Interactive Ray Tracing Using Hardware Accelerated

Image-Space Methods

Philippe C.D. Robert Severin Schoepke
robert@iam.unibe.ch severin.schoepke @students.unibe.ch

Research Group on Computational Geometry and Graphics

Institute of Computer Science and Applied Mathematics
University of Bern, Neubriickstrasse 10, 3012 Bern, Switzerland

Abstract

In recent years, interactive ray tracing has become realisable, albeit mainly
using clustered workstations and sophisticated acceleration structures. On non-
clustered computer architectures this is still not an easy task to achieve, especially
when rendering animated scenes, even though the computation power of modern
workstations is increasing rapidly.

In this paper we propose commonly known image-space rendering techniques
to be used in the context of ray tracing. We describe a visibility preprocessing
algorithm to perform interactive ray tracing based on the standard depth testing
capability of graphics processing units. This method — item buffer rendering —
is particularly suitable for rendering animated scenes, as it completely avoids the
necessity of creating and updating any kind of spatial acceleration structure in or-
der to achieve high frame rates. The item buffer stores indices referencing those
primitives which are visible in screen-space. Primary ray intersection testing can
therefore be executed very efficiently by performing only one primitive lookup op-
eration and one intersection test. As a consequence, this approach reduces the total
number of primary ray intersection tests to a minimum. Additionally we integrate
shadow rendering into our ray tracer using the shadow mapping technique to avoid
computationally expensive shadow rays. We compare CPU and GPU based imple-
mentations of our ray tracer and analyse the advantages and disadvantages of both
approaches in terms of visual quality and rendering performance.

CR Categories and Subject Descriptors: 1.3.3 [Computer Graphics]: Picture-
Image Generation - Display Algorithms; 1.3.7 [Computer Graphics]: 3D Graphics
And Realism - Ray Tracing

Keywords: Programmable Graphics Hardware, GPGPU, Intersection Testing

1 Introduction

Image-space rendering techniques have been used to accelerate ray tracing since the
late 1980ies. Unfortunately at that time graphics hardware was not yet as powerful as
today, so there was no advantage in using hardware accelerated methods to speedup
ray tracing. In the last few years this has changed substantially, though.

In this paper we utilise an algorithm to perform interactive ray tracing which avoids
the necessity of creating and updating any kind of spatial acceleration structure in or-
der to achieve high frame rates. Instead we use screen-space visibility processing to
accelerate primary ray intersection testing. Therefore, this approach is particularly suit-
able for ray tracing animated scenes. Both our implementations are largely based on
Weghorst, Hopper and Greenberg’s ifem buffer algorithm [30]. As opposed to their
work we are using graphics hardware accelerated depth testing capabilities of up-to-
date graphics processing units (GPU) to perform interactive ray tracing. Based on this
method we describe ways to further speedup rendering using interleaved sampling and
colour interpolation as well as to preserve image quality even under difficult conditions.

At the same time we integrate shadow rendering into our ray tracer using the
shadow mapping technique, which was introduced by Lance Williams in 1978 [32].
This allows us to render shadows without using computationally expensive shadow
rays.

Finally, as it has become feasible to perform general-purpose computations on pro-
grammable graphics hardware [19], we describe an implementation of our ray tracer
which is done entirely on the GPU using the OpenGL Shading Language [11].

The remainder of this paper is organised as follows. In Section 2 we outline pre-
vious work in the fields of ray tracing, image-space rendering techniques and general
purpose computation using graphics hardware (GPGPU) in the context of ray tracing.
Section 3 discusses the investigated image-space rendering techniques, the item buffer
and shadow mapping algorithms. In Section 4 we outline our implementation and in
Section 5 we present the results and discuss its advantages and disadvantages of our
implementation. Finally, we state our conclusions in Section 6 and outline future work
in Section 7.

2 Related Work

The idea of using screen-space coherence to accelerate ray tracing came up in the late
1980ies.

