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Abstract

Duplicated code can have a severe, negative impact on the main-
tainability of large software systems. Techniques for detecting dupli-
cated code exist but they rely mostly on parsers, technology that is of-
ten fragile in the face of different languages and dialects. In this paper
we show that a lightweight approach based on simple string-matching
can be effectively used to detect a significant amount of code duplica-
tion. The approach scales well, and can be easily adapted to different
languages and contexts. We validate our approach by applying it to a
number of industrial and open source case studies, involving five dif-
ferent implementation languages and ranging from 256KB to 13MB
of source code. Finally, we compare our approach to a more sophisti-
cated one employing parameterized matching, and demonstrate that
little if anything is gained by adopting a more heavyweight approach.

1 Introduction

Duplicated code arises naturally during the development and evolution of
large software systems for a variety of reasons. Duplication can have a
severely negative impact on the maintenance of such systems due to code
bloat, added complexity, missing abstraction, and the need to maintain mul-
tiple copies of nearly identical code [1]. Although duplicated code is concep-
tually simple, it can be surprisingly hard to detect in large systems without
the help of automated tools.

Various approaches have been applied in practice with promising results
[2, 3, 4, 5, 6, 7, 8]. The main technical difficulty is that duplication is often
masked by slight differences: reformatting, modified code, changed variable
names, and inserted or deleted lines of code all make it harder to recognize
software clones. The general approach to combat this effect is to parse the
code and compare the parsed structures. Although this technique avoids
certain problems, it is heavyweight, and, more importantly, it is brittle, since
the approach must be adapted to every programming language and dialect
under consideration [7]. This is clearly stated in the following quotation:

“Parsing the program suite of interest requires a parser for the
language dialect of interest. While this is nominally an easy
task, in practice one must acquire a tested grammar for the di-
alect of the language at hand. Often for legacy codes, the dialect
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is unique and the developing organization will need to build their
own parser. Worse, legacy systems often have a number of lan-
guages and a parser is needed for each. Standard tools such as
Lex and Yacc are rather a disappointment for this purpose, as
they deal poorly with lexical hiccups and language ambiguities.”
[7].

In summary, most of the approaches [3, 4, 6, 7, 8] are based on parsing
techniques and thus rely on having the right parser for the right dialect for
every language that is used within an organization.

Instead, we propose a lightweight approach based on simple string-matching.
We cope with differences in formatting by means of a pre-filtering stage that
can easily be adapted to different languages and conventions. Comparison by
string-matching is straightforward, and is readily implemented by standard
libraries and tools. Sensitivity to changes in the duplicated code segments
is easily addressed by considering minimum sequence lengths and density of
duplicated code.

We have applied the technique to a large number of case studies. The
approach works well at detecting most of the duplicated code, and also scales
well. Experiments show that certain standard sensitivity settings are best
for most of the case studies.

Further experiments based on parameterized string-matching [9, 10], which
approximates the more sophisticated parser-based approaches, show that at-
tempts to refine the technique only identify at most 8% more duplication.
Our study shows that the upper bound limit of not identified duplicated code
using simple string matching is never more than 8%, and the average is under
5% for duplicated code sequences at least 10 lines in length.

In section 2 we provide a brief overview of the approach. In section 3
we validate the approach in terms of adaptability, tunability, scalability, and
coverage. In section 4 we compare the quality of the lightweight approach
against that of parameterized string matching. In section 5 we discuss related
work. In section 6 we conclude with some remarks on future and ongoing
work.

2 Detecting Duplicated Code by String-matching

Although the notion of duplicated code is intuitively clear, the problem of
detecting it is not so well-defined. Consider the following requirements for
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detecting duplicated code:

Multiple source files. Code may be duplicated within a single file, or
across multiple source files.

Avoid false positives. False positives occur when code is marked as dupli-
cated that should not be. Programming language constructs, idioms,
and recurring statements should not normally be considered as dupli-
cated code, since they do not indicate copy-and-paste problems.

