
Exploring Parallelism for
Real-Time Smoke Visualisation

Philippe C.D. Robert, Daniel Schweri

IAM-05-003

August 2005

2

Abstract

In this report we present a new system for visualising smoke an similar
effects based on the Navier-Stokes equations. The system is optimised mainly
for high rendering performances, targeting interactive real-time applications
such as computer games or visual simulations. As such the system supports
both static and moving obstacles of arbitrary shape. We demonstrate the ef-
fect of using SIMD operations when optimising the fluid solver and we intro-
duce a parallel execution model for balancing the workload between multiple
processor threads and the graphics hardware (GPU). Finally, we present four
methods to visualise smoke and discuss their efficiency and the achieved visual
realism.

CR Categories and Subject Descriptors: I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism

Keywords: Fluid Flow Rendering, Navier-Stokes, GPGPU

3

4

Contents

1 Introduction 7

2 Background 7

3 Fluid Flow 8
3.1 SIMD Optimisations . 8
3.2 Obstacles . 10

3.2.1 Static Obstacles . 10
3.2.2 Moving Obstacles . 11

4 Parallel Rendering 11

5 Visualisation 13
5.1 Points . 13
5.2 Volume Rendering . 14
5.3 Section Planes . 14
5.4 Impostors . 14

6 Results 15
6.1 Solver Performances . 15
6.2 Visualisation . 16

7 Conclusions and Outlook 19

A Vertex Shader based Interpolation 23

5

6

1 Introduction

In recent years smoke visualisation has become a topic of interest in many fields
of computer graphics – e.g., visual simulations or special effects in movies and
computer games. Consequently many efforts have been made in the field of visual
fluid flow computation. Most of these recent efforts concentrate either on aspects
of the physical simulation – e.g. the fluid solver – or how to implement a specific
algorithm on programmable graphics hardware (GPU).

Our intention is to present a fluid flow rendering system based on this back-
ground, esp. J. Stam’s contributions [20, 21, 22], which is suitable for integration
into interactive, real-time applications. This implies that we cannot use the GPU
or CPU exclusively to run our simulation, instead we have to balance the workload
among all available resources. Thus, we focus on scalability and parallel rendering
techniques. The contribution of our work is fourfold. First, we propose a parallel
system for visualising smoke and other fluid flow based effects aimed at interactive
applications. Our system is capable of balancing the computational tasks between
the GPU and multiple threads running on the host processor(s). This facilitates the
integration of our fluid flow rendering system into computational intensive applica-
tions. Second, we outline potential drawbacks and advantages of implementing a
fluid solver using SIMD instructions. For this purpose we use a fluid solver based on
the semi-Lagrangian method, which was initially introduced by Courant et al. [5].
Third, we describe an efficient approach to handle both static and moving obstacles
in our smoke simulation. Finally we analyse various methods used to visualise the
smoke, all of them geared towards high rendering performance.

This report is organised as follows: Section 2 covers important previous work
in this field. In Section 3 we introduce our SIMD optimised fluid solver, then we
describe the parallel execution mode mode in Section 4. In Section 5 we present
multiple methods for visualising smoke, followed by the obtained results in Section
6. Finally some conclusions are presented in Section 7.

2 Background

In 1997 Foster and Metaxas [10] demonstrated the advantages of using the three-
dimensional Navier-Stokes equations for generating motions of fluids. Jos Stam [20]
then proposed an approach based on the semi-Lagrangian method for the simulation
of unconditionally stable fluids in computer graphics. This method has been used by
many others to simulate fluid flows of various kinds [8, 9, 6, 18]. Yoshida and Nishita
[24] introduced a method of displaying swirling smoke, including the consideration of
its passage round obstacles, using metaballs for representing the three-dimensional
density distribution of smoke.