Weghorst et al. [30] introduced a method based on item buffers to reduce the total
number of intersection tests for primary rays. Item buffers simply store the indices
which reference those objects within the scene which are visible at the given location on
the image plane. As a consequence, a trivial lookup operation can be used to determine
the visible object for a specific pixel, hence, no acceleration structure is needed to
produce high frame rates. This is especially fortunate when rendering animated scenes
([22, 29, 28]). Salesin and Stolfi [24] introduced the zz-buffer algorithm which is based
on screen-space object indexing similar to the item buffer algorithm. The zz-buffer is
used to detect the objects intersected by primary rays and by rays to the light sources.
It is also used to identify the pixels which do not contain small features and as such
can be sampled by a single ray only. Lamparter et al. [13] proposed a related method
called ray-z-buffer, which is based on breadth-first ray tracing. The ray-z-buffer is a
generalisation of the depth buffer, based on nested, adapted quadtrees. It is used to
render arbitrarily large scenes. Unlike the item buffer the ray-z-buffer stores tuples
describing the set of rays and the visible primitives. Kim et al. [12] introduced the
zf-buffer, another variant of the item buffer algorithm. Instead of storing object indices
the zf-buffer records pointers to those objects which are visible as determined by the
z-buffer algorithm. Kim et al. also applied this method to render reflective objects.

To render shadows we use the well-known shadow mapping algorithm which was

first described by Lance Williams [32]. An alternative solution to accelerate shadow
rendering is Haines and Greenberg’s light buffers introduced in 1986 [9]. Instead of
using one buffer per light source they use six buffers to spatially subdivide the object
space. Shadowed regions can then be identified by shooting shadow feelers. This
method is slower but better adapted to a wide range of lighting scenarios.

With the advent of programmable graphics hardware it has become feasible to
offload arbitrary computational tasks to the GPU using a stream processing model
[1, 27,2, 19, 14]. Unfortunatly this is not always as trivial as one might expect, tech-
nically and performance-wise [7]. Regardlessly, in 2002 Carr et al. [3] were able
to implement a fixed-point ray-triangle intersection testing engine on an ATI R200.
Around the same time Purcell ef al. [20, 21] developed a complete ray tracing pipeline
on a GPU simulator. Since then others have implemented classical ray tracers on the
GPU using the extended feature set of current generation hardware [5, 10]. In 2004
Weiskopf et al. [31] implemented a nonlinear ray tracer on the GPU using several ac-
celeration techniques, such as early ray termination and adaptive ray integration. In
2005 Simonsen and Thrane [25] compared various ray tracing acceleration structures
on the GPU. Foley and Sugerman [8] used the kd-tree acceleration structure to perform
ray tracing on the GPU, whereas Carr et al. [4] introduced a method for quick intersec-
tion of dynamic triangular meshes on the GPU, based on a threaded bounding volume
hierarchy built from a geometry image.

3 Rendering Algorithms

In the following sections we will outline the item buffer and shadow mapping methods
and provide an insight into important implementation aspects of our interactive ray
tracer. For the sake of simplicity and performance we thereby concentrate on rendering
triangles only.

3.1 Visibility Processing

One of the biggest challenges when performing interactive ray tracing is how to reduce
the total number of ray-object intersection tests to a minimum [23]. Usually this is done
by segmenting the 3D space into spatial subsets containing a certain number of objects
using some sort of acceleration structure — e.g., kd-trees, grids or bounding volumes.
Fast traversal routines can then be used to decide which subsets of the scene to pick in
order to compute the proper ray-object intersection. Unfortunately, creating and updat-
ing acceleration structures is memory and time consuming, especially when rendering
dynamic scenes. Instead of using a sophisticated acceleration structure we therefore
use an item buffer to determine which objects need to be tested for intersection.

