),

and similarly

ε(Ej) :=





leaf node labeled with zj if Ej = ej (atomic edge),
ϕ(Σj) if Ej = Σj (module),
ϕ(Nj[Qj]) if Ej = Nj[Qj] (network),

Basically, the procedure to compute the reliability of a hybrid network is
the same as for usual reliability networks as discussed in Subsection 3.3,
except that here we must deal possibly with modular vertices and/or mod-
ular edges. Given a network N [Q] = (V, E, g) with a specified problem
Q, the goal is first to represent its structure function g by a reliability pdag
ϕ(N [Q]) where Q indicates the imposed reliability measure. If we assume
only edges to fail, the leaf nodes of ϕ(N [Q]) consist then of PDAGs ε(Ej)
only. In case of a simple (i.e. non-hybrid) network, we are left exclusively
with leaf nodes labeled with the corresponding Boolean variables zj. In the
hybrid case however, we replace every PDAG ε(Ej) which is associated
with a modular edge by the corresponding cd-PDAG representation ϕ(Σj)
of the non-local structure function of the underlying modular (or hybrid)
system Σj. To obtain this cd-PDAG we apply the strategy from Subsection
3.2. Such a generic scenario is shown schematically in Fig. 13. In either
case, to compute the reliability of the network based on the reliability pdag
ϕ(N [Q]), we must first transform ϕ(N [Q]) into the corresponding reliabil-
ity cd-pdag ϕcd(N [Q]) as discussed in Subsection 3.3, and then evaluate
it by calculating its probability P (ϕcd(N [Q])).
The approach in case of a hybrid system Σ = ({Σ0,Σ1, . . . ,Σm}, f) is a
straightforward extension of the modular case from Subsection 3.2. We
already know from the context of modular systems that the local struc-
ture functions associated with subsystems Σi are represented by local cd-
PDAGs ψi. In case Σi comes in form of a network Ni, the discussion from
the previous paragraph applies. Note that the reliability pdag ϕ(N [Q])
must be then transformed into the cd-PDAG ϕcd(N [Q]). So the non-local

Reliability Evaluation 53

ϕq

. . .

.

. . .

. . .

. . .

≡

≡

z1

z2 z3 zi

zk

zm

ci cj

ck cm

c1

.
...

...

Ej

El

ε(El) ϕ(Σl)=

ε(Ej) ϕ(Σj)=

Figure 13: The reliability pdag ϕ(N [Q]) of a hybrid network obtained for
reliability measure Q. The nodes labeled with modular edges Ej and El
are replaced by the corresponding cd-PDAGs ϕ(Σj) and ϕ(Σl) associated
with the respective underlying systems.

cd-PDAG ϕ associated with every subsystem Σi is now as follows:

ϕ(Σi) =





leaf node labeled with xi if Σi is a component ci,
ϕcd(Ni[Qi]) if Σi is a network Ni[Qi] (i 6= 0),
ψi(ϕ(Σi1), . . . , ϕ(Σik)) if Σi is a module.

(16)

Again, the reliability of the hybrid system — given prior probabilities of all
atomic components, vertices, and edges — is then obtained by computing
Rel(Σ) = P (ϕ(Σ0)).

54 iam 09-004

4 Diagnostics
The analysis presented in the previous sections corresponds to the clas-
sical approach of reliability: given the probabilities of operation of its com-
ponents, compute the probability of operation of the whole system. In this
section we tackle the system analysis from another direction: given that
the system or some of its parts are observed to be down, find out which
elements are most likely responsible for this defect. This task is fully in the
spirit of the more general problem of diagnostics: based on observations
about the state of operation of the entire system or some of its parts, the
goal is to find the most probable diagnoses which explain the observed
behaviour.

4.1 The Basic Setting
To solve this problem, we follow in this paper the approach of Bayesian
diagnostics: we compute the posterior (or conditional) success probabil-
ities of modules, components, and other subsystems given the failure or
operation of the system or a subsystem thereof. The posterior probabili-
ties indicate which subsystems are most likely the cause of the observed
behaviour. For this we can use the results of reliability computations from
the previous section. Repeating this process in an iterative manner allows
to refine the diagnoses: by performing further tests specifically on the sus-
pected modules or components, we can update their posterior probabili-
ties. In this way we may identify the causes of the observed failures with
an increasing certainty.
To demonstrate our approach on a more concrete basis, let us start with
a simple setting. Consider for this a system Σ = ({Σ0, c1, . . . , cm}, f) with
top-level module Σ0 and atomic components c1, . . . , cm. Now assume that
we observe a system failure, i.e. f(x) = 0. The occurence of this event
changes the prior success probabilities P (xi = 1) of the components ci
into corresponding posterior probabilities P (xi = 1 | f(x) = 0). These con-
ditional probabilities can be computed according to Bayes’ theorem:

