
Logical Compilation of Bayesian Networks

Michael Wachter & Rolf Haenni

iam-06-006

August 2006

Logical Compilation of Bayesian Networks

Michael Wachter & Rolf Haenni
University of Bern

Institute of Computer Science and Applied Mathematics
CH-3012 Bern, Switzerland

{wachter,haenni}@iam.unibe.ch

Abstract

This paper presents a new approach to inference in Bayesian networks with Boolean vari-
ables. The principal idea is to encode the network by logical sentences and to compile the
resulting CNF into a deterministic DNNF. From there, all possible queries are answerable in
linear time relative to its size. This makes it a potential solution for real-time applications
of probabilistic inference with limited computational resources. The underlying idea is sim-
ilar to Darwiche’s differential approach to inference in Bayesian networks, but the core of
the proposed CNF encoding is slightly different. This alternative encoding enables a more
intuitive and elegant solution, which is apparently more efficient.

CR Categories and Subject Descriptors:

I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving – uncertainty, “fuzzy” and
probabilistic reasoning;

I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving – inference engines;

I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms and Methods – Rep-
resentation languages

General Terms:
Algorithms, Theory

1 Introduction

As Bayesian networks are more and more applied to complex real-world applications, the develop-
ment of fast and flexible inference methods becomes increasingly important. In the last decades,
researchers have developed various kinds of exact and approximate inference algorithms, each of
them with corresponding advantages and disadvantages. Some methods are particularly designed
for real-time inference with limited computational resources such as time or memory. See [13]
for a comprehensive and compact survey.

A particular real-time inference method is the differential approach proposed in [9]. It suggests to
view a Bayesian network as a multi-linear function (MLF), the so-called network polynomial, from
which answers to probabilistic queries are retrieved by differentiating the polynomial. Relative
to the given Bayesian network, the network polynomial is exponential in size, but it is possible
to efficiently encode it by a CNF of linear size. As suggested in [8], this CNF is then compiled

1

into a decomposable negation normal form (DNNF) with the additional properties of smoothness
and determinism [7]. The resulting sd-DNNF is an intermediate step, from which an arithmetic
circuit is extracted, whose size is not necessarily exponential relative to the original Bayesian
network. This arithmetic circuit is guaranteed to compute the original network polynomial, and
can therefore be used to obtain all necessary partial derivatives in time (and space) linear in its
size. In its essence, the aim of the whole procedure is to generate a preferably optimal factoring
of the network polynomial.

Such a logical approach is beneficial in many ways. The most important advantage is the ability
to encode context-specific independences, i.e. local regularities in the given conditional proba-
bility tables [2]. This inherently includes appropriate solutions for the particular type of CPT
obtained from noisy-OR and noisy-AND nodes or from purely logical relations. In comparison
with classical inference methods such as join-tree propagation or message-passing, which do not
directly exploit such local structures, there has been reports of tremendous improvements in both
compile time and online inference [3, 4]. Another advantage is the ability to efficiently update
numerical computations with minimal computational overhead. This is a key prerequisite for
experimental sensitivity analyses.

1.1 Overview of Method

The starting point of our method is a logical representation ψ of the Bayesian network. For
this, a proposition θx|y is attributed to each CPT entry P (x|y) of a network variable X. In
this paper, our discussion is restricted to Boolean variables, i.e. we can attribute an additional
proposition x to each network variable X and use it for the event X=true and its negation for
X=false. As a result, the logical representation ψ consists of two types of propositions, the ones
linked to the CPT entries and the ones linked to the network variables. The corresponding sets
of propositions are denoted by Θ and ∆, respectively.

In order to use the logical representation ψ to compute the posterior probability P (q|e) =
P (q∧e)/P (e) of a query event q = q1∧· · ·∧qr given the evidence e = e1∧· · ·∧es, it is sufficient
to look at the simpler problem of computing prior probabilities P (x) of arbitrary conjunctions
x = x1 ∧ · · · ∧ xr in order to obtain corresponding numerators P (q∧ e) and denominators P (e).
Our solution for this consists of the following three steps:

1. Condition ψ on x to obtain ψ|x.

2. Eliminate (forget) from ψ|x the propositions ∆. The resulting logical representation of
[ψ|x]−∆ consists of propositions from Θ only.

3. Compute the probability of the event represented by [ψ|x]−∆ to obtain P (x) = P ([ψ|x]−∆).
For this, we assume that the propositions θx|y ∈ Θ are probabilistically independent and
that P (θx|y) = P (x|y) are the respective marginal probabilities.

For the choice of an appropriate target compilation language for ψ, it is thus necessary to se-
lect a language that supports two transformations (conditioning and forgetting) and one query
(probability computation) in polynomial time. At first sight, just by looking at the results given
in [11] or [18], it seems that no such language exists. However, as we will see in this paper, we
can exploit the fact that the propositional variables in ∆ satisfy a certain property w.r.t. ψ. The
particular form of forgetting such deterministic variables will be called deterministic forgetting,
and we will see that it is (at least) supported by DNNFs and d-DNNFs. Among them, proba-
bility computations are only supported by d-DNNFs, and our search for an appropriate target

2

compilation language for Bayesian networks thus leads to d-DNNFs, the only representation
language that supports all necessary operations of the above procedure in polynomial time.

1.2 Contribution and Outline

The conclusion that d-DNNFs should be used as target compilation language for Bayesian net-
works confirms Darwiche’s precursory work in [8], but it also shows that Darwiche’s additional
requirement of smoothness is dispensable. While the actual reasons for this conclusion and the
exact role of smoothness remain rather nebulous in [8], a precise and conclusive explanation in
terms of the (extended) knowledge compilation map is given in this paper.