The item buffer is a data structure which stores for every pixel on screen a reference
to the triangle which is visible at that position — this is visualised in Figure 2. Primary
ray intersection testing can thus be executed very efficiently by performing only one
triangle lookup operation and one ray-object intersection test. The final rendering per-
formance thus heavily depends on an efficient and reliable visibility processing. Com-
monly this is done using the z-buffer hidden-surface algorithm [26]. Unlike Weghorst
et al. we use the hardware accelerated OpenGL depth testing for this purpose, which
promises high rendering performance.

To build the item buffer we perform the following steps: every triangle of the scene
is rendered to a framebuffer using standard OpenGL; in this process we encode the

k o {1 |1 oo o]0

Triangle 1> o |1 | 1 1l ol|lo|o
=

L= 1] 1 1 0 0 1]]

/ Triangle 2 \

Figure 2: The item buffer data structure (right) contains the indices of the visible trian-
gles in the framebuffer (left).

triangle indices into RGB colour values. Using this approach we are able to address
up to 2?4 triangles. While rendering the triangles we enable OpenGL’s depth testing to
make sure that only the visible triangles are stored in the framebuffer. The item buffer
is then created by reading back the framebuffer data to host memory and decoding
the RGB colour values into triangle indices. If more than 2?* triangles have to be
visualised, RGBA values in conjunction with the appropriate OpenGL blending mode
can be applied to address up to 232 triangles. Alternatively, bounding objects may be
rendered instead of the individual triangles. This approach is also helpful to keep the
total number of triangles at a minimum when creating the item buffer, such as when
visualising large scenes. Of course this will then result in a higher number of ray-
triangle intersection tests per primary ray to compute the correct intersection.

Since item buffer rendering is a screen-space based method it is possible to scale
the item buffer creation using distributed sort-first parallel rendering [18] devoting mul-
tiple GPUs. Using the GPU’s depth buffer to create the item buffer exhibits one serious
drawback, though. On current generation hardware it is limited to max. 24 bit preci-
sion. Because the depth buffer is on a log scale, with more precision essentially being
allocated for things that are closer” to the viewport, it is crucial to use an optimal
projection setup. Nevertheless, in some situations this limitation causes rendering arte-
facts. This happens whenever the item buffer contains references to ”wrong” triangles
due to incorrect depth test results. This case is depicted on the right of Figure 3. A
similar problem may appear at the borders of neighboured triangles where the index
of a wrong triangle may be written to the item buffer due to the limited resolution of
the framebuffer. This is depicted on the left of Figure 3. Even worse, both problems
can appear altogether. In our implementation we try to overcome these shortcomings
by using item buffer multisampling in order to compute the correct intersections for all
primary rays. The results are visually appealing by all means; a typical showcase is
given in Figure 4.

Figure 3: Two triangles with the same z-value z = 0.5 (left) and two overlapping trian-
gles with almost the same z-value where the depth test fails (right).

3.2 Shadow Mapping

Because it is not possible to shoot shadow feelers efficiently using only the item buffer
method, we perform shadow rendering using the image-based shadow mapping tech-
nique [32]. Although the visual quality is not as good as with real shadow feelers it is a
good rendering technique for dynamic applications. Shadow mapping is based on the
depth buffer hidden-surface algorithm as well. The most important aspect of this tech-
nique is that the depth buffer generated by rendering the scene from the light’s point of
view is the same as a visibility test over the light source’s viewing volume. It can thus
be used directly as a shadow map which partitions the view in both lit and shadowed
regions. The algorithm itself is as simple as follows. First, the scene is rendered from
the light’s point of view. Consequently, the z-values for the objects closest to the light
source are stored in the depth buffer: the shadow map. Then, the scene is rendered
from the camera’s point of view and as each fragment is generated it is transformed
into the light sources coordinate system and tested for visibility. If the distance to the
fragment is greater than the value stored in the shadow map, there is some object in
front of it and thus it lies in the shadow, otherwise the fragment is not shadowed.

