
Probabilistic Equivalence Checking with
Propositional DAGs

Michael Wachter & Rolf Haenni

iam-06-001

April 2006

Probabilistic Equivalence Checking with

Propositional DAGs∗

Michael Wachter & Rolf Haenni
University of Berne

Institute of Computer Science and Applied Mathematics
CH-3012 Berne, Switzerland

{wachter,haenni}@iam.unibe.ch

Abstract

The canonical representation of Boolean functions offered by OBDDs (ordered binary
decision diagrams) allows to decide the equivalence of two OBDDs in polynomial time with
respect to their size. It is still unknown, if this holds for other more succinct supersets
of OBDDs such as FBDDs (free binary decision diagrams) and d-DNNFs (deterministic,
decomposable negation normal forms), but it is known that the equivalence test for these
is probabilistically decidable in polynomial time. In this paper, we show that the same
probabilistic equivalence test is also possible for cd-PDAGs (decomposable, deterministic
propositional DAGs). cd-PDAGs are more succinct than d-DNNFs and therefore strictly
more succinct than FBDDs and OBDDs.

CR Categories and Subject Descriptors:
B.6.3. [Logic Design]: Design Aids—verification

General Terms:
Algorithms, Design, Theory, Verification

∗Research supported by the Swiss National Science Foundation, Project No. PP002102652/1.

1

1 Introduction

Symbolic model checking is one of the most common formal verification techniques used in hard-
ware design today. One of its primary goals is to formally prove that two distinct representations
of a Boolean function are equivalent. This problem arises in various situations. As an example,
consider the problem of checking if a manually modified circuit design functionally corresponds to
the original one. Another typical example is the question of whether a gate-level implementation
meets its functional specification.

Equivalence checking is known to be a hard problem in general. Most techniques today make
use of some sort of canonical representation, for which the equivalence check is performed in
polynomial time with respect to the representation size. The problem is that the representation
size of some ill-suited problems is already exponential in the number of variables. The best
strategy thus is to choose the most succinct representation that allows a polynomial equivalence
check [6].

The most prominent way of canonically representing Boolean functions is by means of or-
dered binary decision diagrams (OBDD) and their derivatives [2]. The idea thus is to transform
functional specifications or circuit designs into corresponding OBDDs, and to see if they are
structurally identical. In practice, this works well for a broad class of problems, and that’s
the key to the huge success of OBDDs in the practical applications of formal verification. Un-
fortunately, certain important problems such as integer multiplication lead to intractably large
OBDDs. In his original paper on OBDDs, Bryant commented this limitation with the following
statement [2]:

“Given the wide variety of techniques used in implementing multipliers [. . .], a canon-
ical form for Boolean functions [. . .] that could efficiently represent multiplication
would be of great interest for circuit verification. Unfortunately, these functions seem
especially intractable.”

To overcome these difficulties, some authors proposed more succinct languages such as FB-
DDs (free binary decision diagrams) or d-DNNFs (deterministic, decomposable negation normal
forms). “More succinct” means that every Boolean functions with a tractable representation in
the second language has also a tractable representation in the first language. The price these
languages have to pay is the abandonment of the canonical form. If this implies that equiva-
lence can no longer be checked in polynomial time is still an open question for both FBDDs
and d-DNNFs [6, 4]. Moreover, it has been shown that any FBDD representation of an integer
multiplier grows exponentially with the number of bits [9], something that has not yet been been
discussed in the literature for d-DNNFs.

An alternative to the missing exact equivalence check is the probabilistic test proposed in [1, 8]
for FBDDs and in [5] for d-DNNFs. This test is analogue to the well-known and widely applied
class of probabilistic prime number tests of a candidate prime number [11, 10]. If the result of
the test is negative, the two representations are certainly not equivalent (resp. the candiate is not
prime). In the case of a positive test result, the two representations appear to be equivalent (resp.
the candidate appears to be prime), but this conclusion is subject to a certain failure probability
π ∈ [0, 1]. Repeating the test under different conditions, let’s say t times, leads to a reduced
total failure probability of πt. For a quick convergence towards zero, π is usually supposed to be
smaller than 1

2 . An adequate choice of t allows then to make the equivalence check arbitrarily
accurate.

