
Canonical Databases and Certain Answers under
Key Constraints

Kilian Stoffel and Thomas Studer

IAM-04-009

November 2004

Canonical Databases and Certain Answers
under Key Constraints

Kilian Stoffel Thomas Studer

Abstract

It is an important question to ask what can be deduced from a
given view instance and knowledge about the relational schema with
its constraints. We present a procedure which computes a minimal
database that yields the given view instance and satisfies the con-
straints on the relational schema. It is minimal in the sense that it
contains exactly the certain answers to queries asking for basic rela-
tions. In this paper, we consider only conjunctive view definitions and
unique key constraints.

CR Categories: H.2.7 [Database Administration]: Security, Integrity, Pro-
tection; I.2.4 [Knowledge Representation Formalisms and Methods] Relation
Systems
General Terms: Security
Additional Keywords: Data Privacy, Data Dependecies, Logical Inference

1 Introduction

This paper deals with the problem of constructing canonical database in-
stances and computing certain answers in the presence of unique key con-
straints. The research presented here originates from the question of what
can be deduced from a given set of answers to database queries assuming that
one has knowledge about the database schema and the constraints defined
on it.
Key constraints or functional dependencies are a fundamental concept in the
theory and applications of relational databases [2, 13]. Such constraints do
not only guarantee the consistency of the data stored in a database. They
also provide (meta-)information about the relational schema and about the
connections between different attributes occuring in the table definitions. On
one hand this information is of an explanatory nature for the user. On the

1

other hand it can be employed by the database to perform computations and
optimizations of queries, see for example [3] or for a more recent paper [9].
We are interested in how key constraints can be used to obtain knowledge
about entries in a database which may not be directly accessed. Our aim is
to prove that under given circumstances it is not possible to get such knowl-
edge. This is important if there are restricitions on who may know what.
Consider for example a database system storing patient data for a hospital.
An accounting officer will have access to a view presenting him information
about the costs of each patient’s treatments. However, if this officer is not
fully trusted, then one does not want him to know what treatment a patient
received. He should only have access to the costs. Therefore we like to prove
that he cannot infer information about the treatment from the data presented
to him in the view instance and from knowledge about the relational schema
and its constraints. Formally, if Q is a query asking for the treatment, then
we want to prove that given the view instance, there is no certain answer to
Q.
In recent years, computing certain answers has become an important tool
in the study of relational databases. In the area of data integration and
data warehousing for example, one is interested in answering queries using
materialized views [1, 11]. A problem that formally can be treated by the
notion of certain answer. Given a view instance I, a tuple t and a query Q,
one likes to know whether t is in the answer to Q for all database instances
yielding the view instance I. That is whether t is a certain answer to Q given
I.
The addition of constraints to a relational database schema has some impact
on the computation of certain answers [5, 6]. We investigate the following
example. Let our schema consist of a table A with two attributes and a table
G with one attribute. We define two views by the following queries

Q1(x)← A(x, y) ∧G(y) and Q2(x)← A(x, x),

respectively. Assume that the view instance consists of Q1(a), Q2(a). This
does not imply anything about the extension of G. The fact Q1(a) might
stem from entries A(a, b) and G(b) and we do not know what b is. Hence,
there is no way to say something about G except that it is non-empty. This
situation completely changes if we add a unique key constraint to A. Assume
that the first attribute of A is a unique key for this table. Then Q2(a) implies
that ∀y.(A(a, y) → a = y). Therefore by Q1(a) we get that G(a) must hold
in any database which satisfies the key constraint and which yields the view
instance.
In this paper we will deal with key constraints by the following formal con-

2

struction. The semantics of Q1 is given by

QI
1 := {x | ∃y.((x, y) ∈ AI ∧ y ∈ GI)}. (1)

We see that the variable y is existentially quantified which hides the value
assigned to it. In the presence of key constraints we can introduce a so-called
Skolem function to get rid of this quantifier. In the expression (x, y) ∈ AI
the value of y depends on x since x is in the position of a key attribute of A.
Hence we can introduce a function fA such that fA(x) = y for (x, y) ∈ AI .
(1) then becomes

QI
1 := {x | (x, fA(x)) ∈ AI ∧ fA(x) ∈ GI}. (2)

Therefore from Q1(a) we obtain

fA(a) ∈ GI . (3)

The view defined by Q2 tells us, how the function fA is defined. We have

QI
2 := {x | (x, fA(x)) ∈ AI ∧ x = fA(x)}. (4)