With the advent of programmable GPUs a few years ago, it became feasible to
perform physically based simulations on GPUs using stream-based programming
models. Bolz et al. [4] showed that numerical computations can be performed effi-
ciently on the GPU by implementing a sparse matrix conjugate gradient solver and
a regular-grid multigrid solver on a GeForceFX. Harris et al. [13] [12] employed
graphics hardware to perform physically based simulation of fluids, clouds, and
chemical reaction diffusion on GPUs. Batty et al. [3] presented a GPU-based pre-
conditioned conjugate gradient solver used in a production quality fluid simulator,
while Goodnight et al. [11] implemented a multigrid method for solving boundary
value problems, such as systems of partial differential equations that arise in phys-
ical simulation problems like e.g. fluid flow. A framework for the implementation
of linear algebra operators on GPU has been proposed by Krüger and Westermann
[15]. They demonstrated their approach by implementing direct solvers for sparse

7

matrices with application to multi-dimensional finite difference equations, i.e. the
incompressible Navier-Stokes equations. Li et al. [23] described the acceleration of
the computation of Lattice-Boltzmann methods on graphics hardware by grouping
particle packets into 2D textures and mapping the Boltzmann equations completely
to the rasterization and frame buffer operations. The Lattice-Boltzmann model was
then used to simulate smoke. Liu et al. [16] presented a way to process complex
boundary conditions when simulating fluid flow using the Navier-Stokes equations
on the GPU.

Other related work can be found on the website dedicated to General-Purpose
Computation using Graphics Hardware (GPGPU)1.

3 Fluid Flow

In physics fluid flow is commonly modelled using vector fields. The Navier-Stokes
equations are the fundamental partial differentials equations that describe the flow
of fluids.

∂~u

∂t
= −(~u · ∇)~u + ν∇2~u + f (1)

The Navier-Stokes equations (1) describe the flow of incompressible fluids, where
~u is the velocity and ν the viscosity of the fluid.

Unfortunately most numerical solutions to solve these equations are very time
consuming and thus not applicable for real-time usage. Stam addressed this problem
by introducing a number of algorithms to solve these equations at high speed with
less emphasis on physical accuracy [20]. He proposed a fluid solver based on the
equation shown in (2) which is stable, never blows-up and can thus be used to apply
large time-steps to the simulation. This is a crucial prerequisite for creating visual
effects in real-time.

∂ρ

∂t
= −(~u · ∇)ρ + κ∇2ρ + S (2)

In equation (2) ρ represents the density of the fluid. Note that this is now a
linear equation.

Consequently our implementation is based on Stam’s work on real-time fluid
dynamics [21, 22]. For the details concerning Stam’s fluid solver we refer to the
original articles. In the following subsections we present our modifications to Stam’s
original fluid solver, such as SIMD optimisations and the integration of obstacles.

3.1 SIMD Optimisations

To implement the fluid solver as proposed by Stam we rely on a spatial discreti-
sation which we create by dividing the computation domain into identical voxels.
Of course, the resolution of this discretisation affects not only the visual quality
but also the computational complexity of the simulation. For real-time usage it is
therefore crucial that the calculation is performed with maximum efficiency, hence,
we optimise our solver using SIMD operations. Unlike some others we have decided
not to implement the fluid solver on the programmable GPU but on the host CPU
by using Intel’s Streaming SIMD Extensions (SSE). We made this choice for the
following reasons: First, a GPU based implementation would have forced us to im-
plement the entire system on the GPU, hence, a parallel system as described in this
report would have become almost impossible. Second, a CPU based implementa-
tion gives us the flexibility to use the data type double which is not possible on

1http://www.gpgpu.org/

8

Update Velocity Field

Start

Update Density

Add Forces

Diffusion

Mass Protection

Advection

Mass Protection

Add Sources

Diffusion

Advection Swap

SSE

SSE

SSE

SSE

SSE

SSE

Figure 1: The execution model of the fluid solver

current generation GPUs, and third, the integration of moving obstacles becomes
much easier.

