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Abstract

We take advantage of recent improvements in graphics hardware, orig-
inally designed to increase the visual quality of rendered scenes, to study
intersection testing algorithms on programmable graphics hardware. We
implement two of the most commonly used algorithms in Nvidia Cg and
compare the performance of our implementations with traditional, ANSI-
C based variants to demonstrate the advantages and disadvantages of
using programmable graphics hardware as general purpose coprocessor.

CR Categories and Subject Descriptors: 1.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling; C.1.2 [Processor Archi-
tectures]: Multiple Data Stream Architectures

Keywords: Programmable Graphics Hardware, GPGPU, Intersection
Testing

1 Introduction

A quite common and fundamental problem in computer graphics is how to per-
form stable intersection tests of rays with geometric primitives in minimal time.
A multitude of graphics applications consequently depend on efficient implemen-
tations of such algorithms, in many cases limited to ray-triangle intersection, e.g.
ray tracing, collision detection, picking operations and so on. Due to the vast
evolution of graphics hardware in recent years it has become viable to address
such problems using programmable graphics processing units (GPU). This has
enabled many authors to demonstrate the raw power of GPUs in different fields
of general purpose computations. Moreover, the development of specialised
high-level shading languages, such as Nvidia Cg or the OpenGL Shading Lan-
guage, facilitate the use of programmable vertex and fragment shader units for
more complex applications.

1.1 Motivation

In this report we outline various procedures for mapping geometric algorithms
to the GPU and demonstrate the advantages and disadvantes of such implemen-
tations. For this purpose we analyse multiple GPU based implementations of



two ray-triangle intersection algorithms. We compare their runtime behaviour
with their CPU based counterparts and discuss ways of further improving the
execution performance of these methods.

1.2 Related Work

Because of its important role in computer graphics plenty of research has been
done in the field of intersection testing algorithms. With regard to ray-triangle
intersection testing, the algorithms proposed by Snyder and Barr [10], Badouel
[1] and Moller [8] are perhaps the most influential ones, most notably because
of their efficiency and elegance!.

Recent efforts in using GPUs for general purpose computations have ex-
plicitely demonstrated that the computation power of graphics hardware may
not only be used for common rendering related tasks but for a wider range of
applications. Purcell et al. [9] point out that current programmable GPUs can
be used perfectly as parallel stream coprocessors. Kriiger and Westermann [6]
describe a framework for the implementation of linear algebra operators on the
GPU, providing a tool for designing more complex algorithms in the field of
numerical simulation. In [3] and [2] Bolz et al. show that numerical computa-
tions can be performed efficiently on the GPU by implementing a sparse matrix
conjugate gradient solver and a regular-grid multigrid solver on a GeForceFX,
while Harris et al. [5] use graphics hardware to perform physically-based visual
simulations. Based on Moller’s algorithm, Carr et al. [4] implemented a fixed-
point ray-triangle intersection testing engine on an ATI R200, whereas Purcell
et al [9] developed a complete ray tracer on their own GPU simulator.

Others have contributed to this emerging topic, these works are available on
the website related to general purpose computation on the GPU?2.

1.3 Organisation

This report is structured as follows. Focused on general purpose computation we
give a short overview of the capabilities of current generation graphics processing
units in Section 2, followed by an introduction of the two intersection testing
algorithms we used in Section 3. In Section 4 we describe our implementations,
the performance results are then presented in Section 5. The conclusion are
given in Section 6. Future work is indicated in Section 7.

2 Current Graphics Hardware

Modern graphics processing units are parallel, stream orientated processors, con-
sisting of multiple programmable vertex and fragment processing units. They
are featuring almost complete single-precision IEEE-754 floating-point arith-
metic as well as advanced programmability including (limited) flow control,
loops and a fully orthogonal instruction set optimised for vector processing.

It is notably interesting to use the fragment processing units as arithmetic
coprocessors because they offer a much higher throughput than vertex units,
and even more important, because they allow for direct texture memory access.

LOther algorithms do exist, but they are usually based on similar ideas and concepts.
2http://www.gpgpu.org
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Figure 1: Parametric representation of the ray-triangle intersection point P.

However current GPUs still impose a couple of restrictions which have to be
taken into account when using them as coprocessors for general purpose com-
putations. Among these are limited computation precision, the lack of integer
and bit operations and poor memory management capabilities. Moreover it is
not possible at all to use recursive functions on GPUs, and worse, fragment
processors do not yet support true code branching. Another severe restriction
imposed by the current generation of programmable graphics hardware is the
limited program length. Unfortunately this limitation affects fragment shaders
even more than vertex shaders. To give an example, the NV3x GPU supports
fragment shader programs with a maximum length of 1024 instructions, while
vertex shader programs can have a length of up to 65535 instructions.