The proper size of the shadow map has to be evaluated using the the camera frustum
and the type of the light source in order to make sure that no aliasing and quantisation
issues occur. And because shadow mapping is an image-based technique it is fully
accelerated on the GPU through its texture mapping functionality. Furthermore the
shadow map only needs to be updated when the scene is subject to changes during the
rendering — e.g., moving light sources or altering geometry.

4 Implementation

Our implementation is kept very basic; e.g., we do not use any SIMD functionality of
modern CPUs or parallel rendering strategies. As a consequence it is certainly possible
to achieve even better performance results when using more advanced implementa-
tions.

Figure 4: Rendering artefacts in case of no multisampling (left), almost no artefacts in
case of 3x3 multisampling (right).

Our ray-triangle intersector code is based on the original implementation of the
algorithm introduced by Moller and Trumbore [17]. Various tests have shown the effi-
ciency of this algorithm, for example in [16]. For the shading we use the Phong lighting
model.

4.1 Ray Tracing on the CPU

Integrating the item buffer based visibility processing and shadow mapping into a ray
tracer leads to the following multi-pass rendering algorithm — the ray tracing related
part of the algorithm is outlined in Figure 5. First, we create an item buffer which
holds the indices to all currently visible triangles. For this purpose we use a 32bit float-
ing point off-screen framebuffer object (FBO) with a depth attachement. Then,
for every light source we create a shadow map by rendering the entire scene from the
light’s point of view. Again we use an FBO to accomplish this task. The item buffer
and shadow maps can now be transferred from the GPU to host memory; to hide the
delay caused by this operation we perform an asynchronous memory transfer using the
OpenGL pixel buffer object extension (PBO). This enables us to start the inter-
section testing before the entire item buffer is downloaded completely. For every pri-
mary ray we perform one ray-triangle intersection test, the correct triangle is thereby
quickly determined using a trivial lookup operation based on the index stored in the
item buffer. If the intersection succeeds we shade the pixel according to the shadow
map and lighting model in use, if the test fails we perform additional intersection tests
to avoid rendering artefacts. To do so we employ the following “lazy multisampling”
strategy: if the first intersection test fails we loop over the local n x n neighbourhood
in the item buffer and perform n? — 1 ray-triangle intersection tests with the triangles
referenced by the indices of the surrounding buffer entries. In most cases we are able
to find correct intersections using this approach, if not we interpolate the pixel colour
using the surrounding pixels. Using this multisampling strategy the item buffer has
exactly the same dimensions as the framebuffer. Another approach to avoid these ren-
dering artefacts is to supersample the scene. The obvious drawback of this method is
that many more primary rays have to be shot in order to produce the final image.

lookup triangle
using the index buffer

perform the
intersection test

Intersection
detected

Multisample
neighboured indices

yes

Intersection
detected

Intersection

no in shadow

yes no
Y * *

Interpolate pixel J

{ Shade Pixel J { Shadow Pixel J colour

Figure 5: The ray tracing algorithm using an item buffer and shadow mapping.

To further accelerate the rendering we also implemented interleaved rendering. In
this mode we only shoot every n' primary ray, the remaining pixels are then coloured
using interpolation in a second rendering pass. Because this technique leads to higher
frame rates than normal rendering but also to a blurred image it is especially useful for
camera animations. In Figure 7 we show a comparison between interleaved and normal
rendering.

4.2 Ray Tracing on the GPU

To achieve a higher rendering performance we rewrote our ray tracer to run completely
on the GPU using a single fragment shader program. Among other improvements this
allows us to get rid of the item buffer and shadow map readback operation. Further-
more, we do not only gain from the superior performance and parallelism of modern
GPUs, but we also may use the free CPU cycles for other, non rendering related tasks.

Figure 6: The BART robots scene ray traced on the CPU using the item buffer and
shadow mapping.