Another contribution of this paper is the proposal of an alternative CNF encoding, which finally
enables a more direct computational procedure in terms of a few basic operations of the knowledge
compilation map. In our opinion, this is a significant simplification over Darwiche’s original
method of viewing posterior probabilities as partial derivatives of multi-linear functions, from
which the rather cumbersome process of transforming the CNF encoding via a smooth d-DNNF
to an arithmetic circuit (with all negative literals set to 1) results. In the light of this paper,
some steps of this process appear as an unnecessary detour.

In a nutshell, we believe that the method of this paper is an important contribution to the area
of compiling Bayesian networks, mainly as a significant advancement in terms of clarity and
simplicity. First steps towards empirically testing the efficiency of the proposed method also
report some considerable improvements (see Section 4), but this has not yet been verified on a
broader scale.

The structure of this paper is as follows. Section 2 provides a short summary of possible repre-
sentations of Boolean functions and the corresponding knowledge compilation map. We will also
introduce the concepts of deterministic variables and deterministic forgetting, and extend the
knowledge compilation map accordingly. The topic of Section 3 is the logical representation and
evaluation of Bayesian networks. This part includes the main theorems of the paper. Section 4
displays the differences to the logical representation proposed by Darwiche. Section 5 concludes
the paper.

2 Representing Boolean Functions

Consider a set V of r Boolean variables and a Boolean function (BF) f : Br → B with B = {0, 1}.
Such a function f can also be viewed as the set of r-dimensional vectors x ∈ Br for which f
evaluates to 1. This is the so-called satisfying set Sf = {x ∈ Br : f(x) = 1} of f , for which an
efficient representation has to be found [5].

2.1 Representation Languages

To start with the least restrictive view w.r.t. possible representation languages, consider the
concept of a propositional DAG (or PDAG for short). According to [18], PDAGs are rooted,
directed, acyclic graphs, in which each leaf node is represented by © and labeled with > (true),
⊥ (false), or x ∈ V . Each non-leaf node is represented by M (logical and), O (logical or), or �
(logical not). The set of all possible PDAGs of V is called language and denoted by PDAGV or
simply PDAG. The example depicted in Fig. 1 represents the odd parity function with respect to
V = {a, b, c, d}.

3

ba c d

Figure 1: A PDAG representing the odd parity function with respect to V = {a, b, c, d}.

Leaves labeled with > (⊥) represent the constant BF which evaluates to 1 (0) for all x ∈ Br. A
leaf labeled with x ∈ V is interpreted as the assignment x = 1, i.e. it represents the BF which
evaluates to 1 iff x = 1. The BF represented by a M-node is the one that evaluates to 1, iff the
BFs of all its children evaluate to 1. Similarly, a O-node represents the BF that evaluates to 1, iff
the BF of at least one child evaluates to 1. Finally, a �-node represents the complementary BF
of its child, i.e. the one that evaluates to 1, iff the BF of its child evaluates to 0. The BF of an
arbitrary ϕ ∈ PDAG will be denoted by fϕ and its satisfying set by Sϕ. Two PDAGs ϕ,ψ ∈ PDAG
are equivalent, ϕ ≡ ψ, iff fϕ = fψ.

Our convention is to denote PDAGs by lower-case Greek letters such as ϕ, ψ, or the like. The
set of variables included in ϕ ∈ PDAG is denoted by vars(ϕ) ⊆ V . The number of edges of ϕ
is called its size and denoted by |ϕ|. PDAGs may satisfy various properties [11, 18], but in the
context of this paper, only three of them are relevant:

• Decomposability : the sets of variables of the children of each M-node α in ϕ are pairwise
disjoint (i.e. if β1, . . . , βl are the children of α, then vars(βi) ∩ vars(βj) = ∅ for all i 6= j);

• Determinism: the children of each O-node α in ϕ are pairwise logically contradictory (i.e.
if β1, . . . , βl are the children of α, then βi ∧ βj ≡ ⊥ for all i 6= j);

• Simple-negation: the child of each �-node in ϕ is a leaf.

A decomposable and deterministic PDAG is called cd-PDAG, and cd-PDAG refers to the corre-
sponding language, a sub-language of PDAG. The example shown in Fig. 1 is a cd-PDAG.

Darwiche’s family of NNF (= n-PDAG) languages are sub-languages of PDAG satisfying simple-
negation, i.e. DNNF (= cn-PDAG) is the sub-language of NNF satisfying decomposability and d-DNNF
(= cdn-PDAG) is the sub-language of DNNF satisfying determinism [11]. Other sub-languages are
obtained from considering further properties, e.g. OBDD (ordered binary decision diagrams) is
the sub-language of d-DNNF satisfying decision, read-once, and ordering, and sd-DNNF is the sub-
language of d-DNNF satisfying smoothness.1 The latter is used in [8] as target compilation language
for Bayesian networks. For a more comprehensive overview and a detailed discussion we refer to
[11, 18].

2.2 Succinctness, Queries, and Transformations

A language L1 is equally or more succinct than another language L2, L1 � L2, if any sentence
α2 ∈ L2 has an equivalent sentence α1 ∈ L1 whose size is polynomial in the size of α2. A language

1Smoothness means that vars(βi) = vars(βj) holds for each pair of children (βi, βj) of each O-node in ϕ.