The fluid solver is based on an iteration method, the solver starts with an ini-
tial set of values and thereafter updates the velocity for every time step by solving
Equation 2. Changes to the velocity field are therefore caused by external forces,
viscous diffusion and self-advection. Additional forces and density sources can be
added to the system at any time during the simulation. We store the fluid’s den-
sity and velocity values as well as additional forces in an aligned 3D grid which
is appropriate to the SIMD programming model. Figure 1 depicts the execution
model of our fluid solver and denotes those steps which are accelerated using SSE
instructions. The operations which are most influential are:

• Diffusion controls the exchange of density and velocity values from a grid
cell to its 6 neighbours. This function is implemented using the Gauss-Seidel
relaxation and can only partially be optimised using SIMD operations: we
can use SSE to compute the sum of the three neighbour voxels from the last
iteration step. The sum of the other three elements has to be computed
normally.

• Mass protection is based on the Hodge decomposition of vector fields, which
says that each velocity field is the sum of a mass protecting field and a gradient
field. This function is fully accelerated using SSE operations.

• Advection controls the influence of the velocity field on the density distribution
and the velocity field itself. This function cannot be mapped easily to the
SIMD programming model.

Moreover, the addition of external sources and forces to the system can be
implemented using SSE operations as well. However this has only little impact on
the achieved performance improvements.

9

Current Voxel

Previous, occupied Voxel

Voxelised Obstacle

Current Voxel

Voxel in front of the obstacle

Voxelised Obstacle

Figure 2: Tracing backward through a velocity field and updating the density value
using the correct voxel

3.2 Obstacles

Our system provides support for static and moving obstacles of arbitrary shape by
using efficient boundary conditions, extending the ideas from Stam’s work. This
allows for realistic interaction with the fluid flow in real-time. During simulation
the system thus adheres to the following two constraints at any time:

1. Smoke must flow freely and without interference tangential to the obstacle

2. Smoke must never flow into an obstacle

The second constraint simply implies that density δi = 0 where V oxeli is occu-
pied by an obstacle. In the following we outline how obstacles are implemented in
our system.

3.2.1 Static Obstacles

At the beginnig of every simulation the system marks the voxels of the grid which are
taken by a static obstacle. This preprocessing step is implemented using common
object-voxel intersection algorithms. The density value δ of these voxels is then
set to be always 0. Obviously this affects the computation of the diffusion and
advection. When computing the diffusion of the smoke densities we have to skip the
occupied voxels. Hence, when calculating the density mean values of the neighbours
of a voxel, those with δ = 0 have to be left out in order to get correct results. Note
that this does not apply to the computation of the diffusion of the velocity.

Furthermore, special care has to be taken when performing the advection of the
density values. Stam explained how to solve this problem by tracing virtual particles
backward in time through the velocity field [22]. Unfortunately, by enabling support
for obstacles this algorithm may point to occupied voxels and thus lead to incorrect
results - e.g., resulting in shadow images of the rendered obstacles. To avoid this
problem we introduce a slightly modified version of this algorithm.

First, we detect the occupied voxels by rasterising a line between the current
and the previous voxel in our grid. Then we test every voxel which is hit by that
line against obstacle occupation. If we detect an obstacle, we use the density value
of the voxel in front of the occupied voxel along the rasterised line to perform the
advection operation. This procedure is depicted in Figure 2. Line rasterisation is
implemented using a three-dimensional version of the Bresenham algorithm. More-
over, this procedure makes sure that no obstacle is accidentally missed when tracing
backward through a velocity field using large time steps.

10

Affected voxels Moving object

Newly occupied voxels

Updated voxels Object after movement

A BVoxels with density = 0

Figure 3: Updating voxel states when moving an obstacle

3.2.2 Moving Obstacles

Naturally, object motion affects the fluid particles located nearby the object by
moving them around. In addition, when an object stops moving the fluid particles
continue their motion, which decreases in time due to inertia and friction. We
propose an algorithm to model this effect in two steps. The approach is depicted
in Figure 3.