This paper shows how to adopt the above-mentioned probabilistic test for cd-PDAGs (de-
composable, deterministic propositional DAGs). This is an appealing new technique for the

2

representation of Boolean functions [13]. The corresponding language includes all possible d-
DNNFs, FBDDs, and OBDDs, and is therefore the most succinct language among all of them.

2 Boolean Functions and Propositional DAGs

In this section, we will review the graph-based language for representing Boolean functions called
propositional DAGs [13]. We will use PDAG to refer to the language of propositional DAGs and
PDAG to refer to an element of PDAG. Consider a set V of r propositional variables and a
Boolean function (BF) f : {0, 1}r → {0, 1}. Such a function f can also be viewed as the set of
r-dimensional vectors x ∈ {0, 1}r for which f evaluates to 1. This is the so-called satisfying set
or set of models Sf = {x ∈ {0, 1}r : f(x) = 1} of f , for which an efficient representation has to
be found [3].

A PDAG is a rooted, directed acyclic graph in which each leaf node is represented by © and
labeled with > (true), ⊥ (false), or x ∈ V . Each non-leaf node is represented by M (logical and),
O (logical or), or � (logical not). Fig. 1 depicts two examples.

a0 b1 b0
a1

ϕ1

a0 b1
a1b0

ϕ2

Figure 1: Two distinct PDAGs representing the same Boolean function.

Leaves labeled with > (⊥) represent the constant BF which evaluates to 1 (0) for all x ∈ {0, 1}r.
A leaf labeled with x ∈ V is interpreted as the assignment x = 1, i.e. it represents the BF which
evaluates to 1 iff x = 1. The BF represented by a M-node is the one that evaluates to 1, iff the
BFs of all its children evaluate to 1. Similarly, a O-node represents the BF that evaluates to 1, iff
the BF of at least one child evaluates to 1. Finally, a �-node represents the complementary BF
of its child, i.e. the one that evaluates to 1, iff the BF of its child evaluates to 0. The BF of an
arbitrary ϕ ∈ PDAG will be denoted by fϕ. Two PDAGs ϕ,ψ ∈ PDAG are equivalent, iff fϕ = fψ.
This is denoted by ϕ ≡ ψ. Note that the two examples of Fig. 1 are equivalent.

By replacing the non-terminal nodes of ϕ ∈ PDAG by corresponding logical gates, one can
look at it as a digital circuit implementing fϕ. We prefer to make a distinction between PDAGs
and digital circuits to emphasize their respective purposes. Digital circuits are mainly used to
implement BFs, whereas PDAGs are useful to represent, manipulate, and answer queries about
BFs. Examples of such queries are satisfiability, validity, entailment, equivalence, model counting,
model and counter-model enumeration, and so on [6].

Our convention is to denote PDAGs by lower-case Greek letters such as ϕ, ψ, or the like. The

3

set of variables included in a sub-PDAG α of ϕ is denoted by vars(α) ⊆ V . The number of edges
of a PDAG ϕ is called its size and denoted by |ϕ|. The depth of ϕ, denoted by depth(ϕ), is the
maximal number of edges from the root to some leave. PDAGs can have a number of properties
[6, 13]. In the context of this paper, only two of them are relevant:

• Decomposability : this property holds, if the sets of variables of the children of each M-node α
in ϕ are pairwise disjoint (i.e. if β1, . . . , βl are the children of α, then vars(βi)∩vars(βj) = ∅
for all i 6= j);

• Determinism:1 this property holds, if the children of each O-node α in ϕ are pairwise
logically contradictory (i.e. if β1, . . . , βl are the children of α, then βi ∧ βj ≡ ⊥ for all
i 6= j).

A decomposable and deterministic PDAG is called cd-PDAG. Note that both examples shown in
Fig. 1 are cd-PDAGs. We will refer to the corresponding language by cd-PDAG, a sub-language of
PDAG. Other sub-languages are obtained from considering further properties: d-DNNF is the sub-
language of cd-PDAG satisfying simple-negation, FBDD is the sub-language of d-DNNF satisfying
read-once, and OBDD is the sub-language of FBDD satisfying ordering [6, 13]. It is shown in Chapter
11.1 of [14] that it is sufficient for a language to offer a probabilistic equivalence check, if both
decomposability and determinism hold.

