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Abstract

Sets of clauses are often used to represent the knowledge or beliefs of an
agent. Usually sets of clauses represent incomplete information, since the
agent does not have a complete “picture of the world.” Thus, there is usually
not a single model but a set of models that satisfy the set of clauses repre-
senting the worlds that the agent considers possible. We define the invariant
of a propositional set of clauses as the set of belong to all models and present
a sequent system that may be used to construct such a set. We prove that the
system is sound (all atoms that can be inferred with it are in the invariant),
complete (all atoms in the invariant may be inferred with the sequent system)
and that the computation ends after a finite number of steps.

Klassification: F.4.1 Mathematical Logic - Proof Theory
General Terms: Theory
Additional Key Words: Multi-Agent Systems, Logic Programming
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1 Introduction and Basic Definitions

Sets of clauses are often used to represent the knowledge or beliefs of an agent.
Usually sets of clauses represent incomplete information, since the agent does not
have a complete “picture of the world.” Thus, there is usually not a single model
but a set of models that satisfy the set of clauses representing the worlds that the
agent considers possible. We define the invariant of a propositional set of clauses
as the set of belong to all models and present a sequent system that may be used
to construct such a set. We prove that the system is sound (all atoms that can
be inferred with it are in the invariant), complete (all atoms in the invariant may
be inferred with the sequent system) and that the computation ends after a finite
number of steps. We will start with a set of propositional symbols Π. An atom
will be either a symbol of Π or its negation. Thus there are positive, negative and
complementary atoms. The set of all atoms that can be constructed with a set of
propositions Π is denoted by AT(Π). Usually we will denote atoms by lowercase
sans-serif letters (p) without specifying whether they positive or negative. We will
explicitly use p or p when we want to explicitly denote positive or negative atoms.
As usual, p = p.

2 Syntax and Semantics

The syntax of the language is given by the following grammar:

sequent ::= ε | atom[, atom]
clause ::= sequent → atom

We will use Γ to denote sequents. A knowledge database (KB), denoted by ∆,
is a finite set of clauses. If the set Π contains the propositions that occur in ∆, we
will say that ∆ is based on Π. The notation C(∆) will be used to denote the list
of all propositions p such that both p and p occur in ∆. As usual, the intended
meaning of a clause is that if the antecedent is true, so is the consequent.

A world of Π is a maximal consistent subset of AT(Π). The set of all worlds of
Π will be denoted by WΠ.

A model of a clause Γ → p is a world W ∈ WΠ such that either Γ 6⊆ W or
Γ ∪ {p} ⊆ W . A model of a set of clauses ∆ is a model of all its clauses. Such a
model not necessarily exists. For instance, take the KB consisting on the facts → p
and → p.

The semantics of a KB ∆ will be given by its invariant . The atoms that belong
to all models of ∆ constitute its invariant, denoted by J (∆). Atoms belonging to
the invariant of ∆ are said to be bound in ∆. A proposition p ∈ Π is said to be free
in ∆ if there are models W1, W2 of ∆ such that p ∈ W1 and p ∈ W2.

We are interested in the constructoin of the invariant of a set of clauses. The
sequent system proposed in the next section achieves this goal.

3 A Sequent System for Belief Databases

The system will prove properties of tuples 〈∆, S〉, where ∆ is a KB and S is a set
of atoms. Such a tuple will be said to be consistent iff there is some model W of ∆
such that S ⊆ W . A model of a tuple 〈∆, S〉 is a model of ∆ which contains S.

The system B0 is given by the following rules.

id
〈∆, ∅〉

inf
〈∆ ∪ {p}, S〉
〈∆, C, S ∪ {p}〉
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te1
〈∆ ∪ {Γ, p → q}, S〉 p ∈ S

〈∆ ∪ {Γ → q}, S〉
te2

〈∆ ∪ {Γ → p}, S〉 p ∈ S

〈∆, S〉

ce1
〈∆ ∪ {Γ, q → p}, S〉 p ∈ S

〈∆ ∪ {Γ → q}, S〉
ce2

〈∆ ∪ {Γ, p → q}, S〉 p ∈ S

〈∆, S〉

⊥ 〈∆ ∪ {p}, S〉 p ∈ S

〈∅,AT(Π)〉
rec

〈∆ ∪ {p}, S〉 〈∆ ∪ {p}, S〉
...