4.2.1 Single-Pass Rendering

The first step of the GPU based implementation — item buffer creation — is done exactly
as in the CPU based implementation. But instead of reading the data back to host
memory it remains on the GPU as a texture. The same applies for the shadow maps. We
then activate our fragment shader and draw a screen-sized quad enforcing one fragment
shader pass per pixel. For every pixel the shader now reads the index from the item
buffer texture and — if it is valid — performs the intersection test. Finally, if a hit has
been detected the pixel is shaded according to the information stored in the shadow
maps. To be able to access the scene data in the shader — such as normals, colours and
so on — we have to store it into multiple 32bit floating point RGBA textures. To find
out whether a point in 3D is shadowed or not we use the following function:

bool isShadowed(const vec4 pos, mat4d lightMVP)

{
vec4 smtc = pos * 1lightMVP; // sh_map texcoords
float shadowDepth = texture2D(sh_map, smtc.xy).Xx;
float posDepth = smtc.z - EPSILON;
if (shadowDepth < posDepth) return true;
else return false;

}

Here 1ightMVP is the model-view-projection matrix for the current light source as
described in [6], sh_map the shadow map and pos the position in the 3D scene.

Figure 7: Interleaved rendering (left) leads to higher frame rates than normal rendering
(right), but also to a blurred image [extract from the robots scene].

4.2.2 Multi-Pass Rendering

To accelerate the GPU based ray tracing implementation even more we tried to discard
the pixels which do not contribute to the final image. To avoid costly shader executions
for these pixels we mask them out in a separate rendering pass right after item buffer
creation. In the following passes only the pixels which were not masked out are further
processed. This technique is widely known as early-z culling. For this purpose we
had to split the GLSL implementation into multiple shaders — an early-z tester, ray-
triangle intersection tester and pixel shader — and perform the rendering in multiple
passes. Unfortunately this optimisation did not lead to better results because the current
OpenGL drivers are not yet capable of performing early-z culling on 32bit floating
point FBOs. This will hopefully change in a near future.

5 Discussion and Results

We benchmarked our implementations on an AMD Athlon64 3500+, GeForce 7800GT
workstation running Windows XP. The installed driver had revision 8421. Tests on a
dual 2.8 GHz Xeon CPU workstation running Fedora Core 4 Linux lead to comparable
results. For the benchmarks we used three different scenes of various complexity, a
simple torus, the well-known Stanford bunny and the animated robots scene from the
BART ray tracing benchmark [15]. Their main characteristics are listed in Table 1.
Furthermore, one light source is turned on while rendering.

Name | Triangles Notes

Torus 1024 A simple scene
Bunny 69451 The Stanford bunny
Robots 71708 An animated scene

Table 1: The three sample scenes.

Since the base number of primary rays is the same for all three scenes we expected other

factors to be significant with respect to differing frame rates; e.g., the time to create the
item buffer and shadow maps, differences in shading or a varying number of item buffer
multisampling as well as dynamic scene updates. In order to access the item buffer on
the CPU we have to perform a framebuffer readback operation. Fortunately, by using
the high bandwidth of the new PCI Express for Graphics (PEG) 16x standard and
asynchronous memory transfer this is not so much of a performance problem anymore.
Although, in Table 2 we see that asychronous memory transfer is only a little faster
than the synchronous readback. This is mostly because the memory transfer itself only
takes about 2—3ms, and as such only uses a fraction of the total spent rendering time.
Moreover we did not use a very fine-grained memory transfer strategy, the performance
would clearly benefit from transferring more but smaller memory chunks per frame. In
addition, item buffer creation only takes between 3ms and /5ms. This could even
be further optimised using advanced rendering techniques instead of immediate mode
rendering, as it is done here.

Robots | Bunny | Torus
synchronous 2.8 6.1 4.4
asynchronous 2.9 6.2 4.5
item buffer creation 73 71 850

Table 2: Frames per second, measured without shadow mapping and item buffer multi-
sampling. The last row shows the performance achieved when computing the item
buffer exclusively [without transfer to host memory].