P (xi = 1 | f(x) = 0) =
P ({xi = 1} ∩ {f(x) = 0})

P (f(x) = 0)

=
P ({xi = 1} ∩ {f(x) = 0})

1− P (f(x) = 1).
(17)

The denumerator of this formula is almost given since the reliability com-
putation is assumed to be accomplished, hence the unreliability is easily

Diagnostics 55

obtained. Now the numerator remains to be calculated, which is in gen-
eral more complicated. We show later in this section how to perform this
computation in terms of PDAG manipulations. But let us first put the prob-
lem statement of diagnostics in a more general form. Consider for this an
arbitrary system Σ = ({Σ0,Σ1, . . . ,Σm}, r, f) as subject of diagnostics. We
assume the structure function f to be represented by the global cd-PDAG
ϕ(Σ0). According to the organizing tree of the system the cd-PDAG ϕ(Σi)
associated with each subsystem Σi is contained as a sub-PDAG in ϕ(Σ0).
To represent the negation of ϕ(Σi), i.e. the ¬-node with child ϕ(Σi), we
write ¬ϕ(Σi).
In this framework we allow for an arbitray number of observations. For
this consider the event hi(xi) = 0 which represents the observation that
subsystem Σi (component, module, network, etc.) is down, and similarly
hi(xi) = 1 stands for the event that Σi is up. So for any subsystem Σi we
may possibly observe obi ∈ {hi(xi) = 0, hi(xi) = 1}, namely a subsystem
failure or operation. Moreover, one may be interested in several queries
qrj at the same time. This amounts to computing the posterior probabili-
ties of several subsystems at once. In fact we may ask for posterior prob-
abilities of success or failure, which means that for any subsystem under
investigation Σj such that j 6= i, we have qrj ∈ {hj(xj) = 0, hj(xj) = 1}.
So consider a set O = {Σi1 , . . . ,Σik} of observed subsystems and a set
Q = {Σj1 , . . . ,Σjt} of query subsystems such that O ∩ Q = ∅. The condi-
tional probability of all the queries given the observations is given by

P (qrj1 , . . . , qrjt | obi1 , . . . , obik) =
P (qrj1 , . . . , qrjt , obi1 , . . . , obik)

P (obi1 , . . . , obik)
. (18)

In the next subsection, we explain how to compute such posterior proba-
bilities.

4.2 Computing Posterior Probabilities

For the subsequent discussion on how to compute the numerator in (18),
we restrict ourselves on a single query qr ∈ {hj(xj) = 0, hj(xj) = 1} and
and a single observation ob ∈ {hi(xi) = 0, hi(xi) = 1}. This is only to keep
the computations illustrative and implies no restrictions on the conceptual
level. The observed subsystem shall be denoted by Σob = Σi and the
system under investigation by Σqr = Σj. Under these assumptions, we
may express the conditional probability (18) now in terms of cd-PDAGs as

56 iam 09-004

follows:

P (qr | ob) =
P (qr, ob)

P (ob)
=
P (ϕ(Σqr) ∧ ϕ(Σob))

P (ϕ(Σob))
, (19)

where ϕ(Σob) and ϕ(Σqr) are the respective cd-PDAGs relative to the sub-
systems Σob and Σqr. They are both sub-PDAGs of the global cd-PDAG
ϕ(Σ0). The conjunction ϕ(Σob) ∧ ϕ(Σqr) in the numerator is obtained by
joining ϕ(Σob) with ϕ(Σqr) by a ∧-node, resulting in a new PDAG which is
denoted by ϕob∧qr in the sequel. The problem now is that this newly cre-
ated PDAG is not necessarily decomposable, i.e. the children of its root
node may now have common variables. This implies that efficient probabil-
ity computation is no longer assured since ϕob∧qr is not a cd-PDAG. Such
case is illustrated in Fig. 14 with ϕ(Σob) = ¬ϕ(A) and ϕ(Σqr) = ϕ(R), see
Example 9. Remember that making an arbitrary PDAG decomposable is
a computationally hard task in the general case.
Here, the strategy to make ϕob∧qr decomposable depends on the positions
of the involved subsystems with respect to each other within the organizing
tree, and hence within the global PDAG. So we are basically faced with two
possible situations:

1. Σob and Σqr are in distinct sub-trees, or

2. Σob and Σqr are not in distinct sub-trees, i.e. either

(a) Σqr is a sub-tree of Σob, or

(b) Σob is a sub-tree of Σqr.