...
〈∆, 〉 〈∆1, S1〉 〈∆2, S2〉

〈∆, S1 ∩ S2〉

Figure 1: The system B0.

We add the proviso that rule rec may be applied only once for each pair of
complementary atoms. We assume further that in rule rec no rules may be applied
to the tuples 〈∆1, S1〉 and 〈∆2, S2〉. A rule that may be applied is said to be allowed .
The proviso is to avoid a case like the following one:

p → q
p → r

Here rule rec might be applied eternally had we not imposed the above condition.

4 Soundness

If ∆ is a KB, a proof in system B from ∆ is a finite sequence of tuples

〈∆0, C0, S0〉, . . . , 〈∆n, Cn, Sn〉

such that: (1) ∆0 = ∆, (2) S0 = ∅, and (3) for all 0 ≤ j < n, tuple j +1 is obtained
by application of some allowed rule of B on tuple j.

A proof is linear except in the case of the rule rec, the only case where the proof
branches out, producing two sub-proofs. In both cases, all allowed rules must be
applied until no one is allowed. Thus, any other occurrence of rule rec must occur
within the sub-proof of another application of the same rule. The following figure
shows this.

r

r r r

r r

r
r r r

r r

r r r

r r
r r r

r r
0 0 0 0 0

1 + max(0, 0) = 1

1 + max(0, 1) = 21 + max(0, 0) = 1

1 + max(1, 2) = 3

Figure 2: The general structure of a proof.

We define inductively the depth of a proof as follows:

• The depth of a proof without any application of rule rec is 0.
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• The depth of a proof with an application of rule rec is one plus the maximum
of the depths of each sub-proof. The depth of the proof schematised in figure
2 is thus 3.

The depth of a proof will provide the induction schema for the proofs.

Lemma 1 Let ∆ be a KB without any occurrence of complementary atoms. Then
∆ is consistent.
Proof. Since no complementary atoms occur in ∆, any maximal consistent set
W ⊆ WΠ containing all atoms that occur in ∆ is a model of ∆, since all clauses
will be set to the tautology true → true.

�

Corollary 1 Let 〈∆, S〉 be a tuple such that ∆ has no occurrence of complementary
atoms, S is consistent and none of the atoms of S occurs in ∆. Then the tuple is
consistent.
Proof. Since no atoms of S occur in ∆, it is always possible to construct a maximal
consistent set containing S and all atoms in ∆.

�

Lemma 2 Let ∆ be a consistent KB based on Π and let W ⊆ WΠ. Then W is a
model of ∆ iff for all p ∈ W , it is a model of ∆ ∪ {→ p}.
Proof. It is clear that a model of ∆ ∪ {→ p} is a model of ∆. If W is a model
of ∆ that contains p, it is also a model of the clause → p. Thus, it is a model of
∆ ∪ {→ p}.

�

Lemma 3 (1) A world W is a model of 〈∆∪ {→ p}, S〉 iff it is a model of 〈∆, S ∪
{p}〉. (2) A world W is a model of 〈∆ ∪ {Γ, p → q}, S ∪ {p}〉 iff it is a model of
〈∆∪{Γ → q}, S∪{p}〉. (3) A world W is a model of 〈∆∪{Γ → p}, S∪{p}〉 iff it is
a model of 〈∆, S ∪ {p}〉. (4) A world W is a model of 〈∆ ∪ {Γ, q → p}, S ∪ {p}〉 iff
it is a model of 〈∆∪ {Γ → q}, S ∪ {p}〉. (5) A world W is a model of 〈∆∪ {Γ, p →
q}, S ∪ {p}〉 iff it is a model of 〈∆, S ∪ {p}〉.
Proof. For 1, we have by lemma 2 that any model of ∆ ∪ {→ p} contains p and
any model of ∆ containing S ∪ {p} is a model of ∆ ∪ {→ p}.

For 2, we have that any model of ∆ ∪ {Γ, p → q} containing S ∪ {p} is a model
of ∆ ∪ {Γ → q} and any model of ∆ ∪ {Γ → q} containing S ∪ {p} is a model of
∆ ∪ {Γ → q}.

For 3, we have that any model of ∆∪ {Γ → p} containing S ∪ {p} is a model of
∆ and any model of ∆ containing S ∪ {p} is a model of the clause Γ → p.