Robots | Bunny | Torus
CPU, no shadows 3.2 6.1 4.5
CPU, shadowed 1.4 5.5 3.8
GPU, no shadows 19 36 117
GPU, shadowed 19 36 106

Table 3: Frames per second with and without shadow rendering, no multisampling.

Robots | Bunny | Torus
CPU, interleaved 3.4 5.8 5.0
CPU, no multisampling 2.6 4.9 4.5
CPU, lazy 3 x 3 2.5 3.9 4.3
CPU, lazy 5 x 5 2.4 2.5 4.1
CPU,3x3 1.6 2.2 2.3
CPU,5x5 1.2 1.2 1.4
GPU, no multisampling 19 36 117

Table 4: Frames per second with and without multisampling, no shadow mapping.

Please note that the reason for the higher frame rates of the bunny is that less in-
tersections occur and thus less shading operations have to be performed — the torus
simply fills the viewport to a higher extent than the bunny. This is the case in all our
benchmarks.

10

ray shooting
15.6%

intersection test

shading
59.0%

index buffer creatiog

Figure 8: The cost distribution of the CPU cycles when rendering the robots scene on
the CPU.

Comparing the rendering times between the CPU and the GPU version reveals that
the latter is faster almost by an order of magnitude — see Table 3. This can be explained
by the fact that we did not use parallel execution to perform the ray shooting on the
CPU whereas we gain from the parallelism on the GPU. Moreover, we did not have to
perform memory transfers between the GPU and the host memory.

It is obvious that when performing item buffer multisampling the achieved ren-
dering performance drops noticeably, as can be seen in Table 4. In most cases the
”lazy multisampling” strategy represents the best compromise between performance
and quality. Most of the time is spent in ray shooting, intersection testing and espe-
cially shading operations. Figure 8 shows the average cost distribution when rendering
the robots scene on the CPU. Here, item buffer creation is almost negligible. The val-
ues for the GPU variant on the other hand are much more influenced by the item buffer
creation costs as well as the scene graph updates — in case of the dynamic robots scene
— which enforce expensive data texture updates once per frame.

Another advantage of our ray tracer is that the achieved frame rate remains more
or less constant when rendering animations or fly-throughs, no matter how the trian-
gles are distributed in space — as long as the entire viewport is covered by the scene.
The curve in Figure 9 depicts the frame rate over time for the animated robots scene,
rendered on the CPU without multisampling.

Last but not least we comment on the visual quality of the rendering. The results
are in most cases engaging, although if the scene contains many tiny triangles, such as
the Stanford bunny, a higher item buffer multisampling rate is a necessity to produce
good results. If there are too many such tiny-sized triangles close to each other visual
artefacts are inevitable. We try to overcome these faults by shading the missing pixels

11

2.5 =
2+ no shadows B
with shadows - - - - --
FPS
1.5 =
1 [—
05 \ \ \ \ \ \ \
0 5 10 15 20 25 30 35 40

Frame

Figure 9: Frames per second over a period of time for the robots scene.

using colour interpolation. We believe that in this case the achieved quality is satisfac-
tory for dynamic scenarios by all means, but less for static renderings — see Figure 10.
The visual differences between the GPU and the CPU versions of our ray tracer are
of minor importance. It seems that the 32bit floating point implementation on Nvidia
GPUs is indeed very close to the IEEE-754 standard.

g
X

Figure 10: Artefacts without multisampling and interpolation (left), no visible artefacts
with 3 x 3 multisampling and interpolation (right).

6 Conclusion

In this paper we presented a ray tracer which uses an item buffer to achieve high frame
rates instead of a more common, spatial acceleration structure. We showed that it is

12

feasible to combine the raw power of GPUs and screen- and image-space rendering
techniques to accelerate ray tracing. This facilitates ray tracing of animated scenes at
interactive frame rates. In addition, we are using shadow mapping instead of shooting
shadow feelers to perform the shadowing computations.