3 Ray-Triangle Intersection Testing

For our comparative study we use two ray-triangle intersection testing algo-
rithms, the first one is Badouel’s approach [1], the second one is Moller and
Trumbore’s algorithm [8]. Both algorithms are known to be stable and highly
efficient. Because we are mostly interested in performance related aspects of
intersection testing, we will skip correctness validations and refer to the original
publications instead. Consequently we omit Snyder and Barr’s approach [10]
altogether, for it is less efficient (in time), as it is shown in [1].

3.1 Badouel’s Algorithm

The algorithm proposed by D. Badouel is similar to Snyder and Barr’s earlier
approach. It is split into two phases:

1. The ray is tested for intersection with the triangle’s embedding plane,
defined by the three vertices V;,i € {0, 1,2} of the triangle. Combining
the parametric representation of the ray r and the implicit plane equation

leads to
_d+N-O

1
N . D ( )
where O = ray origin, D = ray direction, N = normal of the embedding
plane, d = -V, - N and r(t) = O + Dt.

Based on the evaluation of the parameter ¢, the intersection is rejected if
either the ray and the triangle are parallel (N - D = 0), the intersection
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Figure 2: The transformations applied to the triangle and ray by the Moller-
Trumbore algorithm.

point lies behind the origin of the ray (¢ < 0) or a closer intersection has
already been found (¢ > tpeqrest)-

2. If the ray intersects with the embedding plane, the coordinates of the
intersection point P are determined. As shown in Figure 1 point P can
be expressed as . . .

VoP = aVpVi + Vo Vs (2)

Finally, the intersection point P is inside the triangle if

a>0,8>0anda+ <1 (3)

For a more detailed derivation of the algorithm we refer to Badouel’s original
article [1].

3.2 Moller-Trumbore’s Algorithm

The algorithm proposed by Moller and Trumbore does not test for intersection
with the triangle’s embedding plane and therefore does not require the plane
equation parameters. This is a big advantage mainly in terms of memory con-
sumption and — especially on the GPU — execution performance. The algorithm
goes as follows:

1. In a series of transformations the triangle is first translated into the origin
and then transformed to a right-angled unit triangle in the y — 2z plane,
with the ray direction aligned with x. Figure 2 illustrates the procedure.
This can be expressed by a linear equation

t 1 QE2
= P-T 4
ol W @)
where E1 = Vi —Vo, E2 = V2 —Vg, T =0 — Vg, P =Dx E2 and

Q:TXEl.

2. This linear equation can now be solved to find the barycentric coordinates
of the intersection point (u,v) and its distance ¢ from the ray origin.

Again we refer to the original article [8] for a more detailed explanation.
Optimised variations of the original implementation can be found in Moller’s
follow-up article [7].



4 Implementation

Our code is solely based upon the original implementations of the two algorithms
as described in [1] and [7], consequently we do not make use of SIMD extensions
or any other substantial changes which might lead to better results on modern
CPUs.

Our fragment shader implementations of the ray-triangle intersection algo-
rithms were written using Nvidia’s Cg shading language, therefore it was rel-
atively easy to turn the original C code into fragment shader programs, see
Appendix A for the code details. During this process several Cg language fea-
tures have proven to be very useful, namely the native support for vector data
types, basic vector arithmetic functionality through operator overloading and
not to forget efficient implementations of more complex, mathematical func-
tions® provided by the Cg Standard Library.

Unfortunately we also had to deal with a few shortcomings of current GPUs,
most notably the absence of true branching and premature return statements.
On the one hand this led to less efficient code compared to the C version,
luckily we can safely assume that next generation GPUs will overcome these
limitations in the near future. On the other hand, the code length restriction of
fragment shader programs was not a problem in our case, the fragment shader
code roughly consists of 50 instructions. For a detailed overview over Cg lan-
guage features and graphics hardware limitations we refer to the Cg Toolkit
User’s Manual *.

An important aspect of this project was to study potential benefits and
drawbacks of different shader program integration models when using the GPU
as streaming coprocessor. This includes the passing of parameters to as well as
reading back results from the GPU. In the following subsections we describe the
various parameter passing approaches we have implemented and benchmarked
later on with both intersection testing algorithms.