A language L1 is more succinct than another language L2, L1 � L2, if any sentence α2 ∈ L2

has an equivalent sentence α1 ∈ L1 whose size is polynomial in the size of α2. A language L1 is
strictly more succinct than another language L2, L1 ≺ L2, iff L1 � L2 and L2 6� L1. With respect
to the above-mentioned languages, we have the following proven relationships:

PDAG ≺ cd-PDAG � d-DNNF ≺ FBDD ≺ OBDD. (1)

Whether cd-PDAG is strictly more succinct than d-DNNF remains an open question.

3 Probabilistic Equivalence Testing

Let fϕ and fψ be the BFs of two PDAGs ϕ and ψ, respectively. Recall that ϕ ≡ ψ is defined by
fϕ = fψ, which in turn can be expressed by Sfϕ = Sfψ in terms of their satisfying sets. Of course,
comparing their satisfying sets is by no means a tractable way of checking the equivalence of two
PDAGs, but this is the starting point of this section, which will lead us to a general probabilistic
equivalence test for BFs, for which we will propose two possible implementations. These general
versions of the test are then adapted for the particular case of cd-PDAG representations.

The idea of probabilistically checking the equivalence of two BFs fϕ and fψ goes as follows.
First, we assign to each BF an attribute, which is thus unambiguously determined by the cor-
responding satisfying set. If fϕ and fψ have different attributes, they are not equivalent, since
this would imply different satisfying sets. If their attributes are the same, they may or may not
be equivalent, since we might have assigned the same attribute to two distinct BFs. The key
point is to define the attribute in a way that two BFs with the same attribute are likely to be
equivalent.

This idea has been identified in [1] and further studied in [8, 5, 7]. For the purpose of this
paper, we will focus on a concrete type of attribute. In accordance with [8], we will refer to
it as the hash code of a BF, while other authors prefer to call it signature. Without loss of
generality, we restrict our attention to the field Fp = {0, . . . , p−1} of integers, where p is a prime

1Disjunctions satisfying this property are sometimes called orthogonal partitions [14].

4

number. This allows us to define hash codes in terms of arithmetic operations within Fp, where
all additions, subtractions, and multiplications are performed modulo p.

Definition 1. Let V = {v1, . . . , vr} be a set of r propositional variables and h = (h1, . . . , hr) ∈
Frp a r-dimensional vector of integers in Fp.

• The hash code of a variable vi ∈ V is the corresponding coordinate of h:

Hh(vi) := hi.

• The hash code of a truth assignment x = (x1, . . . , xr) ∈ {0, 1}r is the following product:

Hh(x) :=
r∏
i=1

{
Hh(vi), if xi = 1,
1−Hh(vi), if xi = 0.

• The hash code of a BF f is the sum of hash codes of its models:

Hh(f) :=
∑
x∈Sf

Hh(x).

This definition implies that Hh(f) = 1 if f is valid, Hh(f) = 0 if f is inconsistent, and
Hh(1− f) = 1−Hh(f). We rephrase a theorem from [1] adjusted to our formulation.

Theorem 1. If f1 and f2 are two distinct Boolean functions, then there are at least (p − 1)r

vectors h ∈ Frp such that Hh(f1) 6= Hh(f2).

This theorem holds for arbitrary fields of size p, as proven in [1, 5]. For two non- equivalent
BFs f1 and f2, we call h ∈ Frp with Hh(f1) 6= Hh(f2) a witness to the distinctness of f1 and f2.
Otherwise, h is called a liar, as it is common in the literature on probabilistic algorithms. As a
consequence of Theorem 1, we have at least (p − 1)r witnesses and at most pr − (p − 1)r liars.
Therefore, two BFs with identical hash codes appear to be equivalent with a failure probability

π ≤ pr − (p− 1)r

pr
= 1− (p− 1)r

pr
≤ r

p
, for p ≥ r.

To make π smaller than 1
2 , it is necessary to choose p ≥ 2r. This is the usual minimal requirement,

which guarantees that the total failure probability of a repeated test quickly converges towards
0. Another strategy is to choose p sufficiently large from the beginning, which guarantees a low
failure probability after a single test. These are the underlying ideas of the two algorithms of
the following subsection.