4

L1 is strictly more succinct than another language L2, L1 ≺ L2, iff L1 � L2 and L2 6� L1. With
respect to the above-mentioned languages, we have the following proven relationships [18]:

PDAG ≺
{

DNNF ≺
cd-PDAG �

}
d-DNNF ≺ OBDD.

It is still unknown whether cd-PDAG is strictly more succinct than d-DNNF or not.

Queries are operations that return information about a BF without changing its PDAG rep-
resentation. The most important queries are consistency (CO) or satisfiability (SAT), validity
(VA), clause entailment (CE), term implication (IM), sentential entailment (SE), equivalence (EQ),
model counting (CT), probabilistic equivalence (PEQ), and probability computation (PR).

Finally, a transformation is an operation that returns a PDAG representing a modified BF.
The new PDAG is supposed to satisfy the same properties as the language in use. The most
important transformations are (term) conditioning (TC), forgetting (FO), singleton forgetting
(SFO), general/binary conjunction (AND/AND2), general/binary disjunction (OR/OR2), and negation
(NOT).

If a language supports a query or transformation in polynomial time with respect to the size of
the involved PDAGs, we say that it supports this query or transformation. Table 1 shows the
supported queries and transformations of the considered languages [11, 18].

CO/CE VA/IM CT/PR/PEQ EQ SE TC FO SFO AND AND2 OR OR2 NOT

PDAG ◦ ◦ ◦ ◦ ◦
√

◦
√ √ √ √ √ √

DNNF
√

◦ ◦ ◦ ◦
√ √ √

◦ ◦
√ √

◦
cd-PDAG

√ √ √
? ◦

√
◦ ◦ ◦ ◦ ◦ ◦

√

d-DNNF
√ √ √

? ◦
√

◦ ◦ ◦ ◦ ◦ ◦ ?
OBDD

√ √ √ √
◦

√
•

√
• ◦ • ◦

√

Table 1: Sub-languages of the PDAG language and their supported queries and transformations.√
means ”supports”, • means ”does not support”, ◦ means ”does not support unless P = NP”,

and ? means “unknown”.

2.3 Deterministic Variables

It is interesting to see in Table 1 that forgetting is supported by DNNF but not by d-DNNF or
cd-PDAG. This is a consequence of the fact that forgetting does not preserve determinism in
general. Let us now have a look at the particular case of variables which preserve determinism
while being forgotten.

Definition 1. For ϕ ∈ PDAG, the variable x ∈ V is called deterministic w.r.t. ϕ, denoted by
x ||ϕ, iff ϕ|x ∧ ϕ|¬x ≡ ⊥.

The process of forgetting deterministic variables will be discussed in the next subsection. Before,
let’s have a look at some basic properties of deterministic variables.

Theorem 1. x ||ϕ implies x ||ψ for all ψ |= ϕ.

Theorem 2. x /∈ vars(ϕ) implies x ||x↔ ϕ.

The proofs of these theorems are included in the appendix. An immediate consequence is the
following corollary, which will be useful to prove one of the main theorems of Section 3.

5

Corollary 1. x /∈ vars(ϕ) implies x || (x↔ ϕ) ∧ ψ.

For the forgetting of more than one variable, it is useful to generalize the definition of a single
deterministic variable to sets of deterministic variables.

Definition 2. For ϕ ∈ PDAG, the set of variables {x1, . . . , xn} ⊆ V is called deterministic w.r.t
ϕ, denoted by {x1, . . . , xn} ||ϕ or simply x1, . . . , xn ||ϕ, iff ϕ|x ∧ ϕ|x′ ≡ ⊥ for all instantiations
x 6= x′ of the variables x1, . . . , xn.

Note that x, y ||ϕ implies x ||ϕ and y ||ϕ, while the converse is not always true.

2.4 Deterministic Forgetting

LetW ⊆ V be a subset of variables, x ∈ V a single variable, and ϕ an arbitrary PDAG. Forgetting
the variables W from ϕ generates a new PDAG ϕ−W , in which the variables from W are no
longer included, and such that its satisfying set Sϕ−W is the projection of Sϕ to the restricted
set of variables V \W . In the literature, forgetting was originally called elimination of middle
terms [1], but it is also common to call it projection, variable elimination, or marginalization
[16]. There is also a one-to-one analogy to the elimination of existential quantifiers in quantified
Boolean formulas [12], as shown below.
Singleton forgetting is forgetting with W = {x}. A general and simple way to realize singleton
forgetting is by constructing a PDAG of the form

ϕ−x = ϕ|x ∨ ϕ|¬x.
Note that ϕ−x is logically equivalent to the quantified Boolean formula (∃x)ϕ. It is easy to
see that singleton forgetting preserves the properties of simple-negation and decomposability
(if present), while determinism is not preserved (the two children of the new O-node are not
necessarily logically contradictory). This is the reason why singleton forgetting is only supported
by PDAG and DNNF, but not by cd-PDAG or d-DNNF (see Table 1).
Forgetting multiple variable is usually realized as a sequence of singleton forgetting. In general,
this may result in an exponential blow-up of the PDAG size, but the decomposability of DNNF
allows to keep this blow-up under control. This is the reason why DNNF is the only language to
support forgetting in general. For the details of a corresponding algorithm, we refer to [6].
Now let’s turn our attention to the special case of forgetting deterministic variables. One way
to look at it is to define two additional transformations called deterministic forgetting (FOd) and
deterministic singleton forgetting (SFOd). They correspond to FO and SFO, respectively, but the
involved variables have to be deterministic.
For x ||ϕ, the two children of the new O-node of ϕ|x ∨ ϕ|¬x are logically contradictory by
definition. In other words, forgetting deterministic variables preserves determinism. This enables
us to adopt Darwiche’s DNNF forgetting algorithm from [6] one-to-one to the case of deterministic
forgetting in the language d-DNNF. As a consequence, SFOd and FOd are both supported by d-DNNF,
as stated in the following theorem.