First, we compute the effect on the smoke particles around the moving object.
This is achieved by adding the density values of the newly occupied voxels to the
voxels affected by the motion.

Second, we model the effect of object motion on the velocity field. In case of an
object translation we calculate the velocity vector of the moving object, and based
on that determine the surrounding voxels which will be affected by this motion.
We do this using the moving direction and the normal vectors of all object faces
which are pointing in the moving direction. The bigger the angle between moving
direction and normal vector, the smaller the impact on the nearby voxels and vice
versa. In the case of an object rotation, we have to do the very same procedure using
velocity vectors for every voxel occupied by the obstacle. Once we have determined
the affected voxels we add the velocity of the moving object to these voxels.

4 Parallel Rendering

In order to balance the work load between the host processor(s) we use a multi-
threaded execution model based on POSIX threads. With the advent of multi-
core CPUs and simultaneous CPU multi-threading technologies, e.g., Intel’s Hyper-
Threading [17], this approach promises noticeable performance improvements and
better scalability.

Our parallel execution model uses the main thread to perform all OpenGL ren-
dering and event handling tasks, a second worker thread is used to perform the fluid
solver. A third thread may be spawned to perform the aforementioned grid updates
when dealing with obstacles in motion. Alternatively this task can also be executed
by the main thread. Note that parallel rendering results in 1 or 2 frames of latency,
respectively. In most cases this is tolerable when the achieved frame rate is high
enough. In addition we can utilise a GPU shader program to perform further tasks
depending on the visualisation mode – e.g., the computation of interpolation values
when rendering smoke using particles (see Section 5). Depending on the applica-
tion and the available GPU model we can use either a vertex shader or a fragment
shader for this purpose. Figure 4 shows this particular scenario.

11

 Frame NFrame N-2 Frame N-1

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 3

Draw Frame N-1
&

Process Events

Draw Frame N
&

Process Events

Draw Frame N-2
&

Process Events

Fluid Solver
Frame N-1

Fluid Solver
Frame N

Fluid Solver
Frame N+1

Update Grid
Frame N

Update Grid
Frame N+1

Update Grid
Frame N+2

Swap Swap

Interpolation
Frame N

Interpolation
Frame N-1

Interpolation
Frame N-2

Sh
ad

er

Swap

CPU

GPU

Figure 4: The parallel execution model using 3 CPU threads and 1 GPU shader
program. The blue shaded rectangles depict the control flow when rendering frame
N.

Please note that our parallel execution model does not require data readback
operations from the GPU to the host system. It is therefore perfectly applicable on
AGP bus based systems without severe performance degradations.

12

5 Visualisation

We have implemented and analysed several hardware accelerated methods to visu-
alise fluid flows such as smoke and fire, for example. All of these approaches are
tailored for high rendering performance and a high level of visual realism. Although
it is evident that the visual quality depends on the resolution of the voxel grid; e.g.,
vortices are barely visible at low resolutions typically used in our testing scenarios.

5.1 Points

Our first visualisation mode is based on OpenGL point rendering. Instead of ren-
dering the n×m×p grid voxels as cubes we subdivide every grid voxel in q subvoxels
and then draw one point at the centre of each such subvoxel. Note that this results
in an equal distribution of points. Other, more sophisticated distributions might
lead to even better visual results.