Avoid false negatives. False negatives arise when code is duplicated, but
slightly altered in such a way that it is no longer recognized as being a
clone. A good code duplication detection tool will be robust in the face
of insignificant or minor alterations in the duplicated code. The real
difficulty is to be precise about when two similar pieces of code should
be considered duplicates of one another or not.

Scalability. Duplicated code is most problematic in large, complex software
systems. For this reason, a useful tool must be able to cope with very
large code bases.

Multiple languages and dialects. There are thousands of programming
languages in use today, and hundreds of dialects of the most popular
languages (like C++). A useful duplicated code detector must be
robust in the face of syntactic variations in programming languages,
and should be configurable with a minimum of effort. In particular, a
tool that can only be configured by an expert in parser technology is
unlikely to be popular.

The approach we advocate basically consists of the following three steps:

1. Eliminate noise: transform source files into effective files by removing
comments, white space, and other uninteresting artifacts,

2. Compare the transformed code: compare effective files line-by-line, and

3. Filter and interpret the results: apply some simple filters to extract
just the interesting patterns of duplicated code.

Multiple sources files are easily compared by this technique. False posi-
tives are avoided by removing certain kinds of noise and by filtering. False
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negatives are similarly avoided by removing noise that will perturb the com-
parisons. The approach scales well due to its simplicity. Finally, the approach
is easily adapted to different languages since it does not rely on parsing. Noise
reduction may have to be adapted for each language, but this is much simpler
than adapting a parser.

The results can be reported in a variety of ways. Duploc is an experimental
platform that visualizes the comparison matrix as a dotplot [11]. These visual
displays are linked to the source code to support reverse engineering. The
results can also be used as input to a refactoring engine that can eliminate
duplicated code by introducing the missing abstractions [12].

In the rest of this section we will describe the technique in some more
detail. In the following sections we will validate our claims in the context of
a significant number of case studies.

2.1 Noise Elimination

Noise elimination serves two purposes. It reduces false positives by eliminat-
ing common constructs and idioms that should not be considered duplicated
code. It also reduces false negatives by eliminating insignificant differences
between software clones.

What should be considered noise depends not only on the programming
language, but also on what information you want to extract. Typical opera-
tions include:

• the elimination of all white space and tabulation,

• the elimination of comments, and

• the elimination of uninteresting language constructs.

Other operations that could be performed, depending on the program-
ming language in question, include:

• the removal of all preprocessor directives,

• the removal of all block and statement delimiters, and

• the conversion of all characters to lower case.

For example, the following code snippet:
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#include <stdio.h>

static int stat=0;

int main(void)
{
int local=1;
int *dynamic = (int*) malloc(sizeof(int),1);

might be transformed to:

staticintstat=0
intlocal=1
int*dynamic=(int*)malloc(sizeof(int),1)

Noise elimination is easily specified as a short program in a dedicated
text manipulation language, such as perl [13].

2.2 Comparison

After noise is eliminated, effective files are compared to each other line-by-
line. The naive comparison algorithm is O(n2), but this is easily improved
by hashing lines into B buckets, and then comparing only lines in the same
bucket [7].

Lines are compared for exact string matches. The result of the comparison
is a matrix of hits and misses. Figure 1 illustrates a typical matrix visualized
as a dotplot [14, 15]. Line numbers increase downwards for one file, and to
the right for the second file. In this example, we see that the second file
is not only longer than the first, but more than half of the file essentially
duplicates the first file. This is manifested by the long diagonal of hits.

Exact clones are relatively rare. Instead, code is more typically dupli-
cated and then modified in various ways. Figure 2 illustrates some typical
duplication scenarios:

a. pure duplication results in unbroken diagonals.

b. modified lines appear as holes in the diagonals.

c. deletions and inserts result in broken, displaced diagonals.

d. case statements and other repetitive structures yield grid-like, rectangular
blocks.
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Figure 1: A dotplot of a comparison matrix applied to a file and a more
recent version of itself.

The comparison matrix will typically contain many hits, some of which
are significant, and others which are not. In order to extract the significant
hits, we perform a third, filtering pass.

2.3 Filtering

We are interested in detecting significant code duplication, but how do we
determine what is “significant”? We can interpret this in several ways.