Hence Q2(a) implies a = fA(a). Together with (3) this yields a ∈ GI .
One of the main technical problems in our research is that we have to deal
with equalities. As noticed above, (4) implies a = fA(a). This means that
we have to identify different terms with each other. Formally we tackle
this problem by introducing an equivalence relation on the constants in the
definition of a database instance.
The work we present here is related to the inverse rules algorithm[12, 7, 8]
which generates query answering plans for information gathering agents. The
key idea underlying that algorithm is to construct a set of rules that invert
the view definitions. That is rules which show how to compute tuples for
the database definitions from tuples of the views. We do a similar thing by
computing the canonical database from a given view instance. Duschka and
Levy [8] describe an inverse rules algorithm in the presence of key constraints.
They also have to introduce an extra equivalence relation to identify different
terms. This relation is defined by additional chase rules. However the inverse
rules algorithm yields a maximally contained rewriting of a query that uses
only relations that are actually stored in the information sources. We look for
a method to define canonical database instances in order to compute certain
answers.
Cal̀ı et al. [5] present a procedure to compute certain answers in the context
of data integration under integrity constraints. However, in that context the
problem to compute certain answers is to deal with foreign keys; whereas

3

we are interested in determining the consequences of having unique key con-
straints.
Finally, we have to mention that the main result of our paper follows also
from recent research about data exchange. Fagin et al. [10] investigate a
general setting for data exchange. They show that a canonical database can
be computed in polynomial time and that it can be used to obtain the certain
answers of conjunctive queries. However, we were not aware of that paper
when we were developing our method.
Our paper is organized as follows. In the next section we introduce the formal
framework of relational databases with unique key constraints. In Section 3
we show how to reformulate queries so that Skolem functions will take care of
the constraints. Then we split the view instance into its atomic parts. Using
these atomic facts we construct a canonical database instance in Section 4.
This instance satisfies all the key constraints and yields the view instance.
Finally, we show that this canonical database contains exactly the certain
answers to queries asking about basic predicates. Section 5 then concludes
the paper.

2 Framework

In this section we introduce the syntax and semantics of the relational data-
base model with key constraints. We assume that the reader is familiar with
the basic notions of relational databases [13].

A relational schema is given by a set of relation symbols and a set of key
constraints, that are assertions on the relations symbols expressing conditions
which must be satisfied by database instances. Formally, a relational schema
S is a triple (R,K,Γ) where:

• R is an alphabet of relation symbols A,B,C, Each of them has
an associated arity indicating the number of its attributes. To refer
to a certain attribute we simply use the number corresponding to its
position. Hence, the attributes of an n-ary relations are represented by
the integers 1, . . . , n.

• K is a set of key constraint. A key constraint is an assertion of the form
key(R) = i1, . . . , ik where R is a relation symbol of R and i1, . . . , ik is
a sequence of attributes of R. We assume that there is at most one key
dependency specified for each relation in R.

• Γ is a set of constants a, b, c,

4

A relational query over a schema S is a formula to retrieve a set of tuples
of constants from a database. We are only interested in conjunctive queries
which are defined in the following way. An atom is an expression of the form
R(x1, . . . , xn) where R is an n-ary relation symbol of R and x1, . . . , xn are
either constants of Γ or variables. A conjunctive query Q of arity n is written
in the form

Q(x1, . . . , xn)← conj(x1, . . . , xn, y1, . . . , ym)

where

• Q belongs to a new alphabet of queries Q which is disjoint from R and

• conj(x1, . . . , xn, y1, . . . , ym) is a conjunction of atoms which are built
from relation symbols from R, constants from Γ and variables from the
list x1, . . . , xn, y1, . . . , ym.

Let us now turn to the semantics. A database instance (or simply database)
B for a schema S = (R,K,Γ) is a triple (I,∆,≈B) where

• ∆ is a set of constants so that Γ ⊂ ∆,

• ≈B is an equivalence relation on ∆, and

• I is a set of atoms of the form R(a1, . . . , an) where R is an n-ary relation
symbol of R and (a1, . . . , an) is an n-tuple of constants of ∆.

Usually the definition of a database instance does not incorporate an equiv-
alence relation on the alphabet. However, our canoncial database will be
defined as kind of term model where certain terms have to be identified with
each other. For instance, (4) implies that in the canonical database for that
example, the term a will be equivalent to fA(a). This will be done in Defini-
tion 2 in the next section. To learn more about the general use of equivalence
relations in the construction of term models, see [4].

In the following we will denote sequences of constants by ~a,~b,~c, Conse-
quently sequences of variables will be abbreviated as ~x, ~y, ~z, The length
of such sequences will be clear from the context. For ~a = a1, . . . , an and
~b = b1, . . . , bn we write ~a ≈B ~b if for all 1 ≤ i ≤ n we have ai ≈B bi. We will
write ∃~x ∈ ∆ for ∃x1 ∈ ∆ . . . ∃xn ∈ ∆. ∀~x ∈ ∆ is used analogously.

By RB we denote the set {~x ∈ ∆ | ∃~y ∈ ∆.(~x ≈B ~y ∧R(~y) ∈ B)}. Note that
we may have a ∈ RB but R(a) /∈ I.

A database B over S satisfies the key constraint key(R) = i1, . . . , ik if for

~a,~b ∈ RB with ~a 6≈B ~b we have ~a[i1, . . . , ik] 6≈B ~b[i1, . . . , ik] where ~a[i1, . . . , ik]

5

is the projection of ~a over i1, . . . , ik, for example (a, b, c, d)[1, 3] is (a, c). If B
satisfies all constraints expressed by K, then B is called consistent with re-
spect to the schema S = (R,K,Γ). The set sem(S) is the set of all databases
B that are consistent with S.