We describe two implementations, both accelerated by the graphics hardware. The
first implementation only uses the graphics hardware to build the item buffer and
shadow maps, the second one is done entirely on the GPU using GLSL. We demon-
strated some advantages of this approach as well as the superior performance of the
GPU based implementation. On the downside, secondary rays cannot be performed
reasonably fast without integrating a spatial acceleration structure, more work is re-
quired to address this issue. Also, shadow mapping often produces hard shadows. This
could be softened by filtering the borders of the shadowed regions.

In order to achieve higher frame rates we could further optimise our code using the
SIMD functionality of the CPU and scalable rendering techniques. E.g., we could make
use of primary ray coherence and apply parallel rendering strategies using multiple
GPUs to create the item buffer and the shadow maps as well as to perform the ray
tracing.

7 Future Work

Numerous possibilities exist for follow-up research work. First, we would like to inte-
grate reflection and refraction rays into our interactive ray tracer. We see a good chance
in achieving this using a multi-level ray tracing approach based on more traditional ac-
celeration structures [23]. Second, we would like to scale the rendering using parallel
rendering strategies devoting multiple GPUs and CPUs. One particular advantage of
ray tracing over z-buffer based rendering is its built in occlusion culling which enables
efficient rendering of complex scenes. Unfortunately, since we are using OpenGL to
create the item buffer this advantage diminishes. In order to address this issue we
are investigating a temporally adaptive algorithm to create the item buffer, resulting in
much less OpenGL rendering. The concept is closely related to the so called frame-
less rendering. The idea is to exploit the coherence in imagery across time in order to
restrict updates only to those parts of the buffer which are subject to changes.

8 Acknowledgements

The authors would like to thank H. Bieri, S. Schér (University of Bern), S. Eilemann
(University of Zurich), J. Hutchison and all other reviewers for their valuable assistance
and discussions.

References

[1] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schroder. The GPU as Numerical
Simulation Engine.

[2] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike
Houston, and Pat Hanrahan. Brook for GPUs: stream computing on graphics
hardware. ACM Trans. Graph., 23(3):777-786, 2004.

13

[3] Nathan A. Carr, Jesse D. Hall, and John C. Hart. The ray engine. In Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,
pages 37-46. Eurographics Association, 2002.

[4] Nathan A. Carr, Jared Hoberock, Keenan Crane, and John C. Hart. Fast GPU Ray
Tracing of Dynamic Meshes using Geometry Images. In Proceedings of Graphics
Interface 2006, 2006.

[5] Martin Christen. Ray Tracing on GPU. Master’s thesis, University of Applied
Sciences Basel, 2005.

[6] Cass Everitt, Ashu Rege, and Cam Cebenoyan. Hardware Shadow Mapping. In
ACM SIGGRAPH 2002, 2002.

[7] Kayvon Fatahalian, Jeremy Sugerman, and Pat Hanrahan. Understanding the
Efficiency of GPU Algorithms for Matrix-Matrix Multiplication. In Graphics
Hardware 2004, 2004.

[8] Tim Foley and Jeremy Sugerman. KD-tree acceleration structures for a GPU
raytracer. In HWWS ’05: Proceedings of the ACM SIGGRAPH/EUROGRAPH-
ICS conference on Graphics hardware, pages 15-22, New York, NY, USA, 2005.
ACM Press.

[9] Eric A. Haines and Donald P. Greenberg. The Light Buffer: a Shadow Testing
Accelerator. IEEE Computer Graphics and Applications, 6(9):6—-16, 1986.

[10] Filip Karlsson and Carl Johan Ljungstedt. Ray tracing fully implemented on
programmable graphics hardware. Master’s thesis, Chalmers University of Tech-
nology, 2004.

[11] John Kessenich, Dave Baldwin, and Randi Rost. OpenGL 2.0 Shading Language,
2003.