Theorem 3.

a) PDAG supports SFOd, but it does not support FOd unless P = NP .

b) DNNF and d-DNNF support FOd and SFOd.

c) cd-PDAG and OBDD support SFOd.

The proof is included in the appendix. Whether cd-PDAG and OBDD support FOd is an open
question.

6

3 Compiling Bayesian Networks

The goal of this section is to show that the probability distribution induced by a Bayesian network
can be represented by a CNF (1st subsection) and that the d-DNNF compilation of this CNF can
be used to efficiently compute arbitrary posterior probabilities (2nd subsection). The proposed
CNF representation is similar but not equivalent to the one proposed by Darwiche in [8] (see
Section 4).

A Bayesian network (BN) is a compact graphical model of a complex probability distribution
over a set of variables N = {X1, . . . , Xn} [17]. It consists of two parts: a DAG representing
the direct influences among the variables, and a set of conditional probability tables (CPT)
quantifying the strengths of these influences. The whole BN represents the exponentially sized
joint probability distribution over its variables in a compact manner by

P (X1, . . . , Xn) =
n∏
i=1

P (Xi|parents(Xi)),

where parents(Xi) denotes the parents of node Xi in the DAG. Fig. 2 depicts a small BN with
three Boolean variables X, Y , and Z. In this paper, we will restrict our discussion to Boolean
variables. A Boolean variable X allows us to write x for the event X=true and x̄ or ¬x for the
event X=false.

X

Y

Z

P (x) = P (θx)

P (y|x) = P (θy|x)

P (y|x̄) = P (θy|x̄)
P (z|x, y) = P (θz|x,y)

P (z|x, ȳ) = P (θz|x,ȳ)

P (z|x̄, y) = P (θz|x̄,y)

P (z|x̄, ȳ) = P (θz|x̄,ȳ)

Figure 2: Example of a Bayesian network.

3.1 Logical Representation

Consider a variable X ∈ N with parents(X) = {Y1, . . . , Yn} and the corresponding CPT. Since
X has n parents, the CPT will have 2n entries. For each CPT entry P (x|y), a proposition
θx|y is introduced, where y is the corresponding instantiation of parents(X). Assuming that
the propositions θx|y represent probabilistically independent events, we define their respective
marginal probabilities by P (θx|y) = P (x|y).

To see how this logical representation of the BN works, take a closer look at one particular
instantiation y of parents(X). The idea is that if y happens to be the true state of parents(X),
then θx|y (resp. ¬θx|y) logically implies x (resp. ¬x). For y = (y1, . . . , yn), this logical relationship
between the propositions x, y1 to yn, and θx|y1,...,yn

is expressed by the first two implications
in the following logical expression. By taking the conjunction of all such implications over all
instantiations y, we obtain a logical representation ψX of the node X with its relationship to its

7

parents:

ψX =
∧

y1 ∧ · · · ∧ yn ∧ θx|y1,...,yn
→ x

y1 ∧ · · · ∧ yn ∧ ¬θx|y1,...,yn
→ ¬x

...
...

...
¬y1 ∧ · · · ∧ ¬yn ∧ θx|ȳ1,...,ȳn

→ x
¬y1 ∧ · · · ∧ ¬yn ∧ ¬θx|ȳ1,...,ȳn

→ ¬x

.

A logical representation ψN of the whole BN is the conjunction

ψN =
∧
X∈N

ψX

over all network variables X ∈ N . This sentence includes two types of propositions, the ones
linked to the CPT entries and the ones linked to the network variables. The respective sets of
propositions are denoted by Θ and ∆, respectively.2 Note that ψX and therewith ψN is a CNF,
as each of its implications can be written as a clause. For the BN of Fig. 2, we get

ψN =
∧

{

θx → x
¬θx → ¬x

}
∪

x ∧ θy|x → y
¬x ∧ θy|x̄ → y
x ∧ ¬θy|x → ¬y
¬x ∧ ¬θy|x̄ → ¬y

 ∪

x ∧ y ∧ θz|x,y → z
x ∧ ¬y ∧ θz|x,ȳ → z
¬x ∧ y ∧ θz|x̄,y → z
¬x ∧ ¬y ∧ θz|x̄,ȳ → z
x ∧ y ∧ ¬θz|x,y → ¬z
x ∧ ¬y ∧ ¬θz|x,ȳ → ¬z
¬x ∧ y ∧ ¬θz|x̄,y → ¬z
¬x ∧ ¬y ∧ ¬θz|x̄,ȳ → ¬z

.

The first block corresponds to ψX , the second block to ψY , and the third block to ψZ . The two
sets of propositional variables are ∆ = {x, y, z} and Θ = {θx, θy|x, θy|x̄, θz|x,y, θz|x,ȳ, θz|x̄,y, θz|x̄,ȳ}.