Now we can give the semantics of queries. A query Q

Q(x1, . . . , xn)← conj(x1, . . . , xn, y1, . . . , ym)

selects from a database instance B = (I,∆,≈B) an n-tuple (a1, . . . , an)
of constants of ∆. A tuple (a1, . . . , an) is selected if there are constants
c1, . . . , cm ∈ ∆ so that each atom of conj(a1, . . . , an, c1, . . . , cm) is in B. For-
mally, we define

ans(Q,B) := {~x ∈ ∆ | ∃~y ∈ ∆.conj(~x, ~y) ∈ B}

where conj(~x, ~y) ∈ B means that for each conjunct A(~z) of conj(~x, ~y) we have
z ∈ AB. If R is a relation symbol of R, then ans(R,B) is defined simply as
RB.
An answer set A over an alphabet Λ is a set of facts Q(~t) where Q is a
conjunctive query and ~t ∈ Λ. We define

sem(S,A) := {B ∈ sem(S) | ∀Q(~t) ∈ A.~t ∈ ans(Q,B)}.

This means that sem(S,A) is the set of all consistent databases for S that
yield at least the answers given by A. We call sem(S,A) the semantics of S
with respect to the answer set A.
An answer set A may be regarded as a view instance. The views are defined
by the answers to the queries in A. If for a tuple ~t we find Q(~t) ∈ A, then
the view Q contains ~t.
For Q ∈ R ∪Q we define the set of certain answers to Q by

cert(Q,S,A) :=
⋂

B∈sem(S,A)

ans(Q,B).

That is the set cert(Q,S,A) consists of the tuples which are answers to the
query Q in every database in the semantics of S with respect to A.
We have ~t ∈ cert(Q,S,A) if every database instance over S which yields the
view instance A answers ~t to the query Q. Note that this reading of cert
adopts an open world assumption. We might know only a part of the exten-
sion of the view instance. Hence our definition of certain answer considers
also databases that yield bigger view instances than A.
Using these definitions we obtain for a relation G of a schema S that G is safe
with respect to a given answer set A if cert(G,S,A) = ∅ holds. In this case,
we cannot get any information about the extension of G. That is whether
any given constant belongs to G or not.

6

3 Query reformulation

In this section we show how to rewrite queries so that we can build the
canonical database instance.
First we introduce symbols for the Skolem functions that deal with the func-
tional dependencies. Starting from an initial alphabet Λ of constants, we
define a new alphabet ΛS of the terms built up from the constants of Λ,
variables x, y, z, . . . and the Skolem functions.

Definition 1. Let S = (R,K,Γ) be a database schema and let Λ ⊃ Γ be an
alphabet of constants. We define a new alphabet ΛS and a function depth
mapping elements of ΛS to natural numbers as follows.

• Λ ⊂ ΛS and for every constant a ∈ Λ we set depth(a) := 0.

• ΛS contains infinitely many variables x, y, z, . . . (possibly with sub-
scripts). We define depth(x) := 0 for any variable x.

• For each n-ary relation symbol A in R with key(A) = i1, . . . , ik ∈ K
we introduce new function symbols fA,il for il 6∈ key(A) and 1 ≤ il ≤ n.
For every such function symbol and arbitrary terms r1, . . . , rk ∈ ΛS
with depth(rh) = 0 (1 ≤ h ≤ k) we set fA,il(r1, . . . , rk) ∈ ΛS and
depth(fA,il(r1, . . . , rk)) := 1.

Now we are going to build the foundations for our canonical database instance
B. Depending on a given answer set A over an alphabet Λ we will compute
a set OA of ΛS atoms and the extension of a binary relation EqA on ΛS . The
alphabet ΛS will be the set of constants of the canonical database B. The
set OA will be the collection of all atoms of B. The relation EqA will serve
as starting point for the definition of the equivalence relation ≈B used in B.
Consider the example given in the introductory section. From (2) and (4)
we will get A(a, fA(a)) ∈ OA, G(fA(a)) ∈ OA and (a, fA(a)) ∈ EqA. Hence
we will have a ≈B fA(a) which leads us to a database satisfying G(a).
The construction of OA and EqA takes three steps for each element of A.
First the queries for which an answer is provided in A are rectified so that no
unintended interaction between them can occurr. Then Skolem functions are
introduced in the bodies of the queries. The conjuncts of these bodies build
the set OA. Each replacemt of a term by one containing a Skolem function
is recorded in EqA. Finally the actual answers to the queries are worked into
OA and EqA.

Definition 2. Let Q(t1, . . . , tn) ∈ A and assume Q is the query

Q(x1, . . . , xn)← conj(x1, . . . , xn, y1, . . . , ym).

7

Then we define the sets Q(t1, . . . , tn)∗ and Q(t1, . . . , tn)Eq by the following
procedure where ~t denotes the sequence t1, . . . , tn.