4.1 Direct Parameter Passing

As with normal functions it is possible to set - and obtain - shader program pa-
rameters in a straight foward fashion, either using low-level OpenGL function-
ality or the Cg runtime APIL. In our case this leads to a massive communication
overhead since for every intersection test the parameters have to be updated
accordingly. This is not very convenient and obviously results in a serious per-
formance degradation. We therefore implemented this mode solely for the sake
of performing our benchmarks, it is hardly an option for real-world applications.

4.2 Indirect Parameter Passing

To make the best usage of the GPU as a high performance, general purpose
coprocessor, it is important to cope with the stream orientated pipeline archi-
tecture of graphics hardware. Consequently it is crucial not to stall the graphics
pipeline while rendering®. This is of course heavily affected by the way input
parameters are passed to the shader program.

3E.g. cross() and dot().
4 Available as download from http://developer.nvidia.com/object/cg_toolkit.html
5Rendering means executing the intersection testing shader program in this context.



Indirect parameter passing is basically accomplished by encoding the various
parameter values into one or more textures which are then used by our shader
program to access the required input parameters. This promises to be much
faster than direct parameter passing, though unfortunately there are texture
size limitations which limit the number of parameters which can be sent to the
GPU in one pass.

The results of the executed intersection tests are then written to a RGBA
32-bit floating-point Pbuffer, which can be read back to host memory as a
contiguous memory block after performing the tests. We have implemented
two versions of indirect parameter passing, which are explained in more details
below.

4.2.1 Textures Only

Our first implementation uses 5 equally sized 2D FLOAT textures for parameter
passing purposes. We store the 3 vertices of a triangle in 3 separate textures,
whereas the additional 2 textures are used to store ray origin and direction
parameters. See Figure 3 for more details.

R G B R G R G B
VX Vy VZ VX Vy VZ VX Vy VZ
Vg Z LV,
T1 T2 T3
Triangle VoV Vo R G B R G B
Oyx|Oy| O, d |d | d
%/O”gm// Direction d!
Ray R
T4 T5

Figure 3: Parameter encoding using 5 2D FLOAT RGB textures. Note that all
parameters are stored at the same position within the textures.

Consequently if a texture of size n x m is passed to the fragment shader,
exactly n x m ray-triangle intersection tests can be performed simply by drawing
an equally sized quad to the screen®. Doing so every rendered pixel corresponds
to one interesection test. Moreover it is noteworthy that with this approach
every passed ray is tested for intersection with only one of the passed triangles,
namely the one which is stored at the corresponding texture coordinate. So on
one side this leads to a great amount of flexibility, but on the other side this will
add redundancy and memory transfer overhead when a ray has to be tested for
intersection with many triangles, because in this case the ray has to be stored

6Note that our implementation uses square textures only.
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Figure 4: The nearly linear performance characteristics of the ANSI-C and Cg
variants of the Moller-Trumbore algorithm. Note the logarithmic scale of the
plot.

multiple times in the texture. This drawback can be avoided by using different
texture lookup indices for rays and triangles.

4.2.2 Textures and Vertex Data Attributes

Our second implementation is a mixed mode implementation, inspired by Pur-
cell’s work [9]. We call it mized mode because it uses 2 equally sized 2D FLOAT
textures to hold the ray parameters, but in contrast to the previously described
method triangles are sent through the geometry pipeline encoded as texture co-
ordinates using 4 texture units. So the dimensions of the textures are encoded
into the texture coordinates of texture unit 0, while the 3 other units are used
to store the coordinates of the triangle vertices.

This approach leads to a true SIMD model where every triangle is tested
for intersection with every ray stored in the texture and might thus be more
suitable for real world applications, such as ray tracing.

5 Performance Results

We benchmarked our implementations on a 2.8 GHz Pentium IV running Red
Hat Linux 9 using a NVIDIA NV35 GPU". The C code was compiled with gcc
3.2.2, without support for SIMD extensions, such as SSE or 3DNow!. The Cg
code was compiled with the Cg compiler release 1.1.

5.1 CPU Based Execution

As expected, the CPU versions for both algorithms show almost linear perfor-
mances when testing different numbers of ray-triangle intersection, see Figure
4. We were able to perform roughly 8 * 10° intersection tests per second using
the algorithm proposed by Moller-Trumbore.

7 Asus V9950 GeForce FX 9500, driver version 53.36
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Figure 5: Testing 22° triangles and rays for intersection using textures of varying
dimensions. As expected, the fp30 render profile is in all cases superior to
the OpenGL ARB fpl profile, moreover memory readback proves to be a real
performance killer.