3.2 Computing Posterior Probabilities

The goal of a BN is the computation of the posterior probability P (q|e) = P (q ∧ e)/P (e) of a
query event q = q1 ∧ · · · ∧ qr given the observed evidence e = e1 ∧ · · · ∧ es. As mentioned in
Section 1, it is sufficient to look at the simpler problem of computing prior probabilities P (x) of
arbitrary conjunctions of literals x. The following theorem states that the essential step to solve
this problem is to forget the propositions ∆ from ψN (or any equivalent form of it) conditioned
on x.

Theorem 4. P (x) = P
(
[ψN |x]−∆

)
.

2The representation of a Bayesian network by a logical sentence ψN over two sets of variables Θ and ∆, together
with the given marginal probabilities for the variables in Θ and the corresponding independence assumptions,
puts this approach in the broader context of probabilistic argumentation [14, 15]. This is a theory of formal
reasoning which aims at unifying the classical fields of logical and probabilistic reasoning. The principal idea is to
evaluate the credibility of a hypothesis by non-additive probabilities of provability (or degrees of support). This is
a natural extension of the classical concepts of probability (in probability theory) and provability (in logic) [14].
The non-additivity of this measure is an important characteristic to distinguish properly between uncertainty and
ignorance, but the particularity of the model in this paper always causes the resulting probabilities of provability
to degenerate into ordinary (additive) probabilities. The embedding into the theory of probabilistic argumentation
has no practical significance for the method and goals of this paper, but it allows inference in Bayesian network
to be seen from a totally new perspective. We expect this perspective to be useful as a starting point to study
inference in Bayesian networks with missing parameters.

8

This guarantees that the computed values are correct. To ensure that this computation requires
only polynomial time, we need to compile ψN into an appropriate language, one that simultane-
ously supports TC, FO, and PR. The following theorem allows us to replace FO, not supported by
d-DNNF, by FOd, supported by d-DNNF.

Theorem 5. ∆ ||ψN .

As a consequence of this simple theorem, we arrive at the main message of this paper, namely
that d-DNNF is the most suitable target compilation language for Bayesian networks, since it
supports TC, FOd, and PR, and thus allows to compute posterior probabilities in polynomial time.
For the compilation of the CNF ψN into a d-DNNF, we refer to the state-of-the-art CNF to
d-DNNF compilers [7, 10]. Another option is to use any CNF to OBDD compiler, and to regard
the result as a d-DNNF.

4 Comparison with Darwiche’s Approach

Darwiche proposed a similar logical compilation for Bayesian networks [8, 3]. His approach
focusses on the encoding the multi-linear function (or network polynomial) of a Bayesian network,
rather than the Bayesian network itself. The resulting CNF is then compiled into a smooth d-
DNNF, which defines a corresponding arithmetic circuit. The inference is then performed in time
linear in the size of this circuit. Before the two methods are compared, Darwiche’s encoding will
be recapitulated shortly. We will use DA to refer to Darwiche’s approach and WH to refer to the
approach introduced in this paper.

For each network variable X ∈ N with values {x1, . . . , xk} and parents(X) = {Y1, . . . , Yn}, DA
defines an indicator variable λxi

for each value xi, 1 ≤ i ≤ k. In addition, a parameter variable
θxi|y is generated for each CPT entry P (xi|y) of X. Let Y denote the set of all instantiations
y = (y1, . . . , yn) of parents(X). The CNF representation for X and its CPT consists of three
distinct sets of clauses [3]:

Indicator clauses: {λx1∨ · · · ∨ λxk
} ∪ {¬λxi

∨ ¬λxj
: 1 ≤ i < j ≤ k},

IP clauses: {λy1 ∧ · · · ∧ λyn ∧ λxi → θxi|y : y ∈ Y, 1 ≤ i ≤ k},

PI clauses:
{θxi|y → λxi

: y ∈ Y, 1 ≤ i ≤ k} ∪
{θxi|y → λyj

: y ∈ Y, 1 ≤ i ≤ k, 1 ≤ j ≤ n}.

The CNF representation ψN of the entire Bayesian network is the conjunction of all indicator,
IP, and PI clauses. This CNF is then compiled into a smooth d-DNNF, which finally leads to an
arithmetic circuit to perform the inference. For more details on this we refer to [8, 3].

A

B

P (a) = P (θa)

P (¬a) = 1 − P (a) = P (θā)

P (b|a) = P (θb|a)

P (¬b|a) = 1 − P (θb|a) = P (θb̄|a)

P (b|ā) = P (θb|ā)

P (¬b|ā) = 1 − P (θb|ā) = P (θb̄|ā)

Figure 3: A very small Bayesian network.

9

To reveal the difference between the two approaches, consider the BN of Fig. 3 and the resulting
satisfying sets of the respective encodings. DA comes out with ten variables and the following
four models:

λa λā λb λb̄ θa θā θb|a θb̄|a θb|ā θb̄|ā MLF term
1 0 1 0 1 0 1 0 0 0 λaλbθaθb|a

1 0 0 1 1 0 0 1 0 0 λaλb̄θaθb̄|a
0 1 1 0 0 1 0 0 1 0 λāλbθāθb|ā

0 1 0 1 0 1 0 0 0 1 λāλb̄θāθb̄|ā

.

Note that each model in the satisfying set, by replacing each 1 with the corresponding variable
and each 0 with 1, represents exactly one term of the multi-linear function f = λaλbθaθb|a +
λaλb̄θaθb̄|a + λāλbθāθb|ā + λāλb̄θāθb̄|ā. The connection between a Bayesian network and its MLF
is extensively discussed in [9].