First of all, we are not so much interested in individual lines of code
that may be duplicated, but rather in longer sequences that may contain
a certain amount of duplication. We call these comparison sequences. We
quantify the duplication in two comparison sequences by considering either
the gap size, i.e., the length of non-duplicated subsequences, or the dupli-
cation density, i.e., the ratio of duplication hits to the total length of the
comparison sequence.

For example, if we compare the sequences “abcdefghi” and “abcdxyzefg”,
we find a gap of length 3, and an overall duplication density of 66% (6 hits
in sequences of length 9).

This leads us to consider the following filter criteria:

1. Minimum length. This is the minimal length for a comparison sequence
to be considered “interesting”.
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a b c d a b c di if ge h f ge h

a) Diagonals

a b c d f ge h x y z e f gdcba

c) Broken Diagonals

a b c d a b x di if ge y ze hh

b) Diagonals with holes

a b c d h i cc lf ge b k bj cb

d) Rectangles

Figure 2: Dotplot visualization of typical duplication scenarios.

2. Maximum gap size. This is maximum allowable gap size for sequences
to be considered duplicates of one another.

3. Minimum density. This is the minimal duplication density for compar-
ison sequences to be considered duplicates of one another.

Filtering is purely concerned with eliminating false positives, since filters
only remove duplicates detected in earlier phases.

In our experiments, a minimum length of 10 lines proved to be good for
detecting significant duplication. Low values, like 1 or 2, generate too much
noise, and large values, like 30, filter out virtually all code duplication.

A maximum gap size of 4 picks up most cases of “interesting” duplication.
A small gap size of 0 will only pick up exact clones, which is not so interesting.
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Filtering based on minimum density is used similar effect, but is less
sensitive to the length of the duplication sequence. Note that a maximum
gap size of 0 forces the minimum density to be 1, and vice versa. In prac-
tice, a minimum density of around 50% will filter out uninteresting cases of
duplication.

We discuss the impact of the filter settings in more detail in sections 3.3
and 3.4.

3 Case Studies

In this section we explore how well the string-matching approach works in
practice by considering a number of case studies. The case studies have been
chosen to cover a variety of different application characteristics:

• Different programming languages, including C, C++, Java, Smalltalk,
Python and Cobol.

• Different development environments, including industrial code, open-
source, and academic research prototypes.

• Different sizes of projects, ranging from small, individual programs
(e.g., patch, 80KB C code) to large applications (e.g., GNU CC, 13.4
MB C), and small to large numbers of program files (e.g., Database
Server, with 593 classes in individual files).

An overview of the case studies is given in the appendix A.

3.1 Language Independence

The string-matching approach is easily adapted to different programming
languages in a matter of minutes. The only aspect which should normally
be adjusted is the noise elimination, since white space and comments are
different for each programming language in question, and may affect both
the number of false positives (e.g., duplicated comments) and false negatives
(e.g., duplicated code with modified indentation).

Noise elimination is typically achieved by means of a simple script in a
dedicated text-manipulation language, such as perl, awk or sed. All that
is needed is a simple scanner which is able to recognize delimited text, i.e.,
multiline comments. We have implemented a fully generic and fairly complete

9



solution which also handles strings in about 150 lines3 of perl code. A
simple parameterization of the relevant delimiter symbols then suffices to
ready the tool for any new language. Small extensions may be necessary
for programming languages which require a strict source line format, e.g.,
Cobol.

3.2 Scalability

String-matching is cheap and efficient even for very large amounts of source
code and large amounts of duplication. The largest case study that Duploc
was applied to was GNU CC (13.4 MB of source code), and the largest
degree of duplication detected was 59% (in a payroll system).

In practice, the string-matching itself is not a bottleneck, since the com-
plete source code must be processed only once, and this may be done in a
single batch job. (Noise elimination may need to be fine-tuned, but this is
normally done with a small subset of the source code.) The real difficulty is
to interpret the large amounts of data that are generated.