5.2 GPU Based Execution

While implementing both algorithms in Cg we found that the GPU version of
Badouel’s algorithm is generally less efficient than Moller-Trumbore’s approach,
even though the algorithm itself is not particularly more complex. This has two
main reasons:

1. Badouel’s algorithm requires additional input parameters, namely the tri-
angle’s embedding plane parameters. Consequently they either have to
be precomputed on the CPU and passed to the GPU or computed on the
fly on the GPU. Obviously both approaches lead to additional overhead,
compared to Moller-Trumbore’s approach.

2. Badouel’s implementation makes some clever usage of array programming
to calculate the coordinates of VJP, Vng and VJV2, see Figure 1. While
computing the array indices itself is not a big deal, it is not possible to
map the array based code onto the GPU, simply because Cg does not yet
support C-style arrays. As a consequence conditional code has to be used
which is inefficient on current graphics hardware.

For these reasons we used an implementation of Moller-Trumbore’s algorithm
throughout all our performance benchmarks.

5.2.1 Direct Parameter Passing

Passing the parameters directly to the GPU leads to a linear performance, sim-
ilar to the CPU based implementation. However, the execution speed on the
GPU is drastically slower. This demonstrates the negative effect of frequent,
unoptimised parameter passing on the total execution performance, resulting
in approximately 7 * 10* intersection tests per second using Moller-Trumbore’s
algorithm.
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Figure 6: Mixed mode intersection testing of 100000 triangles with 64, 256 and
1024 rays, using both the native fp30 as well as the ARB fp1 render profile.

5.2.2 Parameter Passing using Textures

When passing parameters by texture the behaviour of the GPU based execution
is still more or less linear, although different texture sizes will result in different
execution results due to varying texture handling overhead.

It is obvious that using larger textures results in less frequent parameter
transport passes, doubling the texture size leads to four times less texture up-
loads as well as framebuffer readbacks. Unfortunately the use of larger textures
will eventually lead to a lot more texture cache misses on the GPU, which again
has negative impacts on the execution performance.

It turned out that in our case and with our setup the optimal texture size
was always 32 x 32 pixels, leading to a still disappointing peak performance of
4 % 105 intersection tests per second. Figure 5 shows the performance results
from computing 22° = 1048576 ray-triangle intersection tests using textures of
varying dimensions. It should be mentioned that our implementation currently
accepts only square sized textures, it would be interesting to see how different
dimensions in  and y impact the texture cache efficiency on the GPU.

5.2.3 Mixed Mode Parameter Passing

The mixed mode setup lead to the best GPU based performance values, see
Figure 6 for the details. But as with all other setups the readback bandwidth
limitation makes it impossible to accelerate ray-triangle intersection rigorously
by using the GPU as coprocessor in a straightforward fashion. Neglecting this
limitation we were able to perform 8 x 10° intersection tests per second on our
GPU, which is more or less on the same performance level as the CPU based
version, but still noticeably slower than eg. Purcell’s results, obtained on a
fixed-point GPU.



5.3 Technical Aspects

For our comparisons we used two fragment program profiles, namely Nvidia’s
native fp30 profile and the OpenGL ARB fpl equivalent. As expected on our
graphics hardware, Nvidia’s fp30 profile, which is based on the proprietary
NV_fragment program OpenGL extension, was faster than the ARB fpl pro-
file.

In order to optimise the memory readback performance we furthermore
adopted the OpenGL pixel_data_range extension, which permits the driver
to allocate physically contiguous PCI memory or cachable AGP memory, de-
pending on the performance characteristics of the device and thus should lead to
noticeably better performance results. Surpisingly though this did not happen,
we got only minor performance improvements.

6 Conclusion

We presented several implementations of efficient ray-triangle intersection tests
on the GPU using the Nvidia Cg shading language. We showed that the raw
power of GPUs itself does not guarantee superior performance compared to CPU
based execution. Instead several key aspects have to be taken into account when
using the GPU as a coprocessor in order to achieve acceptable performances.
It is especially important to adapt the code to the streaming architecture of
programmable GPUs, porting an algorithm to the GPU essentially means using
a stream based programming model.

By porting the algorithms to the GPU using Nvidia Cg we were able to get
initial results with little effort, but it is noteworthy that without careful tuning
of the Cg code performances are not optimal. We were able to show that clever
instruction reorderings can result in measurable speed gains.