3.1 General Algorithms

The proposed definition of hash codes makes them dependent of the satisfying set Sf of a BF
f . As the size of the satisfying set may be exponential in the number of variables, this is
computationally not tractable. However, it has been shown that the same hash codes can be
computed more efficiently using appropriate OBDD, FBDD, or d-DNNF representations of f [1,
5]. In the following algorithms, we will thus consider representations of BFs as input parameters,
not the BFs themselves. Note that this is our final goal, namely to check the equivalence of two
different representations.

5

Consider the two algorithms ProbEquivIter and ProbEquiv shown below. Their input pa-
rameters are representations ϕ and ψ of two BFs fϕ and fψ, respectively, and the maximal
tolerable failure probability ε ∈ [0, 1]. Both algorithms implement the probabilistic equivalence
test, but they follow different strategies.

The iterative version ProbEquivIter uses the smallest possible prime number which guar-
antees π ≤ 1

2 . The test is then repeated until the total failure probability drops below ε. The
maximal number of necessary runs for this is t = −blog2(ε)c.

Algorithm ProbEquivIter(ϕ,ψ, ε);
begin

r ← |vars(ϕ) ∪ vars(ψ)|;
p← smallest prime number ≥ 2r;
t← −blog2(ε)c;
while t ≥ 0 do

h← randomly selected from {0, . . . , p− 1}r;
if Hh(fϕ) = Hh(fψ) then

t← t− 1;
else

return ”not equivalent”;
end

end
return ”probably equivalent”;

end

Algorithm 1: The iterative version of the probabilistic equivalence test.

The non-iterative version ProbEquiv uses another strategy. It takes the smallest prime number
p ≥ r

ε and then performs the equivalence test once. Since π ≤ r
p for p ≥ r, we get π ≤ ε for

p ≥ r
ε as required. In other words, the failure probability already drops below the tolerated rate

ε after a single run.

Algorithm ProbEquiv(ϕ,ψ, ε);
begin

r ← |vars(ϕ) ∪ vars(ψ)|;
p← smallest prime number ≥ r

ε ;
h← randomly selected from {0, . . . , p− 1}r;
if Hh(fϕ) = Hh(fψ) then

return ”probably equivalent”;
else

return ”not equivalent”;
end

end

Algorithm 2: The non-iterative version of the probabilistic equivalence test.

We postpone the discussion of the complexity of these algorithms until we have shown how to
perform the probabilistic equivalence test for cd-PDAGs.

6

3.2 Adaption to cd-PDAGs

To adjust the general algorithms from the previous subsection to cd-PDAGs, we have to give an
alternative definition of hash codes for elements of the language cd-pdag. The goal of course
is to make this new definition compatible with the original one. The key properties for this are
determinism and decomposability, the ones that are characteristic for the language cd-pdag. We
will prove that we get to the same results, no matter if we compute the hash code with respect
to a cd-PDAG ϕ or its BF fϕ. As before, we restrict our attention to the field Fp defined by a
prime number p.

Definition 2. Let V = {v1, . . . , vr} be a set of r propositional variables and h = (h1, . . . , hr) ∈
Frp a r-dimensional vector of integers in Fp. The hash code Hh(ϕ) of ϕ is recursively defined by:

• Hh(ϕ) :=
∏
iHh(βi), if ϕ is a M-node with children βi;

• Hh(ϕ) :=
∑
iHh(βi), if ϕ is a O-node with children βi;

• Hh(ϕ) := 1−Hh(β), if ϕ is a �-node with child β;

• If ϕ is a ©-node, then the hash code depends on its label:

Hh(ϕ) :=


1, if ϕ is labeled with >,
0, if ϕ is labeled with ⊥,
hi, if ϕ is labeled with vi ∈ V.

The following theorem associates both ways of computing hash codes. This allows us to
replace Hh(fϕ) = Hh(fψ) by Hh(ϕ) = Hh(ψ) in both versions of the algorithm.

Theorem 2. For all ϕ ∈ cd-PDAG, we have Hh(fϕ) = Hh(ϕ).

Proof. We will use the principle of mathematical induction to prove this theorem. For depth(ϕ) =
0, ϕ is a ©-node. If ϕ is labeled with vi ∈ V , we have Hh(ϕ) = hi = Hh(fϕ). If ϕ is labeled
with > (fϕ is valid) or with ⊥ (fϕ is inconsistent), the definition exploits the corresponding facts
about valid or inconsistent BFs, respectively.