Dotplots work well to get an overview of a few thousands of lines of code
at a time, but are not adequate for exploring large systems. For large systems
we developed on the one hand a mural-based visualization of dotplots and on
the other hand various code duplication reports, but this is out of the scope
of this paper as we focus here on the relevance of our approach compared
with other more heavyweight techniques [11].

3.3 The Impact of Minimum Sequence Lengths

We measure duplicated code either within a single file or across a set of files
in terms of the fraction of lines of code that occur more than once. If, for
example, a sequence of 10 lines of code occurs twice in a 100-line file, then this
file exhibits 20% code duplication (20 lines out of 100). Typical industrial
code is estimated to contain about 8-12% duplication [5]. Duplication rates
of 25% are considered exceptionally high, and rates of 50% or more are rarely
seen in practice.

The actual degree of duplication will depend on noise elimination and
filtering, since duplication without modification is rare. For the majority of
the case studies, we experimented with the following settings:

3See Appendix B for a dedicated solution for C/C++ source code in about a dozen
lines.
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1. Minimal Length: We selected sequence lengths 10, 20, and 30 as min-
imum thresholds. We did not explore higher thresholds, since dupli-
cation fragments of length > 30 are highly unusual. From the point-
of-view of reengineering, however, a threshold of around 20 could be
useful as a rule-of-thumb for identifying opportunities for refactoring.

2. Maximum Gap Size: For all the case studies, we have set the gap size
to 4. This is a high value, allowing up to four changed lines between
two lines that must match exactly.

3. Minimum Density: We did not impose any density constraint, so the
minimum density threshold was set to 0.

Clearly, increasing the minimum sequence length will decrease the pro-
portion of duplicated code that is detected. Below, in section 3.4 we consider
the impact of other settings for gap size and density.

3.3.1 Industrial Case Studies

The industrial case studies case studies we explored exhibited from 6% to
59% duplication. Although this may seem unusual, these case studies were
provided to us precisely because they were suspected of suffering from high
rates of duplication, and they should therefore not be considered truly rep-
resentative.

The average duplication for this category, including all case studies, are:
Coordinate Average Variance
Sequence Length 10: 35% 0.0558
Sequence Length 20: 26% 0.0529
Sequence Length 30: 20% 0.0469

Note that if a fifth of the source code is duplicated — when only looking
at long copied sequences of 30 lines or more — it must be considered a very
high rate.

It is also remarkable that increasing the sequence length by a factor of
three does not even halve the duplication rate (see the other categories for a
comparison), clearly a sign of a very large proportion of copied code.

3.3.2 Open Source Case Studies

The open source case studies exhibited dramatically lower duplication rates
than the industrial ones. The average duplication for the open source cate-
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Figure 3: An extract from a comparison matrix of the agrep case study. We
see that the code consists in regular repetitions of the same few lines, with
only marginal variations.

gory is as follows:
Coordinate Average Variance
Sequence Length 10: 10.2% 0.0041
Sequence Length 20: 4.7% 0.0017
Sequence Length 30: 2.9% 0.0012

Note that the increase of the length constraint by a factor of two effec-
tively halves the duplication rate. Increasing the sequence length again by a
third reduces the duplication rate by 40%.

One of the open source case studies with the most duplication is the
agrep [16] tool. Almost 25% of source lines are copied in sequences of at
least length 10, and for length 30 we still have 14% of the code duplicated.
When looking at the copied sequences, we see that the algorithm is expanded
in multiple instances of the same steps. (see Figure 3).
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Figure 4: An example for the Impact of setting MaxGapSize to Zero. First
number of X-Axis labels is MinimumSequenceLength, second number is Max-
GapSize.

3.3.3 Academic Software Case Studies

The software produced in an academic context exhibits small to moderate
duplication rates with only one case study going over 15% with any of the
filter settings. There are a number of case studies for which we could only
find around 5% of duplication at sequence length 10. In these cases, the
duplication drops to under 2% for the bigger sequence lengths.

The numbers for this category are:
Coordinate Average Variance
Sequence Length 10: 12% 0.0063
Sequence Length 20: 5% 0.0034
Sequence Length 30: 4% 0.0019

We see that the largest part of the recorded duplication is for sequences
of at least 10 lines, and since there is no big difference between lengths 20
and 30, the smaller part of the duplication is made up of long sequences.