1. We index all variables in the body of the query by Q,~t. Hence, we ob-
tain conj(x1,Q,~t, . . . , xn,Q,~t, y1,Q,~t, . . . , ym,Q,~t) which will be abbreviated
as conj′.

2. For all A(~z) in conj′ with key(A) = i1, . . . , ik ∈ K and for all j 6∈
key(A), we replace the variable or constant zj at attribute position j
in A(~z) by fA,j(~z[key(A)]). We call the resulting atom A(~z)∗ and add
it to Q(t1, . . . , tn)∗. Further we include the pair (zj, fA,j(~z[key(A)])) to
Q(t1, . . . , tn)Eq . Note that zj may be one of the variables of conj′ or a
constant of Γ.

3. We replace the variable xi,Q,~t by ti in all elements of Q(t1, . . . , tn)∗ and

Q(t1, . . . , tn)Eq for all 1 ≤ i ≤ n.

We define the set OA and the relation EqA by

OA :=
⋃

Q(~t)∈A

Q(~t)∗ and EqA(a, b) :⇔ (a, b) ∈
⋃

Q(~t)∈A

Q(~t)Eq.

Let us look at two examples to see the previous definition in action.

Example 3. Let Γ contain the constants a, b. Further, let R contain a
binary relation R, a ternary relation S and a unary relation G. K contains
the following two key constraint key(R) = 1 and key(S) = 1, 2. Hence in
ΛS we introduce a function symbol fR,2 and a symbol fS,3. We look at the
following three queries.

• O(x)← R(x, x)

• P (x)← R(x, y) ∧ S(b, y, z) ∧G(z)

• Q(x)← R(x, y) ∧ S(y, a, y)

Assume A consists of O(a), O(b), P (a), Q(b). We obtain the following after
rectifying the rules and introducing Skolem functions.

• R(xO,a, fR,2(xO,a)) ∈ O(a)∗ and (xO,a, fR,2(xO,a)) ∈ O(a)Eq,

• R(xO,b, fR,2(xO,b)) ∈ O(b)∗ and (xO,b, fR,2(xO,b)) ∈ O(b)Eq,

• R(xP,a, fR,2(xP,a)), S(b, yP,a, fS,3(b, yP,a)), G(zP,a) ∈ P (a)∗ and
(yP,a, fR,2(xP,a)), (zP,a, fS,3(b, yP,a)) ∈ P (a)Eq,

8

• R(xQ,b, fR,2(xQ,b)), S(yQ,b, a, fS,3(yQ,b, a)) ∈ Q(b)∗ and
(yQ,b, fR,2(xQ,b)), (yQ,b, fS,3(yQ,b, a)) ∈ Q(b)Eq.

In the third step we replace xO,a by a, xO,b by b, xP,a by a and xQ,b by b.
Hence we get

• R(a, fR,2(a)) ∈ O(a)∗ and (a, fR,2(a)) ∈ O(a)Eq,

• R(b, fR,2(b)) ∈ O(b)∗ and (b, fR,2(b)) ∈ O(b)Eq,

• R(a, fR,2(a)), S(b, yP,a, fS,3(b, yP,a)), G(zP,a) ∈ P (a)∗ and
(yP,a, fR,2(a)), (zP,a, fS,3(b, yP,a)) ∈ P (a)Eq,

• R(b, fR,2(b)), S(yQ,b, a, fS,3(yQ,b, a)) ∈ Q(b)∗ and
(yQ,b, fR,2(b)), (yQ,b, fS,3(yQ,b, a)) ∈ Q(b)Eq.

Example 4. It can happen that a variable appears in two positions where it
has to be substituted by Skolem functions. Then the algorithm of Definition 2
makes both replacments and introduces two pairs (one for each replacement)
into the EqA relation. Look at the query

Q(x)← R(x, y) ∧ S(a, y),

where R and S are binary relations with a unique key constraint on the first
attribute. We note that the variable y appears twice at positions where it
depends on key attributes. Let Q(b) ∈ A. Then we get first

R(xQ,b, fR,2(xQ,b)), S(a, fS,2(a)) ∈ Q(b)∗

and

(yQ,b, fR,2(xQ,b)), (yQ,b, fS,2(a)) ∈ Q(b)Eq

In the third step we replace xQ,b by b. This yields

R(b, fR,2(b)), S(a, fS,2(a)) ∈ Q(b)∗

and

(yQ,b, fR,2(b)), (yQ,b, fS,2(a)) ∈ Q(b)Eq.

9

4 Computing Certain Answers

Now we are prepared to define the canonical database and show that it
contains exactly the certain answers to queries asking for basic predicates.
First we build the closure of EqA under transitivity and applications of func-
tions. Using the resulting relation ≈EqA , we can define the canonical database
B as (OA,ΓS ,≈EqA). This database instance is consistent with respect to the
schema S and yields the answer setA. Further, we prove that for any relation
symbol G we have

~t ∈ cert(G,S,A) implies ~t ∈ GB. (5)

To show the reverse direction of this statement, we introduce sets of func-
tions KeyFun(A, i,B,S) which can handle the dependencies given by the key
constraints. With those functions we can define a mapping, called valuation,
from the extendend language ΓS resulting from the rewriting of the queries
to the the original set of constants Γ. Hence we can apply such a mapping
to the canonical database we have defined above in order to obtain results
about database instances over Γ. It is shown that any valuation respecting
the answerset A maps terms ~t ∈ ΓS with G(~t) ∈ OA to constants ~s ∈ Γ such
that ~s ∈ cert(G,S,A). This statement is the reverse direction of (5) we are
looking for.