In contrast to DA, WH represents the BN of Fig. 3 by a CNF over five variables and with the
following eight models:

a b θa θb|a θb|ā
1 1 1 1 0
1 1 1 1 1
1 0 1 0 0
1 0 1 0 1
0 1 0 0 1
0 1 0 1 1
0 0 0 0 0
0 0 0 1 0

⇔

λa λā λb λb̄ θa θā θb|a θb̄|a θb|ā θb̄|ā
1 0 1 0 1 0 1 0 0 1
1 0 1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1 0 1
1 0 0 1 1 0 0 1 1 0
0 1 1 0 0 1 0 1 1 0
0 1 1 0 0 1 1 0 1 0
0 1 0 1 0 1 0 1 0 1
0 1 0 1 0 1 1 0 0 1

.

The table on the right hand side is obtained from the one on the left hand side by substituting
λa ⇔ a, λā ⇔ ¬a, λb ⇔ b, λb̄ ⇔ ¬b, θā ⇔ ¬θa, θb̄|a ⇔ ¬θb|a, and θb̄|ā ⇔ ¬θb|ā. This shows
that that the encodings in DA and WH are in fact different. The key difference comes from the PI
clauses in DA, which are not included in WH. On the other hand, there is an analogy between the
clauses in WH and the IP clause in DA:

y1 ∧ · · · ∧ yn ∧ θx|y → x y1 ∧ · · · ∧ yn ∧ ¬θx|y → ¬x
≡ y1 ∧ · · · ∧ yn ∧ ¬x→ ¬θx|y ≡ y1 ∧ · · · ∧ yn ∧ x→ θx|y

⇔ λy1 ∧ · · · ∧ λyn
∧ λx̄ → θx̄|y , ⇔ λy1 ∧ · · · ∧ λyn

∧ λx → θx|y .

Another important difference is the fact that WH does not impose the d-DNNF to be smooth,
and WH gets along with less variables. All this is reflected in the sizes of the CNFs and, more
importantly, in the sizes of the resulting d-DNNFs.3 Table 2 lists the number of variables and
clauses of the CNFs and the number of nodes and edges of the resulting d-DNNFs for the BNs
of Fig. 2 and Fig. 3.

3One could argue that these differences result from the generality of Darwiche’s multivariate approach, and
claim that they are likely to vanish in the Boolean case by substituting all appearances of λx1 and λx2 by x
and ¬x, respectively, and all appearances of θx1|y and θx2|y by θx|y and ¬θx|y, respectively, but this makes
Darwiche’s encoding logically contradictory.

10

Example of Fig. 2 Example of Fig. 3

#variables #clauses #nodes #edges #variables #clauses #nodes #edges

WH 10 14 47 54 5 6 21 22

DA 20 54 67 102 10 20 31 38

Table 2: Number of variables, clauses, nodes, and edges for WH and DA.

5 Conclusion

The approach proposed in this paper defines a new logical inference method for Bayesian networks
with Boolean variables. We expect its contribution to be theoretically and practically significant.
On the theoretical side, based on an extended knowledge compilation map, the paper provides a
precise explanation of why d-DNNFs are apparently the most suitable logical representations for
Bayesian networks. This is mainly a consequence of the fact that some of the involved variables
are deterministic. The paper also demonstrates how to reduce the problem of logical inference
in Bayesian networks to three basic logical operations. Compared to Darwiche’s differential
approach, this view fits much better into the picture of the knowledge compilation perspective, as
the reduction to these essential elements no longer requires us to talk about network polynomials,
multi-linear functions, partial derivatives, arithmetic circuits, or smoothness. In this sense, we
also see our paper as an attempt to clarify the theoretical mechanisms and connections behind
this kind of inference algorithms and as a good example to demonstrate the usefulness of the
knowledge compilation map.

On the practical side, the paper provides precise step-by-step instructions to implement a new
encoding and inference method for Bayesian networks in terms of a few simple operations for
d-DNNFs. Compared to Darwiche’s differential approach, this will lead to more transparent
implementations. The efficiency of such an implementation has not yet been empirically verified
on a broader scale, but significant improvements are already observable in very small examples.
Finally, with respect to possible applications other than Bayesian networks, other situations with
deterministic variables may be detected, for which forgetting becomes tractable in the case of
d-DNNFs.

Future work will focus on implementing this new approach, testing its efficiency, and extending
it to Bayesian networks with multinomial variables and/or missing parameters.

Acknowledgment

Research supported by the Swiss National Science Foundation, Project No. PP002-102652/1,
and The Leverhulme Trust.

Appendix: Proofs

Proof of Theorem 1. ψ |= ϕ implies ψ|x |= ϕ|x and ψ|¬x |= ϕ|¬x, and x ||ϕ is equivalent to
ϕ|x ∧ ϕ|¬x ≡ ⊥. This implies ψ|x ∧ ψ|¬x ≡ ⊥, from which x ||ψ follows.

Proof of Theorem 2. Holds since (x↔ ϕ)|x ∧ (x↔ ϕ)|¬x ≡ ϕ ∧ ¬ϕ ≡ ⊥.

11

Proof of Corollary 1. Follows from

((x↔ ϕ) ∧ ψ)|x ≡ ϕ ∧ ψ|x and ((x↔ ϕ) ∧ ψ)|¬x ≡ ¬ϕ ∧ ψ|¬x
⇒ ((x↔ ϕ) ∧ ψ)|x ∧ ((x↔ ϕ) ∧ ψ)|¬x ≡ ⊥.