3.4 The Impact of Gap Size and Density Settings

Using a gap size that is too small eliminates a great deal of duplication that
would otherwise be detected. In Figure 4 we see the impact of setting the
gap size to 2 and to 0 in the UVG case study, with a variety of different
minimum sequence lengths. With a gap size of 2, duplication is detected at
rates ranging between 80% and over 90%, even when the sequence length
ranges from 0 to 50. With a gap size of 0, however, the duplication detected
drops rapidly to just over 20% as the sequence length increases.

The density threshold removes comparison sequences that do not contain
enough matches, but are nevertheless stretched by frequent mismatches or
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Figure 5: Lines of code suppressed by a specific density setting, compared
to unrestricted density. Density 75% has the biggest impact in almost all
case studies, when compared to the next lower setting (Values of Table 1).
Note that the scale is logarithmic to account for the different sizes of the case
studies

gaps. This happens when we have a repetitive piece of code, like for example
a switch statement in C or C++, where we have the recurring line break;.
If the contents of the individual branches of a switch statement consist of a
single line, a comparison will produce a sequence where matches (the break;
lines) and gaps (the code of the switch-branches) alternate. Depending on
the length of the switch statement, the sequence can encompass quite a
number of lines. To weed out such undesirable sequences, we use the density
threshold.

In Table 1 we see that the amount of duplication in LOC that is filtered
out increases as the minimum density increases (hardly a surprising result).
These results are plotted in Figure 5. Note that the minimum density of 75%
has the largest increase compared with densities of 50% and 90%.

4 Parameterized String-matching

Although simple string-matching clearly detects a great deal of duplication,
it is natural to ask how much duplication it misses. The difficulty with this
question is that “duplication” is in the eye of the beholder. Consider, for
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Case Study Density
50% 75% 90%

Agrep 43 773 2344
Bison 366 1014 1904
Apache 477 6756 18658
BlobSections 521 8206 22486
CodeCrawler 14 339 581
DiffUtils 269 1073 1482
Dome 105 3435 11080
Duploc 225 2161 3514
Flex 2264 5716 6649
GCC 2708 25579 49279
GnuJSP 40 862 1147
JBoss 464 3502 11708
SDL 1150 6786 17307
Tgen 0 218 535
Tomcat 628 3187 5907
UVG 138 3498 13382
XEmacsC 5149 17593 33813
XEmacsLisp 876 5821 9473
ZooLib 3510 13487 22422

Table 1: Amount of duplication (in lines of code) that is removed when using
different density filter setting. The MaxGapSize Filter Setting was 2 for all
of the data.

example, the two program fragments below.

int i;

i = 5;

i++;

int j;

j = 5;

j++;

The duplication is readily apparent to the eye, but would not be detected
by simple string-matching.
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To detect this form of duplication, it is necessary to extract the structure
inherent in a program, and compare structures rather than literal strings.
Parsing code and comparing the resulting abstract syntax trees, however, is
an approach that is considerably more heavyweight than we wish to consider,
for reasons we have already outlined.

Instead, we propose to estimate the theoretical upper bound of the du-
plication that we fail to detect by simple string-matching, by exploring the
duplication detected by means of parameterized string-matching [2, 17]. The
idea is simply to add a pre-processing phase which abstracts from variable lan-
guage constructs, and then to perform simple string-matching on the trans-
formed programs. In general this will produce many false positives, but it
will also give us an upper bound to the duplication that would be detected
by any more sophisticated approach based on comparison of ASTs or other
structured representations of programs.

A simple way to achieve this abstraction is to use regular expressions to
match elements of the source code that belong to a common syntactic cate-
gory, and replace them by a string representing that category. For example,
all identifiers may be replaced by a generic name like p. See the following
Table for a list of other code elements that can be abstracted.

Language Element Example Replacement

Identifier counter p

Literal String "Abort" "..."

Literal character ’y’ ’.’