Definition 5. Let A be an answerset over the alphabet Γ. Depending on
EqA, we inductively define a relation ≈EqA on ΓS by the following rules.

• If r ∈ ΓS , then r ≈EqA r (Ref).

• If (r, s) ∈ EqA, then r ≈EqA s (Taut).

• If s ≈EqA r, then r ≈EqA s (Sym).

• If r ≈EqA t and either (t, s) ∈ EqA or (s, t) ∈ EqA, then r ≈EqA s
(Trans).

• If r ≈EqA s with depth(r) = 0 and depth(s) = 0, then f(r) ≈EqA f(s)
for f(r), f(s) ∈ ΓS (Funct).

In the sequel we generally assume that A is finite and therefore EqA is finite,
too. In this case the rules given above define an algorithm to decide whether
r ≈EqA s holds for r, s ∈ ΓS . Starting from r ≈EqA s we can do a backward
proof search, testing which rules may have been applied. The two critical
cases are applications of the (Trans) and of the (Sym) rules. However, since
EqA is a finite relation, there are only finitely many instantiations of the

10

(Trans) rule. To cope with the (Sym) rule, we can do a simple loop check in
the decision procedure.
To simplify our notation, we will drop the subscript EqA. No confusion should
arise since we only deal with one EqA relation.
By the following lemma we know that ≈ is an equivalence relation. Hence,
it can be employed in the definition of database instances.

Lemma 6. If r ≈ t and t ≈ s, then r ≈ s.

Proof. We show that if r ≈ t and either t ≈ s or s ≈ t, then r ≈ s. This is
proven by induction on the length of the derivations of t ≈ s and s ≈ t.

Theorem 7. Let A be an answerset over the alphabet Γ and let B be the
database instance (OA,ΓS ,≈) over the schema S = (R,K,Γ). Then we have
B ∈ sem(S).

Proof. We have to show that all key constraints in S are satisfied. For
simplicity we deal with the following exemplary case. Assume A is a binary
relation of R and key(A) = 1 ∈ K. Let a1, a2, b1, b2 ∈ ΓS with (a1, a2) ∈ AB,
(b1, b2) ∈ AB and a1 ≈ b1. We have to show a2 ≈ b2. There are terms
a′1, a

′
2, b
′
1, b
′
2 such that a′1 ≈ a1, a

′
2 ≈ a2, b

′
1 ≈ b1, b

′
2 ≈ b2 as well as

A(a′1, a
′
2) ∈ OA and A(b′1, b

′
2) ∈ OA.

By the construction of OA we know that depth(a′1) = 0 and depth(b′1) = 0.
Further, we know a′2 ≡ fA,2(a′1) and b′2 ≡ fA,2(b′1). Therefore from

a′1 ≈ a1 ≈ b1 ≈ b′1

we obtain by Definition 5 that

a2 ≈ a′2 ≡ fA,2(a′1) ≈ fA,2(b′1) ≡ b′2 ≈ b2

which finishes the proof.

Theorem 8. Let A be an answerset over the alphabet Γ and let B be the
database instance (OA,ΓS ,≈) over the schema S = (R,K,Γ). We find that

1. for any Q(~a) ∈ A we have ~a ∈ ans(Q,B) and

2. B ∈ sem(S,A).

Proof. The first claim is shown as follows. Let Q be the query

Q(~x)← conj(~x, ~y).

11

Hence, to show ~a ∈ ans(Q,B) means to prove

∃~y ∈ ΓS .conj(~a, ~y) ∈ B. (6)

We investigate the following exemplary case. Assume conj(~a, ~y) consists of
one atom A(s1, s2) where A is a binary relation symbol with the constraint
key(A) = 1. We distinguish the different possibilities for s1 and s2.

• Assume s1 is a constant of ~a and s2 is a variable of ~y. Set t2 :≡ fA,2(s1).
We immediately get A(s1, t2) ∈ OA.

• Assume s1 ≡ yi and s2 also is a variable of ~y. Set t1 :≡ yi,Q,~a and set
t2 :≡ fA,2(t1). We immediately get A(t1, t2) ∈ OA.

• Assume s1 and s2 are both constants of ~a. Set t2 :≡ fA,2(s1). We get
A(s1, t2) ∈ I as well as EqA(s2, t2). Hence we obtain s2 ≈ t2 and may
conclude (s1, s2) ∈ AB.

• Assume s1 ≡ yi and s2 is a constant of ~a. Set t1 :≡ yi,Q,~a and set
t2 :≡ fA,2(t1). We get A(t1, t2) ∈ I as well as EqA(s2, t2). Hence we
obtain s2 ≈ t2 and infer (t1, s2) ∈ AB.