The colour of each point is determined by interpolating the density values of the 6
surrounding grid subvoxels using a weighted sum operation. This interpolation step
is required to avoid disturbing aliasing effects and can be performed either on the
CPU or on the GPU. We have implemented the GPU based colour interpolator both
as fragment and as vertex shader program. While fragment shaders are usually more
powerful they can slow down the rendering if many fragments have to be processed,
e.g., when zooming close to the smoke. This does not happen when using a vertex
shader based implementation, because the number of points remains constant.

float4 main(in float4 d1 : TEXCOORD0, // density 1

in float3 d2 : TEXCOORD1, // density 2

in float4 f1 : TEXCOORD2,

in float3 f2 : TEXCOORD3) : COLOR

{

const float grey = F * (dot(f1,d1) + dot(f2,d2));

return float4(grey, grey, grey, alpha);

}

Figure 5: Colour interpolation implemented as fragment shader using Cg

The fragment shader implementation is straightforward, it calculates the weighted
sum of the passed density values and returns the computed colour. Performing a
lot of texture lookup operations slows down the shader execution performance, as
demonstrated by Fatahalian et al. [7], we therefore pass all required input param-
eters as float4 values using multi-texture coordinates. Listing 5 shows the Cg
version of the colour interpolator implemented as a fragment shader program. Note
that the vertex shader implementation is very similar to the fragment shader ver-
sion, the only difference being the additional computation of the Model-View-Matrix
transformation. The complete listing is shown in Appendix A.

Finally, the points are all rendered in no particular order. To avoid visual
artefacts we use additive blending. However, since additive blending requires that
all points are drawn no matter whether they are occluded by other points, depth
buffering cannot be applied as usual. Hence, special care has to be taken when
dealing with obstacles. We propose two methods to handle obstacles correctly:

1. Asynchronous OpenGL occlusion queries are used to detect the visibility of
our grid subvoxels.

2. While rendering the points the depth buffer is disabled for writing. Thus all
points in front of an obstacle are rendered as intended.

13

Please note that we also investigated variations of this visualisation method, i.e.
using textured and non-textured disks/splats or point sprites using the OpenGL
GL POINT SPRITE ARB extension. Unfortunately these approaches did not result in
convincing visual results because of coarse aliasing effects caused by overlapping
rendering primitives.

5.2 Volume Rendering

Our second visualisation mode is based on traditional volume rendering techniques
using 3D-texture mapping and does not depend on programmable shaders. This
method therefore also runs with decent performance on elder graphics hardware.

The implementation is fairly simple, we store the calculated density values in
a 3D texture and render n slices back-to-front through the grid with texturing
enabled. The intersection points of the slices with the grid hull can further be used
as 3D texture coordinates.

One limitation of this method is that the size of the 3D texture image must be
2n + 2 in each dimension, the resolution of the grid has to be defined accordingly.
Moreover, for optimal visual results we apply bilinear filtering while rendering.

5.3 Section Planes

Our third method is similar to volume rendering as described above, but imple-
mented as a fragment shader program. The algorithm goes as follows:

1. We store the density values for one frame in a 32bit floating-point 2D texture.

2. Then we intersect n planes orthogonal to the viewing direction with the grid
hull. The resulting polygons are rendered with texturing and fragment shading
enabled.

3. Finally, the fragment shader program assigns every fragment of these polygons
the appropriate density value. This is done using the texture coordinates of the
polygon which are automatically interpolated by the GPU for every fragment.

The visual quality of this approach directly depends on the number of rendered
section planes. Unfortunately a high plane count slows down the rendering because
of the vast number of fragments which have to be processed. Also note that we
do not apply any interpolation or filtering because this would result in many more
texture look-up operations and thus decrease the performance even more.

5.4 Impostors

To reduce the total number of fragment shader passes and the geometry data which
has to be sent to the GPU we propose a method which is based on impostors [19, 14].
An impostor replaces the rendered grid with a billboard, textured with an image of
the smoke from a certain point of view.

As opposed to the method described in 5.3 we only render one oriented plane
which is close to the viewer, as shown in Figure 6. For every fragment of this plane
the fragment shader program determines the grid voxels which are intersected by the
ray going from the viewer through the respective fragment. Based on the resulting
density values it calculates the final colour.