Literal Integer 42 1

Literal Decimal 0.314159; 1.0

Function Name main() foo()

Note that the keywords of the programming language are not abstracted.
This stems from the consideration that language keywords, which give the
code its basic structure, must be the same in two code fragments if they are
to be considered duplicated.

By choosing which elements in the above table to abstract and which not,
we introduce an “abstraction level” into which the code is transformed. A
particularly useful level is that which abstracts every element in the table
above except function and method names. See Figures 6 and 7 for an example
of this kind of transformation.
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1 def manage_first(self, selected=[], REQUEST=None):
2 options=self.data()
3 if not selected:
4 message="No views were selected to be made first."
5 elif len(selected)==len(options):
6 message="Making all views first has no effect."
7 else:
8 options=self.data()

Figure 6: Python-source code from the Zope Application Server.

1 def manage_first(P, P=[], P=P):
2 P=P.data()
3 if not P:
4 P="..."
5 elif len(P)==len(P):
6 P="..."
7 else:
8 P=P.data()

Figure 7: The same source code as in Figure 6, after having abstracted all
identifiers (except method names). Note that also literal strings have been
abstracted.

The required transformation is implemented with moderate effort. It suf-
fices to build a small tokenizer/lexer with a lookahead of one using regular ex-
pressions (see Appendix C). In this way, we determine for each token to which
class it belongs and to which abstract replacement we have to change it. This
approach is generic and was easily adapted for different languages (we have
done so for C, C++, Java, Cobol and Python). From this perspective,
we claim that parameterized string-matching realized by the combination of
abstraction and simple string-matching is still largely language-independent.

Parameterized string-matching not only detects more duplication than
simple string-matching, it also produces more false positives. Consider, for
example, the following code snippet and its abstraction:

n = 0; p = 0;

translations = _translations; p = p;

CPnlast = onerecord[1]; p = p[1];

CPnfirst = onerecord[2]; p = p[1];
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Figure 8: On the left, the matches of the unaltered source code. On the right,
the matches that are produced by comparing the abstracted source code.

CPemail = onerecord[3]; p = p[1];

timestamp = onerecord[4]; p = p[1];

This clearly illustrates that all assignment statements of the same type
will be flagged as duplicated code, which may result in large numbers of
false positives. Consider, for example, Figure 8 which shows the duplication
dotplots for both simple and parameterized string-matching of a program file.
The main difference is the appearance of the black blocks at certain points
in the program. These presumably arise due to sequences of assignment
statements in the program. In this particular case, the dotplots quickly show
us that no new duplication has been detected, but only false positives have
been added. The black boxes only add noise.

In Figure 9, we see the relative difference between duplication found by
parameterized string-matching and simple string-matching in our Smalltalk
case studies for sequence lengths 10, 20 and 30. We see that the amount of
additional duplication detected by parameterized string-matching (possibly
including false positives) is never more than 8%, and the average for sequence
length 10 is under 5%.

The most striking detail of the chart in Figure 9 is that there is a notable
difference in detected duplication only at the smallest sequence length of 10.
For both longer sequence lengths, 20 and 30, the difference is almost always
below 1%, the average difference being 0.8% for sequence length 20 and 0.3%
for sequence length 30.

Note that we did not check for false positives among the additional du-
plication that was reported for the abstracted code, so the numbers reported
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Figure 9: Differences between the amount of duplication found by parame-
terized string-matching and simple string-matching, at sequence lengths 10,
20, and 30 for each case study (Smalltalk case studies).

here should only be considered as an upper bound for the duplication un-
detected by simple string-matching. This upper bound, however, is quite
small in practice, so we conclude that simple-string matching is highly cost
effective, and can generally be preferred to more sophisticated techniques.

5 Related Work

Many different techniques have been applied to identify copy and paste pla-
giarism [18, 19, 20, 21]. Techniques used include: structural comparison using
pattern matching [4], metrics [5, 6], statistical analysis of the code, code fin-
gerprints [22, 23, 3], or AST matching [7], slicing of program dependence
graphs (PDGs) [24],[25], or a combination of techniques [26]. However, all
these techniques share a generic process comprising of two steps:

1. Source code transformation. The source code is transformed into a
intermediate representation. Depending on the information needed for
the comparison, the operation can be at the lexical or syntactical level.
For example, comments and other uninteresting code fragments can be
removed from the code, or abstract syntax tree can be built from code.