For depth(ϕ) = j we have to consider three kinds of nodes. First, if ϕ is a �-node ϕ with child
α, we have fϕ = 1−fα and Hh(α) = Hh(fα), since depth(α) < j. So Hh(ϕ) = 1−Hh(α) exploits
the the fact Hh(fϕ) = Hh(1− fα) = 1−Hh(fα), from which we conclude Hh(fϕ) = Hh(ϕ).

Without loss of generality, we assume for the two other node types that the children of ϕ are
α1 and α2. Since depth(αi) < j, we also have Hh(αi) = Hh(fαi).

If ϕ is a O-node, since it is deterministic, we know that α1 and α2 have no common element
in the corresponding satisfying sets. This leads to Hh(ϕ) = Hh(α1) + Hh(α2) = Hh(fα1) +
Hh(fα2) = Hh(fϕ).

If ϕ is a M-node, since itis decomposable, we know that each variable in vars(ϕ) occurs
either in α1 or in α2. This implies Sϕ = Sα1 |V1 × Sα2 |V2 , where Vi = vars(αi). This leads
to Sfϕ = Sfα1

|V1 × Sfα2
|V2 . With Hh(fαi) = Hh(fαi |Vi), we get Hh(ϕ) = Hh(α1)·Hh(α2) =

Hh(fα1)·Hh(fα2) = Hh(fϕ).

The hash code computation of a cd-PDAG is illustrated in Fig. 2. With respect to V = {a, b, c},
ϕ represents the BF fϕ with the satisfying set Sfϕ = {(1, 1, 1), (1, 1, 0), (0, 1, 1)}. If we assume

7

that h = (sa, sb, sb) is the randomly selected vector of integers in the field Fp, we get

Hh(fϕ) = sasbsc + sasb(1− sb) + (1− sa)sbsc
= sb(sa + sc − sasc)
= Hh(ϕ)

for both the hash code of fϕ and the hash code of ϕ. The computation in the cd-PDAG is
illustrated in Fig. 2.

b

a

c

ϕ

sc

sa

sb

1 − sa

(1 − sa)sc
= sc − sasc

sa + sc − sasc

sb(sa + sc − sasc)

Figure 2: Computing the hash code of a cd-PDAG.

3.3 Complexity Analysis

To conclude this section, let’s say a few words about the complexities of these algorithms. Accord-
ing to the observations from [1], it is essential to first look at the complexity of single additions
and multiplications. Within the field Fp, the hash codes do not exceed log p bits. According
to [12], this restricts the complexity of addition to O(log p) and the classical2 multiplication to
O(log2 p).

Performing all the arithmetic operations modulo p is very important for the complexity. By
using the finite field only to define the hash codes of the variables, but not to perform the
arithmetic operations, we would unnecessarily blow up the complexity to O(r log p) for additions
and to O(r2 log2 p) for multiplications. This is the problem of the procedure described in [5],
which does not improve the theoretical failure probability π.

Let ϕ1, ϕ2 ∈ cd-PDAG be two arbitrary cd-PDAGs, and let S be the sum of their sizes,
S = |ϕ1| + |ϕ2|. Since the complexity depends on the number of additions and multiplications,
and since multiplication is more complex than addition, we assume the worst case in which all the
necessary arithmetic operations are multiplications. Furthermore, we neglect the computational
costs for finding appropriate prime numbers and randomly selecting a vector h.

In the case of the iterative version ProbEquivIter, we choose p to be the smallest prime
number ≥ 2r. This implies log p ≥ log 2r = log 2 + log r = 1 + log r, from which we get
O(log2 r) for the complexity of multiplication. With this, we get O(S· log2 r·(− log ε)) for the
time complexity of ProbEquivIter.

2Karatsuba’s and Schönhage & Strassen’s multiplication algorithms reduce the complexity to O(log1.59 p) and
O(log p(log log p)(log log log p)), respectively.

8

In the non-iterative version ProbEquiv, we choose p to be the smallest prime number ≥ r
ε .

This implies log p ≥ log r
ε = log r−log ε, and the complexity of multiplication isO((log r− log ε)2).