[12] Sehyun Kim, Sung ye Kim, and Kyung hyun Yoon. A Study on the Ray-Tracing
Acceleration Technique Based on the ZF-Buffer Algorithm. In IV ’00: Pro-
ceedings of the International Conference on Information Visualisation, page 393,
Washington, DC, USA, 2000. IEEE Computer Society.

[13] Bernd Lamparter, Heinrich Miiller, and Jorg Winckler. The Ray-z-Buffer—
An Approach for Ray Tracing Arbitrarily Large Scenes. Technical Report re-
port00021, 1990.

[14] Aaron Lefohn, Joe M. Kniss, Robert Strzodka, Shubhabrata Sengupta, and
John D. Owens. Glift: Generic, Efficient, Random-Access GPU Data Structures.
ACM Transactions on Graphics, 25(1):60-99, jan 2006.

[15] Jonas Lext, Ulf Assarsson, and Thomas Moeller. BART: A benchmark for ani-
mated ray tracing. Technical Report 00-14, Chalmers University of Technology,
Goeteborg, Sweden, 2000.

[16] Tomas Moller. Practical Analysis of Optimized Ray-Triangle Intersection.

[17] Tomas Moller and Ben Trumbore. Fast, Minimum Storage Ray-Triangle Inter-
section. J. Graph. Tools, 2(1):21-28, 1997.

14

[18] Steve Molnar, Michael Cox, David Ellsworth, and Henry Fuchs. A Sorting Clas-
sification of Parallel Rendering. IEEE Computer Graphics and Algorithms, pages
23-32, July 1994.

[19] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Kriiger,
Aaron E. Lefohn, and Timothy J. Purcell. A Survey of General-Purpose Com-
putation on Graphics Hardware. In Eurographics 2005, State of the Art Reports,
pages 21-51, August 2005.

[20] Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray Trac-
ing on Programmable Graphics Hardware. ACM Transactions on Graphics,
21(3):703-712, July 2002.

[21] Timothy John Purcell. Ray tracing on a stream processor. PhD thesis, Stanford
University, 2004.

[22] Erik Reinhard, Brian Smits, and Charles Hansen. Dynamic acceleration structures
for interactive ray tracing. Proceedings Eurographics Workshop on Rendering,
pages 299-306, June 2000.

[23] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-level ray tracing
algorithm. ACM Trans. Graph., 24(3):1176-1185, 2005.

[24] David Salesin and Jorge Stolfi. The ZZ-Buffer: A Simple and Efficient Ren-
dering Algorithm with Reliable Antialiasing. In Proceedings of the PIXIM 89
Conference, pages 451-66, 1989.

[25] Lars Ole Simonsen and Niels Thrane. A Comparison of Acceleration Structures
for GPU Assisted Ray Tracing. Master’s thesis, University of Aarhus, 2005.

[26] Ivan E. Sutherland, Robert F. Sproull, and Robert A. Schumacker. A Charac-
terization of Ten Hidden-Surface Algorithms. ACM Comput. Surv., 6(1):1-55,
1974.

[27] Suresh Venkatasubramanian. The Graphics Card as a stream computer. In
SIGMOD-DIMACS Workshop on Management and Processing of Data Streams,
2003.

[28] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD
thesis, Saarland University, 2004.

[29] Ingo Wald and Philipp Slusallek. State-of-the-Art in Interactive RayTracing. EU-
ROGRAPHICS 2001, 2001.

[30] Hank Weghorst, Gary Hooper, and Donald P. Greenberg. Improved Computa-
tional Methods for Ray Tracing. ACM Trans. Graph., 3(1):52-69, 1984.

[31] Daniel Weiskopf, Tobias Schathitzel, and Thomas Ertl. GPU-Based Nonlinear
Ray Tracing. In Eurographics 2004, 2004.

[32] Lance Williams. Casting curved shadows on curved surfaces. In SSIGGRAPH ’78:
Proceedings of the 5th annual conference on Computer graphics and interactive
techniques, pages 270-274, New York, NY, USA, 1978. ACM Press.

15