These four cases cover all possibilities. Therefore we conclude that (6) holds.
The second claim is an direct consequence of the first claim and the previous
theorem.

From the second claim of this theorem we immediately get the following
corollary by the definition of cert(G,S,A).

Corollary 9. Assume S = (R,K,Γ) is a relational schema and A is an
answerset over Γ. Let B be the database instance (OA,ΓS ,≈), let G be a
relation symbol of R and let ~t ∈ Γ. Then ~t ∈ cert(G,S,A) implies ~t ∈ GB.

Now we are going to show the reverse direction of this corollary.

Let B be a database instance which is consistent with the relational schema
S = (R,K,Γ), that is B ∈ sem(S). We define sets of functions KeyFun(A, il,B,S)
that will take care of the key constraints.

Definition 10. Let S = (R,K,Γ) be a database schema and B = (I,∆,≈B)
a consistent database instance over it. For each n-ary relation symbol A in
R with key(A) = i1, . . . , ik ∈ K and each il 6∈ key(A) we introduce a set
KeyFun(A, il,B,S) of k-ary functions as follows. A function f : ∆k → ∆
belongs to KeyFun(A, il,B,S) if

• for all A(x1, . . . , xn) ∈ I we have f(xi1 , . . . , xik) ≈B xil and

12

• ∀~x, ~y ∈ ∆.(~x ≈B ~y → f(~x) ≈B f(~y)).

Observe that KeyFun(A, il,B,S) is defined exactly for those A and il for
which we introduced function symbols fA,il in the extended language ΓS (see
Definition 1).
The sets KeyFun(A, il,B,S) are well-defined. That is they are not empty
since B satisfies all key constraints in S. We have the following lemma.

Lemma 11. Let B = (I,∆,≈B) be a consistent database instance over the
schema S. Assume A is a relation symbol of S with a key constraint defined
on it. Then we have for i 6∈ key(A) that KeyFun(A, i,B,S) 6= ∅.

Proof. Let us only investigate the case where A is a binary relation symbol
with key(A) = 1. We show that KeyFun(A, 2,B,S) 6= ∅. We define a function
f as follows. Assume a ∈ ∆.

• If there exist a′, b ∈ ∆ so that a ≈B a′ and

A(a′, b) ∈ I, (7)

then choose one of the b so that (7) holds and set f(a) = b.

• If no such a′, b ∈ ∆ exist, then we define f(a) = a.

We find that the so defined function f satisfies both conditions of Definition
10.

• Assume A(x, y) ∈ I. Then f(x) = b for some b, x′ ∈ ∆ with A(x′, b) ∈ I
and x ≈B x′. Since B satisfies the key constraints of S, we get y ≈B b
and hence f(x) ≈B y.

• Let x, y ∈ ∆ with x ≈B y. If there exist x′, b ∈ ∆ with A(x′, b) ∈ I and
x ≈B x′, then we have f(x) = c for some A(x′′, c) ∈ I with x ≈B x′′.
Moreover we get f(y) = d for some A(y′′, d) ∈ I with y ≈B y′′. By
x ≈B y and transitivity of ≈B we find x′′ ≈B y′′. Therefore

f(x) = c ≈B d = f(y)

since B satisfies the key constraints of S.

Hence we conclude f ∈ KeyFun(A, 2,B,S).

Definition 12. A valuation v for a database instance B = (I,Γ,≈B) over a
schema S is a function that maps ΓS to Γ satisfying the following.

• For any constant a ∈ ΓS we have v(a) = a.

13

• For any variable x ∈ ΓS , there exists a constant a ∈ Γ with v(x) = a.

• Each function symbol fA,i introduced in ΓS is mapped to a function
v(fA,i) ∈ KeyFun(A, i,B,S). Then we define

v(fA,i(r1, . . . , rn)) = v(fA,i)(v(r1), . . . , v(rn)).

Definition 13. Let B = (I,Γ,≈B) be a database instance.

• For r, s ∈ ΓS we define that B, v ` r ≈B s holds if v(r) ≈B v(s).

• For r1, . . . , rn ∈ ΓS we define that B, v ` G(r1, . . . , rn) holds if

G(v(r1), . . . , v(rn)) ∈ I.

• Let conj(~a, ~y) contain only terms of ΓS . We define that B, v ` conj(~a, ~y)
holds if B, v ` A(~r) holds for all atoms A(~r) occurring in conj(~a, ~y).

We will make use of the following notation: if ~r = r1, . . . , rn is a sequence of
elemtents of ΓS , then v(~r) denotes the sequence v(r1), . . . , v(rn).

Definition 14. Assume S = (R,K,Γ) is a relational schema and A is an
answerset over an alphabet Γ. Let B ∈ sem(S,A). We say a valuation v
for B satisfies A if for all queries Q(~x)← conj(~x, ~y) with Q(~r) ∈ A we have
B, v ` conj(~r, ~yQ,r). The term ~yQ,~r denotes the result of adding the subscript
Q,~r to each variable of ~y as it is done in the first step of Definition 2.