Lemma 1. For ϕ ∨ ψ ∈ d-DNNF with x ||ϕ ∨ ψ, we have

(a) x ||ϕ,

(b) x ||ψ,

(c) ϕ−{x} ∧ ψ−{x} ≡ ⊥, i.e. ϕ−{x} ∨ ψ−{x} ∈ d-DNNF.

Proof. The proof of (a) and (b)goes as follows:

x ||ϕ ∨ ψ ⇔ (ϕ ∨ ψ)|x ∧ (ϕ ∨ ψ)|¬x ≡ ⊥
⇔ (ϕ|x ∨ ψ|x) ∧ (ϕ|¬x ∨ ψ|¬x) ≡ ⊥
⇔ (ϕ|x ∧ ϕ|¬x) ∨ (ϕ|x ∧ ψ|¬x) ∨ (ψ|x ∧ ϕ|¬x) ∨ (ψ|x ∧ ψ|¬x) ≡ ⊥

⇒

{
ϕ|x ∧ ϕ|¬x ≡ ⊥, ψ|x ∧ ψ|¬x ≡ ⊥ ⇒ x ||ϕ, x ||ψ (a), (b)

√

ϕ|x ∧ ψ|¬x ≡ ⊥, ψ|x ∧ ϕ|¬x ≡ ⊥ (I)

Note that ϕ ∧ ψ ≡ ⊥ implies (ϕ ∧ ψ)|x ≡ ⊥ and (ϕ ∧ ψ)|¬x ≡ ⊥ (II). Finally, from (I) and (II)
follows (c):

ϕ−{x} ∧ ψ−{x} ≡ ⊥ ⇔ (ϕ|x ∨ ϕ|¬x) ∧ (ψ|x ∨ ψ|¬x) ≡ ⊥
⇔ (ϕ|x ∧ ψ|x) ∨ (ϕ|x ∧ ψ|¬x) ∨ (ϕ|¬x ∧ ψ|x) ∨ (ϕ|¬x ∧ ψ|¬x) ≡ ⊥
⇔ (ϕ ∧ ψ)|x ∨ (ϕ|x ∧ ψ|¬x) ∨ (ϕ|¬x ∧ ψ|x) ∨ (ϕ ∧ ψ)|¬x ≡ ⊥.

Lemma 2. For ϕ ∧ ψ ∈ d-DNNF with x ||ϕ ∧ ψ, x ∈ vars(ϕ), and ψ 6≡ ⊥, we have

(a) vars
(
ϕ−{x}

)
∩ vars(ψ) = ∅,

(b) x ||ϕ.

Proof. (a) follows from vars
(
ϕ−{x}

)
⊆ vars(ϕ) \ {x}. The proof of (b) goes as follows:

x ||ϕ ∧ ψ ⇔ (ϕ ∧ ψ)|x ∧ (ϕ ∧ ψ)|¬x ≡ ⊥
⇔ (ϕ|x ∧ ψ|x) ∧ (ϕ|¬x ∧ ψ|¬x) ≡ ⊥
⇔ (ϕ|x ∧ ϕ|¬x) ∧ (ψ|x ∧ ψ|¬x) ≡ ⊥
⇔ (ϕ|x ∧ ϕ|¬x) ∧ ψ ≡ ⊥
⇒ ϕ|x ∧ ϕ|¬x ≡ ⊥ ⇔ x ||ϕ.

Proof of Theorem 3. We have:

a) PDAG supports SFOd since it supports SFO. If PDAG supports FOd it would also support FO.
Since FO is not supported unless P = NP , FOd is not supported unless P = NP .

b) DNNF supports FOd and SFOd since it supports FO and SFO. According to Lemma 1 and
Lemma 2, both determinism and decomposability are preserved by deterministic forgetting.
Therefore, d-DNNF can use the algorithm of forgetting within DNNF as presented in [6].

12

c) OBDD supports SFOd since it supports SFO. cd-PDAG supports SFOd since forgetting a deter-
ministic variable x of ϕ can be done by ϕ|x ∨ ϕ|¬x.

In the following ∼ denotes the compatibility relationship among variable instantiations. Hence,
x∼y means that the instantiations x and y are compatible, i.e. they agree on every common
variable. Furthermore, we use

lit(θx|y) =
{

θx|y if x∼y,
¬θx|y if ¬x∼y.

Lemma 3. For an instantiation y of all variables N of the BN, let yx be the instantiation y
restricted to the parents of X. This implies

ψN |y ≡
∧
x∈∆

lit(θx|yx
).

Proof. Performing the conjunction of two sequent line in the logical representation ψX of a
varialbe X leads to

ψX ≡
∧

y1 ∧ · · · ∧ yn → (θx|y1,...,yn
↔ x)

...
...

...
¬y1 ∧ · · · ∧ ¬yn → (θx|ȳ1,...,ȳn

↔ x)

 ,

i.e. ψX |y ≡ lit(θx|yx
). Finally, ψN =

∧
X∈N ψX implies ψN |y ≡

∧
x∈∆ lit(θx|yx

).

Lemma 4. If x is an instantiation of some variables of the BN, then

[ψN |x]−∆ ≡
∨
y∼x

ψN |y,

where y is an instantiation of all variables of the BN, and yx is the projection of y to parents(X).

Proof. Let Y be the set of all instantiations y. This implies

[ψN |x]−∆ ≡
∨

y∈Y

[ψN |x] |y ≡
∨
y∼x

ψN |y.

Proof of Theorem 4. Follows from Lemma 3 and Lemma 4.