Please note that the implementation of this shader program results in a high
instruction count caused by the unrolling of the loop to sum all density values.
This prohibits the shader to run on elder graphics hardware with low shader length
limits. This gets even worse when adding density interpolation to the computation.

14

Figure 6: The projection of the grid densities onto a plane

6 Results

In this section, we analyse the efficiency of our parallel, SEE optimised smoke
visualisation system. Furthermore, we compare the visual quality and efficiency of
the visualisation methods described in Section 5 using two different test scenes.

The results presented in this report are collected on a PC workstation running
Windows TM XP with the following configuration:

• AMD SempronTM 1.83 GHz

• 1.25 GB main memory

• ATI RadeonTM 9600 XT GPU (AGP), 500 MHz, 256 MByte VRAM

Additionally, parallel rendering is tested and benchmarked on a dual Xeon
2.8GHz PC with a Nvidia GeforceFX GPU running Fedora Core 2 Linux.

6.1 Solver Performances

The solver performance has the biggest impact on the overall rendering performance.
Therefore, it is crucial to optimise the fluid flow computation as much as possible,
especially when performing three dimensional simulations.

Ideally, it is possible to speed-up the computations by a factor 4 using the SIMD
programming model. In reality this is almost never the case – e.g., because it is
not possible to use SSE instructions exclusively or due to a less optimal memory
layout. We were able to accelerate our fluid solver by roughly 40 percentage using
SSE intrinsics compared to the traditional implementation. This is not as much as
we have hoped to achieve, but it is nevertheless a good speed-up factor. Our results
are depicted in Figure 7.

We believe that it is possible to increase this factor even more by using a mem-
ory layout which is more optimised for SIMD usage – e.g., by aligning all solver
related data to 16 byte2 and by using SSE assembler instructions to implement the
performance critical parts.

2Currently we still use some read operations on 4 byte-aligned memory which forces us to use
the mm loadu ps intrinsic.

15

no SSE SSE

0ms

37'500ms

75'000ms

112'500ms

150'000ms

16x16x16 32x16x8 24x24x24 32x32x32

Figure 7: Time to compute 1000 frames depending on various grid resolutions

6.2 Visualisation

In general, we found that the volume rendering and point rendering modes lead
to the best visual results while providing the highest frame rates – an example
is shown in Figure 8. It even seems that volume rendering is more efficient than
point rendering, most likely due to the high number of fragments which have to be
processed when interpolating the density values on the GPU.

Figure 8: Smoke flowing around obstacles, rendered using a 3D texture

Our 3rd visualisation mode (5.3) suffers from a general lack of filtering. Unfor-
tunately, this deficiency can only be compensated using a high number of section
planes, which slows down the rendering performance noticeably. Finally, impostors
provide good visual quality when applying filtering, but rendering performances
are not competitive due to the loops and texture access operations of the fragment
shader program.

Visualising Obstacles

As explained in Section 5.1 we have implemented two methods to visualise obsta-
cles properly. It turns out that the method based on occlusion queries is much
slower than the method based on depth testing operations. This outcome can be

16

Occlusion Queries GL_DEPTH_MASK

0ms

25'000ms

50'000ms

75'000ms

100'000ms

Interpolierte Subvoxel (CPU)

10'354ms

95'602ms

Figure 9: Time to render 1000 frames using occlusion queries and depth testing
operations

explained by the fact that occlusion query results require an extra roundtrip to the
graphics card - in our case via the AGP graphics bus - which is a major bottleneck,
whereas otherwise only depth buffer write operations have to be disabled using
GL DEPTH MASK. Figure 9 shows our results.

Parallel Rendering

As explained in Section 4, our POSIX thread based rendering mode allows us to
perform the fluid flow computations and the OpenGL rendering in parallel. Using
a dual processor system or a dual core CPU this can lead to a performance increase
of factor 2, as shown in Table 1.