The first case is straightforward since ϕ(Σob) and ϕ(Σqr) share no variables
which makes ϕob∧qr automatically decomposable. Its probability P (ϕob∧qr)
is thus easily obtained:

P (ϕob∧qr) = P (ϕ(Σob) ∧ ϕ(Σqr)) = P (ϕ(Σob)) · P (ϕ(Σqr)), (20)

where P (ϕ(Σob)) and P (ϕ(Σqr)) are calculated according to (13) in Sub-
section 3.1. The product (20) implies that P (qr | ob) = P (qr) = P (ϕ(Σqr)),
which means that the query (i.e. the operation of the investigated subsys-
tem) is not affected by the observation.
The second case is more complicated since ϕob∧qr is not decomposable.
To show how to overcome this difficulty, let us first assume the case (a),
i.e. Σqr is a sub-tree of Σob. The usual procedure is then to generate from
ϕob∧qr the new PDAG

(
ϕob∧qr |ϕ(Σqr) ∧ ϕ(Σqr)

)
∨
(
ϕob∧qr | ¬ϕ(Σqr) ∧ ¬ϕ(Σqr)

)
(21)

Diagnostics 57

which corresponds to Shannon’s expansion with respect to ϕ(Σqr) and
involves conditioning ϕob∧qr on ϕ(Σqr) and ¬ϕ(Σqr), a technique we
came across in Subsection 3.3 already. Here, conditioning ϕob∧qr on
¬ϕ(Σqr) yields the contradiction, so we are left with the expression
ϕob∧qr |ϕ(Σqr) ∧ ϕ(Σqr). In the latter, conditioning ϕob∧qr on ϕ(Σqr) results
in ϕ(Σob) |ϕ(Σqr), so that the whole expression (21) can be simplified to
ϕ(Σob) |ϕ(Σqr) ∧ ϕ(Σqr) which satisfies determinism and now also decom-
posability. This transformation is analogue for the case (b), except that
there the roles of Σqr and Σob are interchanged. The conditional probabil-
ity (19) can be thus rewritten as follows:

P (qr | ob) =
P (ϕ(Σob) |ϕ(Σqr) ∧ ϕ(Σqr))

P (ϕ(Σob))

=
P (ϕ(Σob) |ϕ(Σqr)) · P (ϕ(Σqr))

P (ϕ(Σob))
. (22)

The formula (22) now allows to efficiently compute the posterior probability
of any subsystem Σqr given some observation about another subsystem
Σob. This computation can be generalized for the case of multiple queries
and multiple observations. In any case, conditioning is involved which is
always an efficient operation, i.e. polynomial in the size of the PDAG.

∧

∧

¬ ¬

¬

∧

∧

¬ ¬

∨

∧ ∧

∧

¬ ¬

∧

0.9 0.9

0.1 0.1

0.9

0.01

0.99
0.6 0.7

0.80.8

0.2 0.2

0.64

0.42

0.58

0.1440.144

0.928

0.9187

0.0813

0.0471

ϕ(R)

¬ϕ(A)
P (¬ϕ(A) ∧ ϕ(R)) =?

r1 r2t1 t2 t3

p1 p2

(a)

∧

¬ ¬

¬

∧

∧

¬ ¬

∨

∧ ∧

∧

¬ ¬

∧

0.9 0.9

0.1 0.1

0.9

0.01

0.99
0.6 0.7

0.80.8

0.2 0.2

0.64

0.42

0.58

0.1440.144

0.928

0.0418

0.072

0.0413

r1 r2t1 t2 t3

p1 p2

(b)

Figure 14: (a) The PDAG ¬ϕ(A)∧ϕ(R), and (b) the cd-PDAG ¬ϕ(A)|ϕ(R)∧
ϕ(R) with the updated probabilities.

Example 9. Recall our alp-transit system from Example 3 and suppose
we observe the whole transalpine traffic to be completely stuck, i.e. the
system is down. Given this fact, we may ask now what is the (conditional)

58 iam 09-004

probability that the railway system is working correctly? In relation to the
previous discussion, this corresponds to the observed event ob = {A = 0}
and the query event qr = {R = 1}. Based on the system cd-PDAG ϕ(A),
this leads to the new PDAG ¬ϕ(A) ∧ ϕ(R) which is shown in Fig. 14a.
This corresponds to case 2.(a) above since ϕ(R) is a sub-PDAG of ¬ϕ(A),
which means that the new PDAG is not decomposable. After appropri-
ate conditioning however, we obtain the new cd-PDAG ¬ϕ(A)|ϕ(R)∧ϕ(R)
which is depicted in Fig. 14b. This cd-PDAG has three new nodes with
respect to the previous PDAG, for which new probabilities have to be com-
puted (they are underlined in the figure). Finally, we are able to compute
the posterior probability of the railway system operation given the system
failure by

P (R = 1 |A = 0) =
P (¬ϕ(A)|ϕ(R) ∧ ϕ(R))

P (¬ϕ(A))
≈ 0.0413

0.0471
≈ 0.877.