We furthermore demonstrated that parameter passing and particularly mem-
ory readback has a great influence on the overall performance and thus is a major
obstacle when using the GPU as coprocessor. The current AGP 8x standard al-
lows for a 2.1 GB/s memory transfer to the card and roughly 250 MB/s from the
card to the host. This bandwidth limitation is a serious bottleneck for general
purpose computations on the GPU. Our observations confirmed that especially
memory readback transfer is a performance killer and should be avoided when-
ever possible. Consequently the mixed mode implementation clearly proved to
be the fastest approach, although it did not match CPU based performance due
to the slow readback transfer.

Another limitation we had to deal with is that GPUs only support 32-bit
floating-point precision or less®, moreover it seems that using 32-bit precision
even may lead to performance penalties on Nvidia NV3x hardware. Conse-
quently if 64-bit floating-point precision or higher is a requirement then GPU
based execution is not a viable option.

Finally, we found that Moller-Trumbore’s algorithm was superior to Badouel’s
approach because of technical peculiarities with respect to GPU programming,.
We demonstrated that the GPU performance is well capable to handle general
purpose computation tasks, but the AGP bus is not. We expect though that

8 ATT GPUs deliver 24-bit floating-point precision only.
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the forthcoming PCI Express bus? will soon leverage general purpose compu-
tation on the GPU as it promises to eliminate the memory transfer bottleneck
altogether.

7 Future Work

There are numerous possibilities for follow-up research efforts, among these we
see two areas which promise to be of some interest for future applications.

First of all we would like to implement more complex algorithms on the GPU
to make better usage of the powerful arithmetic instruction set of current and
next generation graphics hardware. This also includes multipass implementa-
tions as well as other strategies which help minimising the memory readback
bottleneck, which will hopefully lead to better performance results.

Second, it is important to further exploit concurrent programming tech-
niques to scale real world applications using GPUs as streaming coprocessors.
Among these are better parallelism and sophisticated time multiplexing strate-
gies, for example.

Last but not least it would be interesting to compare various aspects of
NVIDIA’s Cg shading language with the OpenGL Shading Language.

9PCI Express is the designated successor of the AGP and PCI bus technologies.
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A Cg Code

The straight Cg port of the Moller-Trumbore ray-triangle intersection testing
implementation, which uses textures only for parameter passing, highly resem-
bles its C pendant.

#define EPSILON 0.000001

struct vertex_out_fragment_in {

float4 position : POSITION; // not used for fragment shader
float2 texCoordO : TEXCOORDO;
float4 color : COLDRO;

};

float4 intersect(float3 orig, float3 dir, float3 v0, float3 vi, float3 v2)
{

float t, u, v;

float3 edgel, edge2, tvec, pvec, qvec;

float det;

float inv_det;

bool intersection = true;

/* find vectors for two edges sharing vO */
edgel vl - vO0;
edge2 v2 - v0;

/* begin calculating determinant - also used to calculate U parameter */
pvec = cross(dir, edge2);

/* if determinant is near zero, ray lies in plane of triangle */
det = dot (edgel, pvec);

if (det > -EPSILON && det < EPSILON)
intersection = false;

/* calculate distance from vO to ray origin */
inv_det = 1.0 / det;
tvec = orig - vO;

/* calculate U parameter and test bounds */
u = dot (tvec, pvec) * inv_det;

if (u < 0.0 || uw>1.0)
intersection = false;

/* prepare to test V parameter */
quec = cross(tvec, edgel);

/* calculate V parameter and test bounds */
v = dot (dir, qvec) * inv_det;

if (v < 0.0 || u+v>1.0)
intersection = false;

13



/* calculate t, ray intersects triangle */
t = dot (edge2,qvec) * inv_det;

float4 ret_val = float4(t,u,v,0.0);
if (intersection)

ret_val.w

return ret_val;

1.0;

float4 main( vertex_out_fragment_in IN,

uniform samplerRECT verticesO : TEXUNITO,
uniform samplerRECT verticesl : TEXUNIT1,
uniform samplerRECT vertices2 : TEXUNIT2,

float3
float3
float3
float3
float3

return

uniform
uniform

vO0

vl

v2
origin
dir

samplerRECT ray_origins : TEXUNIT3,
samplerRECT ray_dir : TEXUNIT4)

texRECT (verticesO, IN.texCoord0).rgb;
texRECT (verticesl, IN.texCoord0).rgb;
texRECT (vertices2, IN.texCoord0).rgb;
texRECT (ray_origins, IN.texCoord0).rgb;
texRECT (ray_dir, IN.texCoord0).rgb;

intersect (origin, dir, v0, vl, v2);

14
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