16x16x16 32x32x32 48x48x48
3D texture, 2 threads 104 72 71
3D texture, 1 thread 63 14 5
GPU based interpolation, 2 threads 42 13 13
GPU based interpolation, 1 thread 47 7 4
CPU based interpolation, 2 threads 27 14 14
CPU based interpolation, 1 thread 25 9 4

Table 1: Frame rates (fps) for various grid sizes when using multiple POSIX threads
on a dual processor PC

We also take advantage of the GPU as maths coprocessor by off-loading certain
tasks to the vertex or fragment shader units. In the examples shown in Table 1 the
GPU based interpolation has been benchmarked using a vertex shader program. We
noticed that on lower end GPUs the vertex shader based implementation is usually
faster than the fragment shader based implementation3, most probably due to a
reduced number of pixel pipelines. Performance numbers based on various point
sizes showing this effect are depicted in the following Figure 10.

3Benchmarked using the same camera settings.

17

Fragment shader based Interpolation Vertex shader based Interpolation

0

37'500

75'000

112'500

150'000

Pointsize 15 Pointsize 30 Pointsize 45 Pointsize 60

Figure 10: Performance results for fragment and vertex shader based interpolation

Fluid Flow Effects

As noted before, our fluid flow renderer can easily be configured to render not only
smoke but also fire, plasma and other effects which can be simulated using fluid
flow computations. One such example is shown in Figure 11.

Figure 11: Rendering lava

18

7 Conclusions and Outlook

In this report we have presented a parallel system for visualising smoke and other
effects based on fluid flow computations. We demonstrated the advantage of using
a SIMD optimised fluid solver and presented several methods to visualise the simu-
lated smoke. We showed that a well balanced system can lead to high frame rates,
which is a prerequisite for games and interactive visual simulations. We have also
shown that shader programs – even simple ones – have to be written carefully in
order to achieve high frame rates; e.g., loops still impose a problem when writing
efficient shader programs.

This research effort can be extended in many directions; e.g., we currently use
points that are positioned according to an equal distribution. More sophisticated
distributions could lead to better visual results. Also, to optimise the achieved visual
realism we are investigating methods to apply self shadowing and light scattering
effects.

Just recently, AGEIA Technologies, Inc. announced PhysX, the first commer-
cially available Physics Processing Unit (PPU) [2] . It would be interesting to
explore its usage for implementing hardware-accelerated fluid solvers.

19

20

References

[1] General-Purpose Computation using Graphics Hardware.
http://www.gpgpu.org

[2] AGEIA. Physics, gameplay and the physics processing unit, March 2005.

[3] C. Batty, M. Wiebe, , and B. Houston. High Performance Production-Quality Fluid Simu-
lation via NVIDIA’s QuadroFX. Technical report, Frantic Films, 2003.

[4] J. Bolz, I. Farmer, E. Grinspun, and P. Schröder. Sparse Matrix Solvers on the GPU:
Conjugate Gradients and Multigrid. ACM Trans. Graph., 22(3):917–924, 2003.

[5] R. Courant, E. Isaacson, and M. Rees. On the solution of nonlinear hyperbolic differential
equations by finite differences. Comm. Pure. Appl. Math., 5:243–255, 1952.

[6] D. Enright, S. Marschner, and R. Fedkiw. Animation and Rendering of Complex Water
Surfaces. In SIGGRAPH ’02: Proceedings of the 29th annual conference on Computer
graphics and interactive techniques, pages 736–744, 2002.

[7] K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding the Efficiency of GPU Algo-
rithms for Matrix-Matrix Multiplication. In Proceedings of Graphics Hardware 2004, 2004.

[8] R. Fedkiw, J. Stam, and H. W. Jensen. Visual Simulation of Smoke. In SIGGRAPH ’01: Pro-
ceedings of the 28th annual conference on Computer Graphics and Interactive Techniques,
pages 15–22, 2001.