We can compute exactly in the same way the posterior probabilities of
all subsystems. The posterior failure probabilities provide useful informa-
tion for computing the most probable diagnoses. This allows to identify
the modules, components, networks, or any other subsystems which most
likely have caused a system failure or some other observed behaviour.

Conclusion & Future Research 59

5 Conclusion & Future Research
This paper has explored reliability evaluation of modular systems, reliabil-
ity networks, and hybrid systems. Hybrid systems result from the com-
bination of modular systems and reliability networks. Further, we have
discussed well-known deterministic properties of coherent systems and
also some new probabilistic properties. The main contribution of this pa-
per is a common computational framework for reliability and diagnostics,
which is based on a compact structure function representation by means
of PDAGs. The particular subclass of decomposable and deterministic
PDAGs (cd-PDAGs) allows to compute the exact reliability in polynomial
time with respect to the size of the underlying cd-PDAG. The superior suc-
cinctness properties of cd-PDAGs relative to other well-known Boolean
representation languages such as OBDDs and dDNNFs set this Boolean
language apart from the rest, hence making it the language of choice for
probability computations. Furthermore, it turns out that cd-PDAGs can be
used to efficiently compute posterior probabilities of subsystems in a mod-
ular system. Results of previous reliability computations can be reused for
this purpose. This provides an efficient tool for computing the most proba-
ble diagnoses, which underlines once more the duality between reliability
and diagnostics. As a conclusion, we can say that our approach consti-
tutes a valuable complement or alternative to existing methods for exact
reliability computation, both from a computational and a modeling point of
view.
Future research will focus on more general system models, which includes
network reliability models with multiple layers, representing structure func-
tions of multistate systems by multistate DAGs (a generalization of PDAGs
for multistate variables), and their reliability evaluation. A further issue that
is missing in this paper are computational results, which should provide
useful insight on how PDAG-based reliability computation compares with
competitive methods in practice. There is also still much potential in the
context of diagnostics. Until now we have provided the computational key
for obtaining posterior probabilities. Based on this, the goal would be to
devise clever methods to find the most probable diagnoses.

60 iam 09-004

A Proofs
Proof of Theorem 2.1 To prove the theorem we first prove the following
lemma which slightly relaxes the assumptions made in the theorem:

Lemma A.1. Let be f(x1, . . . , xm) a Boolean function which is monotone
in the variable xk, that is f(x[0k]) ≤ f(x[1k]) for all vectors

x[0k] = (x1, . . . , xk−1, 0, xk+1, . . . , xm), x[1k] = (x1, . . . , xk−1, 1, xk+1, . . . , xm).

Further let be P ∈ P the probability distribution defined in Subsection
2.2.2. Now if we assume P ′ ∈ P such that P (ck) ≤ P ′(ck) and P (ci) =
P ′(ci) for all i 6= k, then P ({f(x) = 1}) ≤ P ′({f(x) = 1}), where x ∈ Ωm.

Proof We can decompose the Boolean space which is induced by the
event E = {f(x) = 1} (this space corresponds to the satisfying set of f)
into two disjoint spaces induced by the corresponding events E1 and E2.
The space relative to E1 contains all vectors x[0k] and additionally — due
to monotonicity of f with respect to xk — the corresponding vectors x[1k].
Then the space relative to E2 is the space relative to the complement E\E1

which contains the remaining vectors with component xk = 1. Given the
disjoint decomposition E = E1 ∪ E2 we can thus write

P (E) = P (E1) + P (E2). (23)

Now we can further expand this formula according to Shannon’s decom-
position relative to xk:

P (E1) = P (E1|xk = 1) · P (xk = 1) + P (E1|xk = 0) · P (xk = 0)

= P (E1|xk = 1)

since {E1|xk = 1} = {E1|xk = 0}. A similar observation leads to

P (E2) = P (E2|xk = 1) · P (xk = 1) + P (E2|xk = 0) · P (xk = 0)

= P (E2|xk = 1) · P (xk = 1)

since P (E2|xk = 0) = 0. Now (23) becomes

P (E) = P (E1|xk = 1) + P (E2|xk = 1) · P (xk = 1). (24)

For the measure P ′ exactly the same decomposition applies so that

P ′(E) = P ′(E1|xk = 1) + P ′(E2|xk = 1) · P ′(xk = 1). (25)

Clearly, P (E1|xk = 1) = P ′(E1|xk = 1) and P (E2|xk = 1) = P ′(E2|xk = 1).
And since P (xk = 1) ≤ P ′(xk = 1), it follows that P (E) ≤ P ′(E).