Therefore, we obtain O(S·(log r− log ε)2) for the time complexity of ProbEquiv.
The question arises which algorithm should be preferred. To analyze this, let’s move to the

perspective of x = log r and y = − log ε. Based on the above-mentioned complexity results, it
follows then that ProbEquivIter is preferred for x2(1 − y) + 2xy + y2 > 0 and ProbEquiv is
preferred for x2(1− y) + 2xy + y2 < 0. We have no preference for x2(1− y) + 2xy + y2 = 0, i.e.
it does not matter which algorithm we use.

Since the number of variables r is normally fix, we can not change x. So if we consider the
above inequality as a function g(y) = y2 − (x2 − 2x)y + x2, we get two solutions for g(y) = 0
and x ≥ 4, namely y1 = x

2

(√
x2 − 4x+ 4−

√
x2 − 4x

)
and y2 = x

2

(√
x2 − 4x+ 4 +

√
x2 − 4x

)
.

This is another interesting result: if y1 ≤ y ≤ y2, we prefer ProbEquiv, otherwise we prefer
ProbEquivIter.

4 Conclusions

The language cd-PDAG already supports a number of useful queries in polynomial time. The most
important ones are satisfiability, validity, clause entailment, term implication, model counting,
and probability computation [13]. While sentence entailment is known to be infeasible in the
language cd-PDAG, it is still unknown if there is a polynomial equivalence test or not.

The probabilistic equivalence tests proposed in this paper are an alternative to the missing
exact equivalence test. We have shown that for an adequate choice of parameters, the failure
probabilities of these tests converge quickly towards 0. As long as the existence of an exact test
is still an open question, we propose to use these probabilistic tests instead. This seems to be
an interesting alternative to the techniques used in hardware design, which are mostly based on
the language OBDD and its derivatives. The advantage of using the language cd-PDAG instead of
OBDD is its succinctness.

References

[1] M. Blum, A. K. Chandra, and M. N. Wegman. Equivalence of free boolean graphs can be
decided probabilistically in polynomial time. Information Processing Letters, 10(2):80–82,
1980.

[2] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transac-
tions on Computers, 35(8):677–691, 1986.

[3] P. Clote and E. Kranakis. Boolean Functions and Computation Models. Springer, 1998.

[4] A. Darwiche. A compiler for deterministic, decomposable negation normal form. In
AAAI’02, 18th National Conference on Artificial Intelligence, pages 627–634. AAAI Press,
2002.

[5] A. Darwiche and J. Huang. Testing equivalence probabilistically. Technical Report D–123,
Computer Science Department, UCLA, Los Angeles, USA, 2002.

[6] A. Darwiche and P. Marquis. A knowlege compilation map. Journal of Artificial Intelligence
Research, 17:229–264, 2002.

9

[7] E. Dubrova and H. Sack. Probabilistic verification of multiple-valued functions. In IS-
MVL’00, 30th IEEE International Symposium on Multiple-Valued Logic, pages 460–466,
Portland, USA, 2000. IEEE Computer Society.

[8] J. Jain, J. Bitner, D. S. Fussell, and J. A. Abraham. Probabilistic design verification.
In ICCAD’91, International Conference on Computer-Aided Design, pages 468–471, Santa
Clara, USA, 1991.

[9] S. Ponzio. A lower bound for integer multiplication with read-once branching programs.
In STOC’95, 27th Annual ACM Symposium on Theory of Computing, pages 130–139, Las
Vegas, USA, 1995. ACM Press.

[10] M. O. Rabin. Probabilistic algorithm for primality testing. Journal of Number Theory,
12:128–138, 1980.

[11] R. Solovay and V. Strassen. A fast monte-carlo test for primality. SIAM Journal on Com-
puting, 6(1):84–85, 1977.

[12] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press,
New York, USA, 2003.

[13] M. Wachter and R. Haenni. Propositional DAGs: a new graph-based language for represent-
ing Boolean functions. In KR’06, 10th International Conference on Principles of Knowledge
Representation and Reasoning (accepted), Lake District, U.K., 2006.

[14] I. Wegener. Branching Programs and Binary Decision Diagrams. Society for Industrial and
Applied Mathematics, 2000.

10