2. Code Comparison. Once the transformed code the actual comparison
is done. It can be AST matching, line or metrics comparison.

Table 2 summarizes the different approaches used.
Halstead and Grier [18, 19] detect student plagiarism using statistical

comparisons of style characteristics such as the use of operators, use of special
symbols, frequency of occurrences of references to variables or the order in
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Ref Level Transformed
Code

Comparison
Technique

[3] Lexical Substrings String-
Matching

[11] Lexical Normalized
Strings

String-
Matching

[2] Lexical Parameterized
Strings

String-
Matching

[5] Syntactical Metric Tuples Discrete
comparison

[27] Syntactical Metric Tuples Euclidean
distance

[7] Syntactical AST Tree–
Matching

[24] Semantical PDG Relaxed
subgraph
matching

[25] Semantical PDG Slicing

Table 2: Overview of the approaches for detecting duplication of code.

which procedures are called. Jankowitz [21] uses the static execution tree
(the call graph) of a program to determine a fingerprint of the program.

Paul and Prakash [4] propose a regular language to identify programming
patterns. Cloning can be detected if we assume that if two code fragments
can be generated by the same patterns then they could be clones.

Johnson [3] applies a special heuristic, using constraints for the number
of characters as well as the number of lines, to gather a number of lines into
a snip of source code, to which he applies the fingerprint algorithm. Sif [22]
is also based on the same idea. Johnson uses the identified duplication to
understand change [28]. In [3], he also experimented with the abstraction of
every sequence of alphanumeric characters to the letter ‘i’, i.e. a simpler and
much less sensitive “parameterization” than what we are attempting here.
Since he does a coarse grained interpretation of his results, little can be said
save that he matches more code, as is expected.

Kontogiannis [6] evaluates the use of five data and control flow related
metrics for identifying similar code fragments. The metrics are used as sig-
natures for a code fragment. The technique supports change in the copied
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code. However it is not language independent because it is based on Abstract
Syntax Tree annotation.

dup [2] is a program that detects parameterized matches and generates
reports on the found matches. This work is however mostly focused on the
algorithmic aspects of detecting parameterized duplication and not on the
application of the technique in an actual software maintenance and reengi-
neering context.

Baxter et al. [7] transform source code into abstract syntax trees and
detect clones and near miss clones among trees. They report similar code
sequences and propose unifying macros to replace the found clones. Their
approach requires, however, a full-fledged parser.

Kamiya et. al. [17] transform source code into tokens, removing identifier
names and constants just like we have described in section 4. They remain
largely language independent. As a comparison mechanism they employ
suffix trees like dup [2]. They have shown their approach to be scalable to
very large case studies.

Krinke [24] employs a program dependence graph to detect duplication
through similarities of the data flow, reducing the dependence on syntactical
similarity. This approach is however even more heavyweight than abstract
syntax trees, since a detailed program dependence graph has to be built and
compared.

Komondoor and Horwitz [25] also represent the code as a program de-
pendence graph. Similar code fragments are extract using backwards slicing.
This approach focuses on ideal clones which can subsequently be extracted
and put into procedures automatically. The same drawback of high compu-
tational costs applies here as in [24].

In a recent comparison of some of detection techniques mentioned above,
Bellon [29] has found that our approach could be categorized together with
Baker [2] and Kamiya [17] as having high recall but low precision. Regarding
the amount of returned clone candidates, our approach was closests to Baker’s
results. This seems to be attributable to an innate characteristic of both these
techniques, namely to make the linebreaks in the source code a factor in the
comparisons (which Kamiya does not). The same broad division of results
along the borders of the fundamental techniques utilized was also visible for
the other approaches.
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5.1 Additional benefits of more sophisticated approaches

Detection approaches that use more heavyweight means benefit from basi-
cally two advantages:

• Better abstraction capabilities will detect duplication which is syntac-
tically farther apart.