Lemma 15. Let B ∈ sem(S,A). Then there exists a valuation v for B
satisfying A.

Proof. For all queries Q(~x)← conj(~x, ~y) with Q(~r) ∈ A the valuation v must
satisfy B, v ` conj(~r, ~yQ,r). This can be achieved by defining v as follows.

• The valuation v maps any constant B to itself.

• B ∈ sem(S,A) means that for each Q(~r) ∈ A there are constants ~a so
that conj(~r,~a) ∈ B. We define the v-image of the variable yi,Q,~r to be
the corresponding ai.

• For each fA,i ∈ ΓS we define v(fA,i) to be an arbitrary element of
KeyFun(A, i,B,S). This can be done since by Lemma 11 this set is
non-empty.

14

Lemma 16. Assume S = (R,K,Γ) is a relational schema and A is an
answerset over Γ. Let B ∈ sem(S,A). Let EqA be defined as above. If v is
a valuation for B satisfying A, then we have

(a, b) ∈ EqA =⇒ B, v ` a ≈B b

Proof. (a, b) ∈ EqA implies that b is of the form fA,i(~z). For simplicity we just
investigate the case where A is a binary relation with key(A) = 1. Assume
(a, fA,2(z)) ∈ EqA. We have to show that for any f ∈ KeyFun(A, 2,B,S) the
following holds:

v(a) ≈B f(v(z)). (8)

We argue as follows: (a, fA,2(z)) ∈ EqA implies that there exists a query
Q(~x)← conj(~x, ~y) with Q(~r) ∈ A so that

(a, fA,2(z)) ∈ Q(~r)Eq and A(z, a) ∈ conj(~r, ~yQ,~r).

Since v satisfies A, we know B, v ` A(z, a). This is A(v(z), v(a)) ∈ I. There-
fore by the definition of KeyFun(A, 2,B,S) we conclude that (8) holds.

The next lemma states that a valuation for a database instance respects the
equivalence relation used in the definition of the database.

Lemma 17. Assume S = (R,K,Γ) is a relational schema and A is an
answerset over Γ. Let ≈ be the relation of Definition 5. Assume we are
given two elements s, t of ΓS with s ≈ t. Let B = (I,Γ,≈B) be an arbitrary
database instance in sem(S,A) and v a valuation for B satisfying A. Then
we have B, v ` s ≈B t.

Proof. We prove the statement by induction on the length of the derivation
of s ≈ t. The possible cases for the last rule that has been applied in the
derivation are the following:

• (Ref): Trivial since ≈B is an equivalence relation by definition.

• (Taut): By Lemma 16.

• (Sym): The claim follows from the induction hypothesis and the sym-
metry of ≈B.

• (Trans): The claim follows from the induction hypothesis and the tran-
sistivity of ≈B.

• (Funct): The claim follows from the induction hypothesis and the fact
that the functions of KeyFun(A, i,B,S) respect ≈B by definition.

15

The following lemma says that valuations for databases are well-behaved
with respect to the atoms of these database instances.

Lemma 18. Let B = (I,Γ,≈B) be a database instance and v a valuation for
it. Let Q(~x)← conj(~x, ~y) be a query containing the relation symbol G. Then
we have

G(~t) ∈ Q(~r)∗ ∧ B, v ` conj(~r, ~yQ,~r) =⇒ B, v ` G(~t).

Proof. For simplicity we just look at the case where G is a binary relation
with key(G) = 1. Assume G(t1, fG,2(t1)) ∈ Q(~r)∗. Then there is a t2 so that
G(t1, t2) is contained in conj(~r, ~yQ,~r). Hence B, v ` G(t1, t2). This is

G(v(t1), v(t2)) ∈ I. (9)

Since v(fG,2) must be in KeyFun(G, 2,B,S) we get v(fG,2)(v(t1)) = v(t2).
Therefore by the definition of v we have v(fG,2(t1)) = v(t2). By (9) we obtain
G(v(t1), v(fG,2(t1))) ∈ I and hence the claim holds.

Now we are ready to show the reverse direction of Corollary 9.

Theorem 19. Assume S = (R,K,Γ) is a relational schema and A is an
answerset over Γ. Let ~s ∈ Γ and G be a relation symbol of R. If there exist
~t ∈ ΓS with G(~t) ∈ OA and ~s ≈ ~t, then ~s ∈ cert(G,S,A).

Proof. We have to show that for any database instance B = (I,∆,≈B) in
sem(S,A) we have ~s ∈ GB. This can be seen as follows. G(~t) ∈ OA implies
that there is a query Q(~x) ← conj(~x, ~y) with Q(~r) ∈ A and G(~t) ∈ Q(~r)∗.
By Lemma 15 there exists a valuation v for B satisfying A. Hence

B, v ` conj(~r, ~yQ,~r). (10)

We additionally have by Lemma 17

B, v ` ~t ≈B ~s. (11)

Applying Lemma 18 to (10) yields B, v ` G(~t). This is by definition

G(v(~t)) ∈ I.
By (11) we have ~s = v(~s) ≈B v(~t). Thereby we finally conclude ~s ∈ GB.