Proofs 61

Corollary A.2. Consider the probability distribution P ∈ P from Lemma
A.1. Given another distribution P ′ ∈ P such that P (ci) ≤ P ′(ci) for all
i = 1, . . . ,m and a monotone Boolean function f(x1, . . . , xm), it holds that
P ({f(x) = 1}) ≤ P ′({f(x) = 1}).

Proof This is a direct consequence of Lemma A.1: the monotonicity prop-
erty is simply extended with respect to all variables x1, . . . , xm.

Corollary A.2 implies thus that if P (ci) = ai for all i = 1, . . . ,m, then for any
other probability distribution P ′ ∈ P it holds that P (E) ≤ P ′(E) where E is
the event defined in Subsection 2.2.2. Thus the lower probability distribu-
tion P (E) is the smallest distribution with respect to P. This corresponds
exactly to assertion (1) of Theorem 2.1 which concludes the proof. The
proof of assertion (2) is analogue.

Proof of Theorem 3.1 Since Alg. 1 appears to be a special case of the
generalized WFK-algorithm, the proof of correctness can be adopted from
[40] with slight modifications. The important observation is that the cor-
rectness of the algorithm relies on the fact that the input matrix is defined
over a closed semiring, which indeed holds in our case. According to [40],
a closed semiring S satisfies: a∗ = 1 + a · a∗ = 1 + a∗ · a for all a ∈ S. In
our semiring SB, the closure is simple since we have f ∗ = 1 for all f ∈ B≤n.
This makes SB a simple semiring, i.e. one that is closed and bounded.

Proof of Theorem 3.2 Due to the properties of the Boolean constants 1
and 0, it does in fact not matter — with respect to the correctness of the
method — at which point (i.e. before or after running Alg. 2) the instantia-
tion of the terminal selectors is carried out. Hence we proceed as follows:
we fix v1 as source and vn as terminal, order the nodes appropriately, and
instantiate the terminal selectors already within the initial connectivity ma-
trix A by setting λvn = 1 and λvi

= 0 for all i ∈ {1, . . . , n − 1}. Now we
have to show that the resulting reliability pdag generated by Alg. 2 indeed
represents the structure function for v1, vn-connectivity.
But first we need to prove two lemmas. The starting point is an instantiated
connectivity matrix A = (fij)n×n (according to above), associated with a
complete and directed graph G = (V,E), hence all non-diagonal entries
of A are non-zero. Further, f (k)

ij denotes the i, j-entry of A at stage k
(i.e. after the elimination of k nodes), and ϕij denotes the corresponding
specific reliability pdag for the vi, vj-connectivity.

62 iam 09-004

Lemma A.3. After k + 1 steps of Algorithm 2, i.e. after elimination of
nodes vn, . . . , vn−k, each entry f (k+1)

ij , i 6= j, represents the reliability pdag
for the vi, vj-connectivity, i, j < n− k, in the subgraph G′ = (V ′, E ′) where
V ′ = {vi, vn−k, . . . , vn, vj}.

Proof By induction over k. Consider the base case k = 1, i.e. vn has been
eliminated. Then we have in matrix A(1):

f
(1)
ij = f

(0)
ij ∨ (f

(0)
in ∧ f

(0)
nj) ∀ i 6= j < n

= eij ∨ (ein ∧ enj),

which corresponds indeed to the reliability pdag ϕij w.r.t. the subgraph
that comprises the node set {vi, vn, vj}.
Let us assume that the induction hypothesis holds for k, i.e. after eliminat-
ing the nodes vn, vn−1, . . . , vn−k+1. We show now that the assertion holds
for k + 1, i.e. after the elimination of nodes vn, . . . , vn−k. At stage k + 1 of
the algorithm, the typical i, j-entry of matrix A(k+1) is as follows:

f
(k+1)
ij = f

(k)
ij︸︷︷︸
(1)

∨(f
(k)
i,n−k︸ ︷︷ ︸
(2)

∧ f (k)
n−k,j︸ ︷︷ ︸
(3)

) ∀ i 6= j < n− k.