Lemma 5. For ϕ,ψ ∈ PDAG and x /∈ vars(ψ), we have (ϕ ∧ ψ)−{x} ≡ ϕ−{x} ∧ ψ.

Proof. Holds since ψ ≡ ψ|x ≡ ψ|¬x.

Lemma 6. For all x ∈ ∆, x is a deterministic variable of ψX .

Proof. By transforming ψX one can show that

ψX ≡

∨
y1 ∧ · · · ∧ yn ∧ θx|y1,...,yn...

...
...

¬y1 ∧ · · · ∧ ¬yn ∧ θx|ȳ1,...,ȳn

 ↔ x.

Thus, x is a deterministic variable of ψX according to Theorem 1.

13

Lemma 7. For ϕ ∈ PDAG with x ||ϕ and y ||ϕ−{x}, we get x, y ||ϕ, y ||ϕ, and x ||ϕ−{y}.

Proof. This lemma follows from

x ||ϕ⇒
{

(ϕ| x, y) ∧ (ϕ|¬x, y) ≡ ⊥,
(ϕ| x,¬y) ∧ (ϕ|¬x,¬y) ≡ ⊥,

and

y ||ϕ−{x} ⇒

(ϕ| x, y) ∧ (ϕ| x,¬y) ≡ ⊥,
(ϕ| x, y) ∧ (ϕ|¬x,¬y) ≡ ⊥,
(ϕ|¬x, y) ∧ (ϕ| x,¬y) ≡ ⊥,
(ϕ|¬x, y) ∧ (ϕ|¬x,¬y) ≡ ⊥.

Proof of Theorem 5. Starting with a leaf X of the BN, Lemma 6 and Theorem 1 ensure that x is
a deterministic w.r.t. ψN . Since X has no children, all ψY , Y 6= X, remain unchanged according
to Lemma 5. This is repeated for the remaining variables of the BN, but X will no longer count
as a child. According to Lemma 7, the order of the nodes is only important for the simplicity of
the proof.

References

[1] G. Boole. The Laws of Thought. Walton and Maberley, London, 1854.

[2] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific independence
in Bayesian networks. In E. Horvitz and F. Jensen, editors, UAI’96, 12th Conference on
Uncertainty in Artificial Inteligence, pages 115–123, Portland, USA, 1996.

[3] M. Chavira and A. Darwiche. Compiling Bayesian networks with local structure. In IJ-
CAI’05, 19th International Joint Conference on Artificial Intelligence, Edinburgh, U.K.,
2005.

[4] M. Chavira, A. Darwiche, and M. Jaeger. Compiling relational Bayesian networks for exact
inference. International Journal of Approximate Reasoning, 42(1–2):4–20, 2006.

[5] P. Clote and E. Kranakis. Boolean Functions and Computation Models. Springer, 1998.

[6] A. Darwiche. Decomposable negation normal form. Journal of ACM, 48(4):608–647, 2001.

[7] A. Darwiche. A compiler for deterministic, decomposable negation normal form. In
AAAI’02, 18th National Conference on Artificial Intelligence, pages 627–634, Edmonton,
Canada, 2002.

[8] A. Darwiche. A logical approach to factoring belief networks. In D. Fensel, F. Giunchiglia,
D. L. McGuinness, and M. A. Williams, editors, KR’02, 8th International Conference on
Principles and Knowledge Representation and Reasoning, pages 409–420, Toulouse, France,
2002.

[9] A. Darwiche. A differential approach to inference in Bayesian networks. Journal of the
ACM, 50(3):280–305, 2003.

14

[10] A. Darwiche. New advances in compiling CNF to decomposable negational normal form. In
ECAI’04, 16th European Conference on Artificial Intelligence, Valencia, Spain, 2004.

[11] A. Darwiche and P. Marquis. A knowlege compilation map. Journal of Artificial Intelligence
Research, 17:229–264, 2002.

[12] S. Davis and M. Putnam. A computing procedure for quantification theory. Journal of the
Association for Computing Machinery, 7(3):201–215, 1960.

[13] H. Guo and W. H. Hsu. A survey of algorithms for real-time Bayesian network inference. In
A. Darwiche and N. Friedman, editors, AAAI/KDD/UAI’02, Joint Workshop on Real-Time
Decision Support and Diagnosis Systems, Edmonton, Canada, 2002.

[14] R. Haenni. Towards a unifying theory of logical and probabilistic reasoning. In F. B.
Cozman, R. Nau, and T. Seidenfeld, editors, ISIPTA’05, 4th International Symposium on
Imprecise Probabilities and Their Applications, pages 193–202, Pittsburgh, USA, 2005.

[15] R. Haenni, J. Kohlas, and N. Lehmann. Probabilistic argumentation systems. In D. M.
Gabbay and P. Smets, editors, Handbook of Defeasible Reasoning and Uncertainty Man-
agement Systems, volume 5: Algorithms for Uncertainty and Defeasible Reasoning, pages
221–288. Kluwer Academic Publishers, Dordrecht, Netherlands, 2000.

[16] J. Kohlas. Information Algebras: Generic Stuctures for Inference. Springer, London, 2003.

[17] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San Mateo,
USA, 1988.

[18] M. Wachter and R. Haenni. Propositional DAGs: a new graph-based language for repre-
senting Boolean functions. In P. Doherty, J. Mylopoulos, and C. Welty, editors, KR’06, 10th
International Conference on Principles of Knowledge Representation and Reasoning, pages
277–285, Lake District, U.K., 2006.

15

	cover-digital.pdf
	TR_06-006.pdf
	TR_Back.pdf