For 4, any model of ∆ ∪ {Γ, q → p} containing S ∪ {p} must imply that either
Γ or q are false. Thus, it must be a model of the clause Γ → q. Conversely, any
model of ∆ ∪ {Γ → q} containing S ∪ {p} is a model of the clause Γ, q → p.

For 5, any model of ∆ ∪ {Γ, p → q} is a model of ∆; conversely, any model of
∆ containing S ∪ {p} is a model of the clause Γ, p → q.

�

Lemma 3 states that rules inf, te1, te2, ce1, and ce2 preserve consistency (and
inconsistency.) Now we will analyse rule rec. We need some previous results first.

Lemma 4 Let ∆ be an inconsistent KB, and let 〈∆0, S0〉, . . . , 〈∆n, Sn〉 be a proof
in B such that ∆0 = ∆, S0 = ∅ and no further rules are allowed in the last tuple.
Then Sn = AT(Π).

4



Proof. Induction on the depth of the proof. By lemma 1, an inconsistent KB must
have at least one pair of complementary atoms.
Base case: The depth of the proof is 1. So there is one application of rule rec
on 〈∆k, Sk〉, giving rise to two sub-proofs, one beginning with 〈∆k ∪ {p}, Sk〉 and
the other one with 〈∆k ∪ {p}, Sk〉. Since by assumption ∆0 is inconsistent and
we so far have applied only rules inf, ce1, ce2, te1, and te2, 〈∆k, Sk〉 must be also
inconsistent. Thus, both sub-proofs begin with inconstent tuples. Let us consider one
of the sub-proofs (the same considerations apply to the other one.) By assumption
the depth of the sub-proof is 0. Thus, only rules inf, ce1, ce2, te1, te2, and ⊥ may
be applied. Since p and p belong both to ∆k ∪ {p}, then these rules try to eliminate
all occurrences of the complementary atoms. If p is eliminated using rule ce2, we
would get a set of clauses without any occurrence of complementary atoms and a
set of atoms not occurring in the clauses. This is consistent, contradicting thus the
assumption. So, the only possibility is to apply rule ce2.

Assume we rewrite a clause Γ, q → p as Γ → q. If as a result we get a new pair
of complementary atoms q, q, we contradict the assumption that the depth of the
sub-proof is 0, since rule rec would be applicable on the new pair of complementary
atoms. Otherwise, we would have eliminated p and we would have again a set of
clauses without any occurrence of complementary atoms and a set of atoms not
occurring in the set. So, the only possibility left is that we have a clause → p and
rule ⊥ is thus allowed.
Induction step: assume the statement holds for a proof of depth m and we have a
proof of depth m + 1. Assume we apply rule rec on 〈∆k, Sk〉, giving thus rise to
two sub-proofs beginning with 〈∆k ∪ {p}, Sk〉 and 〈∆k ∪ {p}, Sk〉 and ending with
〈∆1, S1〉 and 〈∆2, S2〉 respectively. Since we have so far applied only rules inf, ce1,
ce2, te1, and te2, the tuple 〈∆k, Sk〉 is inconsistent and so are 〈∆k ∪ {p}, Sk〉 and
〈∆k ∪ {p}, Sk〉. By assumption the depth of both sub-proofs is m (or less) and thus
S1 = S2 = S1 ∩ S2 = AT(Π).

�

Lemma 5 Let ∆be a consistent set of clauses and let 〈∆0, S0〉 . . . , 〈∆n, Sn〉 be a
proof such that (1) ∆0 = ∆, and (2) §0 = ∅. Then for any tuple 〈∆k, Sk〉 occurring
in the proof, a set of atoms M is a model of 〈∆n, Sn〉 iff it is a model of any tuple
〈∆k, Sk〉, 0 ≤ k ≤ n, occurring in the proof. In particular, iff it is a model of ∆.
Proof. Induction on the depth of the proof.
Base case: Assume the depth of the proof is 0. Then, only rules inf, ce1, ce2, te1,
and te2 may be applied. The result follows from lemma 3.
Induction step: Assume the statement holds for proofs with depth m. If our proof
has depth m + 1, then after some applications of rules inf, ce1, ce2, te1, and te2,
rule rec will be applied on a tuple 〈∆k, Sk〉 giving rise to two sub-proofs beginning
with 〈∆k ∪{→ p}, Sk〉 and 〈∆k ∪{→ p}, Sk〉 and ending with 〈∆1, S1〉 and 〈∆2, S2〉
respectively. Since we had so far applied only rules other than rec, 〈∆k, Sk〉 is
consistent by lemma 3. We have here two possibilities: either p is bound in ∆k or
it is free therein.