According to the induction hypothesis, we have the following:

(1) = ϕij w.r.t. the subgraph with the node set {vi, vn, . . . , vn−k+1, vj}
(2) = ϕi,n−k w.r.t. the subgraph with the node set {vi, vn, . . . , vn−k}
(3) = ϕn−k,j w.r.t. the subgraph with the node set {vn, . . . , vn−k, vj}

Let us interpret the above reliability pdags in terms of elementary paths.
Then the combined reliability pdag ϕi,n−k ∧ ϕn−k,j represents elemen-
tary paths from vi to vj in the subgraph with the merged node set
{vi, vn, . . . , vn−k, vj}. The expression ϕij also represents elementary paths
from vi to vj, but those which do not go through the most recently elim-
inated node vn−k. Combining this expression with the former term, we
obtain

ϕij ∨ (ϕi,n−k ∧ ϕn−k,j),

which represents all elementary paths from vi leading to vj in the subgraph
with nodes vi, vn, . . . , vn−k, vj.

Lemma A.4. After k + 1 steps of Algorithm 2, i.e. after elimination of
nodes vn, . . . , vn−k, each entry f (k+1)

ii represents the reliability pdag for the
vi, vn-connectivity, 1 ≤ i ≤ n − k − 1, in the subgraph G′ = (V ′, E ′) where
V ′ = {vi, vn−k, . . . , vn}.

Proofs 63

Proof Let us verify the base case first, i.e. k = 1. After the elimination of
vn the diagonal entries of A(1) have the form

f
(1)
ii = f

(0)
ii ∨ (f

(0)
in ∧ f (0)

nn) ∀ 1 ≤ i ≤ n− 1

= 0 ∨ (f
(0)
in ∧ 1) = f

(0)
in = ein,

corresponding to the reliability pdags ϕin in the respective subgraphs w.r.t.
the node sets {vi, vn}.
Assuming that the assertion holds for k, we proceed by verifying it for
k + 1, i.e. after the elimination of nodes vn, . . . , vn−k. The diagonal entries
of A(k+1) have the following form:

f
(k+1)
jj = f

(k)
ii︸︷︷︸
(1)

∨(f
(k)
i,n−k︸ ︷︷ ︸
(2)

∧ f (k)
n−k,n−k︸ ︷︷ ︸

(3)

) ∀ 1 ≤ j ≤ n− k − 1.

According to the induction hypothesis, the entries (1) and (3) represent the
following reliability pdags:

(1) = ϕin w.r.t. the subgraph with the node set {vi, vn, . . . , vn−k+1},
1 ≤ i ≤ n− k,

(3) = ϕn−k,n w.r.t. the subgraph with the node set {vn, . . . , vn−k},

Due to Lemma A.3, entry (2) represents the reliability pdag ϕi,n−k w.r.t. the
subgraph with the node set {vi, vn, . . . , vn−k}, i < n− k.
Now by similar reasoning as in Lemma A.3, the reliability pdag ϕi,n−k ∧
ϕn−k,n represents elementary paths from vi to vn in the subgraph with
nodes {vi, vn, . . . , vn−k}, for i < n − k. The reliability pdag ϕin repre-
sents in turn all elementary paths from vi to vn in the subgraph of nodes
{vi, vn, . . . , vn−k+1}, for 1 ≤ i ≤ n − k. Given these considerations, the
combined reliability pdag

ϕin ∨ (ϕi,n−k ∧ ϕn−k,n)

represents thus all elementary paths from vi to vn in the subgraph with the
set of nodes vi, vn−k, . . . , vn, 1 ≤ i ≤ n− k − 1.

Theorem 3.2 follows directly from Lemma A.4, since at the end of Algo-
rithm 2 all nodes except v1 have been eliminated. Hence after n − 1

steps, entry f
(n−1)
11 represents the specific reliability pdag for the v1, vn-

connectivity in the complete graph.

64 iam 09-004

References
[1] B. Anrig and J. Kohlas, “Model-based reliability and diagnostic: A

common framework for reliability and diagnostics,” in DX’02, 13th In-
terational Workshop on Principles of Diagnosis (M. Stumptner and
F. Wotawa, eds.), (Semmering, Austria), pp. 129–136, 2002.

[2] J. Kohlas, B. Anrig, and R. Bissig, “Reliability and diagnostic of mod-
ular systems,” ORiON: The Journal of the Operations Research Soci-
ety of South Africa, vol. 16, no. 1, pp. 47–62, 2001.

[3] M. Wachter, R. Haenni, and J. Jonczy, “Reliability and diagnostics of
modular systems: a new probabilistic approach,” in DX’06, 17th Inter-
national Workshop on Principles of Diagnosis (C. A. González, T. Es-
cobet, and B. Pulido, eds.), (Peñaranda de Duero, Spain), pp. 273–
280, 2006.

[4] A. Rueda and M. Pawlak, “Pioneers of the reliability theories of the
past 50 years,” in RAMS’04, 50th Annual Reliability and Maintainabil-
ity Symposium, (Los Angeles, USA), pp. 102–109, 2004.