Finally, we obtain that the canonical database (OA,ΓS ,≈) contains exactly
the certain answers.

Corollary 20. Assume S = (R,K,Γ) is a relational schema and A is an
answerset over Γ. Let B be the database instance (OA,ΓS ,≈) and G be a
relation symbol of R. For all ~s ∈ Γ we have

~s ∈ cert(G,S,A) if and only if ~s ∈ GB.

16

5 Conclusion

We started this paper with the question of how much information about a
database can one infer given access to a view instance and knowledge of
the relational schema and its key constraints. We gave an answer to this
question by presenting a procedure which computes a minimal database that
yields the given view instance and satisfies the relational schema with its key
constraints. It is minimal in the sense that it contains exactly the certain
answers (with respect to the given view instance) to queries asking about
basic predicates.
We only considered views defined by conjunctive queries and we restricted
ourselves to unique key constraints. A natural extension of this work would
be to allow for more complex view definitions and to consider other forms of
database constraints. However, we cannot add arbitrary forms of complexity
since the problem may become undecidable, see for example [1, 6].
Regarding our initial question, there is another line of further research. In-
stead of starting with a view instance, one could begin only with a set of
queries over a given schema. Then one could ask whether it is possible with
these queries (to which we do not know the results) to obtain knowledge
about the extension of relations that may not be directly accessed. That is
we ask whether there is a set of answers to these queries such that it allows
one to deduce information about further predicates. This set of answers can
be regarded as a view instance. Hence we are actually asking the question
about the existence of such a view instance. This question is also important
for security considerations. It allows us to prove that with respect to a given
set queries which a user is allowed to perform, it is impossible for him to
infer knowledge about relations he cannot directly access.

Acknowledgments. We would like to thank Mathis Kretz for for many
helpful comments on an earlier version of this paper.

References

[1] Serge Abiteboul and Oliver M. Duschka. Complexity of answering
queries using materialized views. In Proceedings of PODS’98, pages
254–265, 1998.

[2] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of
Databases. Addison-Wesley, 1995.

17

[3] Alfred V. Aho, Yehoshua Sagiv, and Jeffrey D. Ullman. Equivalences
among relational expressions. SIAM Journal on Computing, 8(2):218–
246, 1979.

[4] Michael J. Beeson. Foundations of Constructive Mathematics: Meta-
mathematical Studies. Springer, 1985.

[5] Andrea Cal̀ı, Diego Calvanese, Giuseppe De Giacomo, and Maurizio
Lenzerini. Data integration under integrity constraints. In Proceedings of
the 14th Int. Conference on Advanced Information Systems Engineering
CAiSE 2002, volume 2348 of Lecture Notes in Computer Science, pages
262–279. Springer, 2002.

[6] Diego Calvanese and Riccardo Rossi. Answering recursive queries un-
der keys and foreign keys is undecidable. In Proceedings of the 10th Int.
Workshop on Knowledge Representation meets Databases (KRDB 2003),
pages 3–14. CEUR Electronic Workshop Proceedings, http://ceur-
ws.org/Vol-97/, 2003.

[7] Oliver Duschka and Michael R. Genesereth. Answering recursive queries
using views. In Proceedings of the 16th ACM Conference on Principles
of Database Systems PODS, pages 109–116, 1997.

[8] Oliver Duschka and Alon Y. Levy. Recursive plans for information gath-
ering. In Proceedings of the 15th International Joint Conference on Ar-
tificial Intelligence IJCAI, pages 778–784, 1997.

[9] Oliver M. Duschka, Michael R. Genesereth, and Alon Y. Levy. Recursive
query plans for data integration. The Journal of Logic Programming,
43:49–74, 2000.

[10] Ronald Fagin, Phokion G. Kolaitis, Renée Miller, and Lucian Popa.
Data exchange: Semantics and query answering. To appear in Theoret-
ical Computer Science.

[11] Gösta Grahne and Alberto O. Mendelzon. Tableau techniques for query-
ing information sources through global schemas. In C. Beeri and P.
Bruneman, editors, 7th Int. Conference on Database Theory (ICDT
’99), volume 1540 of Lecture Notes in Computer Science, pages 332–
347. Springer, 1999.

[12] Xiaolei Qian. Query folding. In Proceedings of the 12th International
Conference on Data Engineering, pages 48–55, 1996.

18

[13] Jeffrey D. Ullman. Principles of Database and Knowledge Base Systems,
volume 1. Computer Science Press, 1988.

Addresses
Kilian Stoffel, Université de Neuchâtel,
Pierre-à-Mazel 7, CH-2000 Neuchâtel, Switzerland
kilian.stoffel@unine.ch

Thomas Studer, Institut für Informatik und angewandte Mathematik,
Universität Bern, Neubrückstrasse 10, CH-3012 Bern, Switzerland,
tstuder@iam.unibe.ch

19