Is p is bound in ∆k, then ∆k ∪ {→ p} is inconsistent and by lemma 4, S2 =
AT(Π). Thus S1 ∩ S2 = S1. Besides, by assumption the depth of the sub-proof is m
or less, and by induction hypothesis, a set of atoms M is a model of ∆1 containing
S1 iff it is a model of ∆k∪{→ p} containing Sk. Since p is bound in ∆k, all models
of ∆k contain p and thus, M is a model of 〈∆1, S1〉 iff it is a model of ∆.

If p is free in ∆k, then both ∆k ∪ {→ p} and ∆k ∪ {→ p} are consistent. Since
by assumption the depth of the sub-proofs is m or less, by induction hypothesis we
have that a set M1 is a model of ∆1 that contains S1 iff it is a model of ∆k ∪{→ p}
that contains Sk. In the same way, a set M2 is a model of ∆2 that contains S2 iff
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it is a model of ∆k ∪ {→ p} that contains Sk. Thus, a set M is a model of ∆k that
contains Sk iff it is a model of ∆k that contains S1 ∩ S2.

�

Theorem 1 (Soundness) : Let ∆ be a consistent KB and let 〈∆′, S〉 be any tuple
occurring in a proof beginning with 〈∆, ∅. Then all atoms in S are bound in ∆.
Proof. By lemmas 3 and 5, any model of ∆ is a model of ∆′ containing S. Thus
all models of ∆ contain S.

�

5 Completeness

In section 4 we showed that for any KB ∆, a proof will end in 〈∆′,AT(Π)〉 if ∆ is
inconsistent and in 〈∆′, S〉 if it is consistent, where all atoms in S are bound in ∆.
Now we will show that if no further rules are applicable on 〈∆′, S〉, then S contains
all atoms that are bound in ∆.

Theorem 2 (Completeness) Let ∆ be a consistent KB and let 〈∆′, S〉 be the last
tuple of a a proof such that no further rules are applicable on it. Then all atoms
that are bound in ∆ are in S.
Proof. Induction on the depth of the proof.
Base case: The depth of the proof is 0. Thus, the proof did not apply the rec rule
and there are no complementary atoms in ∆′. Since for all atoms p ∈ S, neither p
nor p occur in ∆′ (otherwise at least one of the rules te1, te2, ce1, or ce2 would be
allowed), we can set all atoms occurring in ∆′ to true or to false. In both cases, we
“complete” a maximal consistent set with the atoms in S and we get two models of
∆′. Thus all propositions occurring in ∆′ are free.
Induction step: Assume that the statement holds for proofs which have a depth m.
If the proof has a depth of m + 1, we will have some applications of rules inf, ce1,
ce2, te1, and te2 until rule rec is applied on 〈∆k, Sk〉, giving rise to two subproofs
beginning with 〈∆k ∪ {→ p}, Sk〉 and 〈∆k ∪ {→ p}, Sk〉 and ending with 〈∆1, S1〉
and 〈∆2, S2〉 respectively. Both sub-proofs will have depth m. So the induction
hypothesis may be applied. Hence, all atoms that are bound in ∆k ∪ {→ p} are in
S1 and all atoms that are bound in ∆k ∪ {→ p} are in S2. Thus, all models of
∆k ∪ {→ p} contain S1 and all models of ∆k ∪ {→ p} contain S2. Therefore all
models of ∆ contain S1 ∩ S2.

�

6 Conclusions

The sequent system shown here allows the construction of the invariant of a set
of propositional clauses. The system is consistent and complete and can be imple-
mented recursively (for instance, as a Prolog[1] program.) A proof always termi-
nates, since the application of rule rec can only occur finitely many times and other
rules are either terminal (in the case of ⊥), or they eliminate one atom (ce1 or te1)
or one clause (inf, ce2, or te2.) The complexity may grow exponentially with the
number of complementary atoms.
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