[5] R. E. Barlow, “Mathematical reliability theory: from the beginning
to the present time,” in MMR’02, 3rd International Conference on
Mathematical Methods In Reliability (B. Lindqvist and K. A. Doksum,
eds.), no. 7 in Series on Quality, Reliability and Engineering Statistics,
(Trondheim, Norway), pp. 73–79, World Scientific Publishing, 2002.

[6] R. Reiter, “A theory of diagnosis from first principles,” Artificial Intelli-
gence, vol. 32, pp. 57–95, 1987.

[7] J. de Kleer and B. C. Williams, “Diagnosing multiple faults,” Artificial
Intelligence, vol. 32, pp. 97–130, 1987.

[8] J. de Kleer, A. K. Mackworth, and R. Reiter, “Characterizing diag-
noses and systems,” Artificial Intelligence, vol. 56, no. 2–3, pp. 197–
222, 1992.

[9] J. Kohlas, B. Anrig, R. Haenni, and P. A. Monney, “Model-based diag-
nostics and probabilistic assumption-based reasoning,” Artificial Intel-
ligence, vol. 104, pp. 71–106, 1998.

[10] P. Fröhlich, DRUM–II: Efficient Model–Based Diagnosis of Technical
Systems. PhD thesis, University of Hannover, Germany, 1998.

References 65

[11] J. de Kleer, “An assumption-based TMS,” Artificial Intelligence,
vol. 28, pp. 127–162, 1986.

[12] J. Kohlas, Zuverlässigkeit und Verfügbarkeit. Teubner, 1987.

[13] R. E. Barlow, F. Proschan, and P. Franken, Statistische Theorie der
Zuverlässigkeit. Berlin, Germany: Berlin Akademie-Verlag, 1981.

[14] C. J. Colbourn, The Combinatorics of Network Reliability. New York,
USA: Oxford University Press, 1987.

[15] D. R. Shier, Network reliability and algebraic structures. New York,
USA: Oxford Clarendon Press, 1991.

[16] M. O. Ball, C. J. Colbourn, and J. S. Provan, “Network reliability,” in
Network Models (M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L.
Nemhauser, eds.), vol. 7 of Handbooks in Operations Research and
Management Science, pp. 673–762, Elsevier, 1995.

[17] L. G. Valiant, “The complexity of enumeration and reliability problems,”
SIAM Journal on Computing, vol. 8, no. 3, pp. 410–421, 1979.

[18] M. Wachter and R. Haenni, “Propositional DAGs: a new graph-based
language for representing Boolean functions,” in KR’06, 10th Inter-
national Conference on Principles of Knowledge Representation and
Reasoning (P. Doherty, J. Mylopoulos, and C. Welty, eds.), (Lake Dis-
trict, U.K.), pp. 277–285, AAAI Press, 2006.

[19] M. Wachter and R. Haenni, “Multi-state directed acyclic graphs,”
in CanAI’07, 20th Canadian Conference on Artificial Intelligence
(Z. Kobti and D. Wu, eds.), LNAI 4509, (Montréal, Canada), pp. 464–
475, 2007.

[20] P. Clote and E. Kranakis, Boolean Functions and Computation Mod-
els. Springer, 1998.

[21] P. Walley, Statistical Reasoning with Imprecise Probabilities. Mono-
graphs on Statistics and Applied Probability 42, London, U.K.: Chap-
man and Hall, 1991.

[22] F. G. Cozman, “Credal networks,” Artificial Intelligence, vol. 120, no. 2,
pp. 199–233, 2000.

[23] I. Levi, The Enterprise of Knowledge. Cambridge, USA: The MIT
Press, 1980.

66 iam 09-004

[24] R. Haenni, “Climbing the hills of compiled credal networks,” in
ISIPTA’07, 5th International Symposium on Imprecise Probabilities
and Their Applications (G. de Cooman, J. Vejnarová, and M. Zaffalon,
eds.), (Prague, Czech Republic), pp. 213–222, 2007.

[25] R. M. Sinnamon and J. D. Andrews, “Fault-tree analysis and binary
decision diagrams,” in IEEE Annual Reliability and Maintainability
Symposium, (Las Vegas, USA), pp. 215–222, 1996.

[26] X. Zang, D. Wang, H. Sun, and K. S. Trivedi, “A BDD-based algorithm
for analysis of multistate systems with multistate components,” IEEE
Transactions on Computers, vol. 52, no. 12, pp. 1608–1618, 2003.

[27] A. Satyanarayana and A. Prabhakar, “New topological formula and
rapid algorithm for reliability analysis of complex networks,” IEEE
Transactions on Reliability, vol. R-27, pp. 82–100, 1978.