[9] N. Foster and R. Fedkiw. Practical Animation of Liquids. In SIGGRAPH ’01: Proceedings of
the 28th annual conference on Computer graphics and interactive techniques, pages 23–30,
2001.

[10] N. Foster and D. Metaxas. Modeling the Motion of a Hot, Turbulent Gas. In SIGGRAPH ’97:
Proceedings of the 24th annual conference on Computer graphics and interactive techniques,
pages 181–188, 1997.

[11] N. Goodnight, C. Woolley, G. Lewin, D. Luebke, and G. Humphreys. A Multigrid Solver for
Boundary Value Problems using Programmable Graphics Hardware. In HWWS ’03: Pro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware,
pages 102–111, 2003.

[12] M. J. Harris, W. V. Baxter, T. Scheuermann, and A. Lastra. Simulation of Cloud Dynam-
ics on Graphics Hardware. In HWWS ’03: Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS Conference on Graphics Hardware, pages 92–101, 2003.

[13] M. J. Harris, G. Coombe, T. Scheuermann, and A. Lastra. Physically-Based Visual Simula-
tion on Graphics Hardware. In HWWS ’02: Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS Conference on Graphics Hardware, pages 109–118, 2002.

[14] S. Jeschke. Accelerating the Rendering Process Using Impostors. PhD thesis, Vienna Uni-
versity of Technology, March 2005.

[15] J. Krüger and R. Westermann. Linear Algebra Operators for GPU Implementation of Nu-
merical Algorithms. ACM Trans. Graph., 22(3):908–916, 2003.

[16] Y. Liu, X. Liu, and E. Wu. Real-Time 3D Fluid Simulation on GPU with Complex Obstacles.
Proc. PG’04, pages 247–256, October 2004.

[17] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller, and M. Upton.
Hyper-Threading Technology Architecture and Microarchitecture. Technical Report 3, Intel,
2002.
http://www.intel.com/technology/hyperthread/

[18] N. Rasmussen, D. Q. Nguyen, W. Geiger, and R. Fedkiw. Smoke Simulation for Large Scale
Phenomena. ACM Trans. Graph., 22(3):703–707, 2003.

[19] F. Sillion, G. Drettakis, and B. Bodelet. Efficient Impostor Manipulation for Real-Time
Visualization of Urban Scenery. Computer Graphics Forum, 16(3):C207–C218, 1997.

[20] J. Stam. Stable Fluids. In SIGGRAPH ’99: Proceedings of the 26th annual conference on
Computer Graphics and Interactive Techniques, pages 121–128, 1999.

21

[21] J. Stam. Interacting with Smoke and Fire in Real Time. Commun. ACM, 43(7):76–83, 2000.

[22] J. Stam. Real-Time Fluid Dynamics for Games. Proceedings of the Game Developer Con-
ference, 2003.

[23] X. Wei, W. Li, and A. Kaufman. Implementing Lattice Boltzmann Computation on Graphics
Hardware. The Visual Computer, 2003.

[24] S. Yoshida and T. Nishita. Modelling of Smoke Flow Taking Obstacles into Account. Pacific
Graphics, pages 135–144, 2000.

22

A Vertex Shader based Interpolation

struct a2v {

float4 densI : TEXCOORD0;

float3 densII : TEXCOORD1;

float4 f1 : TEXCOORD3;

float3 f2 : TEXCOORD2;

float4 Position : POSITION; //in object space

};

struct v2f {

float4 Position : POSITION; //in projection space

float4 Color : COLOR0;

};

v2f main(in a2v IN, uniform float4x4 ModelViewMatrix)

{

v2f OUT;

OUT.Position = mul(ModelViewMatrix, IN.Position);

const float grey = 1.6* (dot(IN.f1,IN.densI) +

dot(IN.f2,IN.densII));

OUT.Color = float4(grey, grey, grey, 0.6);

return OUT;

}

Listing 1: Vertex shader for interpolated subvoxels

23