[28] J. A. Abraham, “An improved algorithm for network reliability,” IEEE
Transactions on Reliability, vol. 28, pp. 58–61, 1979.

[29] K. Heidtmann, “Smaller sums of disjoint products by subproducts in-
version,” IEEE Transactions on Reliability, vol. 38, no. 4, pp. 305–311,
1989.

[30] K. D. Heidtmann, “Statistical comparison of two sum-of-disjoint-
product algorithms for reliability and safety evaluation,” in SAFE-
COMP’02, 21st International Conference on Computer Safety, Reli-
ability and Security, (Catania, Italy), pp. 70–81, 2002.

[31] R. Bertschy and P. A. Monney, “A generalization of the algorithm of
Heidtmann to non-monotone formulas,” Journal of Computational and
Applied Mathematics, vol. 76, pp. 55–76, 1996.

[32] G. Fey and R. Drechsler, “Utilizing BDDs for disjoint SOP minimiza-
tion,” in MWSCAS’02, 45th IEEE International Midwest Symposium
on Circuits and Systems, (Tulsa, USA), pp. 306–309, 2002.

[33] S. Y. Kuo, S. K. Lu, and F. M. Yeh, “Determining terminal-pair reliability
based on edge expansion diagrams using OBDD,” IEEE Transactions
on Reliability, vol. 48, no. 3, pp. 234–246, 1999.

[34] X. Zang, H. Sun, and K. S. Trivedi, “A BDD-based algorithm for relia-
bility graph analysis,” tech. rep., Department of Electrical Engineering,
Duke University, 2000.

References 67

[35] G. Hardy, C. Lucet, and N. Limnios, “K-terminal Network Reliability
measures with Binary Decision Diagrams,” IEEE Transactions on Re-
liability, vol. 56, pp. 506–515, September 2007.

[36] J. Jonczy and R. Haenni, “Network reliability evaluation with propo-
sitional directed acyclic graphs,” in Advances in Mathematical Mod-
eling for Reliability (T. Bedford, J. Quigley, L. Walls, B. Alkali,
A. Daneshkhah, and G. Hardman, eds.), pp. 25–31, IOS Press, 2008.

[37] M. Wachter, Knowledge Compilation Map – Theory and Application.
PhD thesis, University of Bern, Switzerland, 2008.

[38] S. Warshall, “A theorem on boolean matrices,” Journal of the ACM,
vol. 9, no. 1, pp. 11 – 12, 1962.

[39] R. W. Floyd, “Algorithm 97: Shortest path,” Communications of the
ACM, vol. 5, no. 6, p. 345, 1962.

[40] D. Lehmann, “Algebraic structures for transitive closure,” Theoretical
Computer Science, vol. 4, pp. 59–76, 1977.

[41] B. Roy, “Transitivité et connexité,” C. R. Acad. Sci. Paris, vol. 249,
pp. 216–218, 1959.

[42] G. Rote, “Path problems in graphs,” in Computational Graphs Theory
(G. Tinhofer, E. Mayr, H. Noltemeier, M. M. Syslo, and R. Albrecht,
eds.), Computing Supplementum 7, pp. 155–198, Springer, 1990.

[43] B. A. Carré, Graphs and Networks. Oxford Clarendon Press, 1979.

[44] R. Wankar, E. Fehr, and N. S. Chaudhari, “An efficient parallel algo-
rithm for the all pairs shortest path problem using processor arrays
with reconfigurable bus systems,” Tech. Rep. B-13-99, Freie Univer-
sität Berlin, Germany, 1999.

[45] L. Huang, “Dynamic programming algorithms in semiring and hyper-
graph frameworks,” tech. rep., University of Pennsylvania, Philadel-
phia, USA, November 2006.

	Introduction
	The Theories of Reliability and Diagnostics
	Reliability
	Diagnostics

	The Structure of Complex Systems
	Modularity of Systems
	Networks
	The Structure Function and Computational Aspects

	Contributions and Outline

	A Unifying Formal Model for Modular Systems and Reliability Networks
	Preliminaries
	Coherent Systems
	Deterministic Properties of Coherent Systems
	Probabilistic Properties of Coherent Systems

	Modular Systems
	Reliability Networks
	Network Model
	Network Reliability Problems

	Hybrid Systems
	Hybrid Networks
	Hybrid Systems

	Reliability Evaluation
	Representing the Structure Function
	Existing Methods
	Propositional Directed Acyclic Graphs

	Modular System Reliability
	Network Reliability
	Generating the Structure Function
	Computing Network Reliability

	Hybrid System Reliability

	Diagnostics
	The Basic Setting
	Computing Posterior Probabilities

	Conclusion & Future Research
	Proofs
	References