• More detailled information about the duplicated code provides more
automation potential.

6 Conclusions and Future Work

We have presented a lightweight and language-independent technique to iden-
tify duplicated code. We have also demonstrated that more sophisticated
approaches, such as parameterized matches [2], offer only small advantages
over the lightweight approach based on simple string matching. We found
that the upper bound limit of the missed duplicated code is at maximum %8
and in for sequence 10 lines less than 5% in average.

Detection of duplicated code is just one activity in the reengineering life-
cycle [1]. It is a typical symptom of old age in legacy systems, and can be
cured by refactoring operations [30, 31, 32]. We have applied the same princi-
ple of using lightweight techniques to develop Moose, a language-independent
platform for reverse engineering and reengineering of object-oriented software
[33, 34]. We have confirmed that simple, lightweight visualization techniques
are useful not only for understanding duplicated code, but also for obtaining
both coarse-grained and fine-grained views of complex software systems [35].

In the future, we would like to investigate how detection of code dupli-
cation could be productively integrated into a toolkit for reverse engineering
and reengineering complex software systems.
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Appendix A

These tables show the sizes of the case studies. Numbers shown like this (100
KB) are estimated.

6.1 Industrial Case Studies

ID Name Language Size # Files total LOC effective LOC
I1 Mail Sorting Controller C++ 4.65 MB 285 289436 95109
I2 Database Server Smalltalk 6.83 MB 593 243755 142504
I4 Pipeline Simulation C++ 1.24 MB 49 43174 20772
I5 Microsoft Foundation Classes C++ 3.55 MB 245 144575 76589
I6 Payroll I Cobol 2.94 MB 13 40515 19541
I7 Payroll II Cobol 2.61 MB 336 35358 35358
I9 Forest Managment C++ 707.06 KB 63 24137 14222

6.2 Open Source Case Studies

ID Name Language Size # Files/Classes total LOC effective LOC
O1 Agrep Info Retrieval C 281.96 KB 22 13891 9789
O2 Aida Web Server Smalltalk 500 KB 61 11175 8017
O3 Apache Web Server C 2.69 MB 141 94874 50924
O4 Bison Compiler Generator C 496.56 KB 54 20256 10596
O5 Flex Lexer Generator C 470.44 KB 21 17549 10639
O6 GNU CC C 13.4 MB 221 (800000) (460000)
O7 GNU JSP Implementation Java 306.92 KB 77 9818 4442
O8 GNU diffutils C 448.05 KB 24 16052 8266
O9 JBoss Application Server Java 1.72 MB 403 62574 24977
O11 Patch C 79.90 KB 6 3350 2251
O12 Refactoring Browser Smalltalk (250 KB) 180 17808 14693
O13 SDL C++ 1.94 MB 207 77116 45206
O14 Tomcat Servlet Container Java 1.69 MB 267 53615 19682
O15 VW SAX Parser Smalltalk (160 KB) 60 3874 3138
O16 XEmacs (C Source) C 7.41 MB 255 268695 138520
O17 XEmacs (Lisp Source) Lisp 3.76 MB 227 105240 59730
O18 ZooLib C++ 2.51 MB 111 82662 46658
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6.3 Academic Software Case Studies

ID Name Language Size # Files/Classes total LOC effective LOC
A1 CodeCrawler Smalltalk (150 KB) 64 5794 4382
A2 Duploc Smalltalk 1.5 MB 294 35176 20573
A3 Jun 3D Library Smalltalk 5 MB 299 42151 48884
A4 Message Board Python 265 KB 36 6709 6500
A5 Moose Reeng. Env. Smalltalk (500 KB) 105 12017 7742
A6 Sic Compiler Generator Smalltalk (170 KB) 58 8958 7558
A7 TGen Compiler Generator Smalltalk 300 KB 92 5958 4205

Appendix B

The following tiny scanner in perl removes all comments from C/C++/Java
programs. To be able to deal with special cases like comment delimiters
within literal strings, strings are also recognized (and can be optionally trans-
formed as well). The program additionally removes all white space from the
source text and turns all characters to lowercase.

1 $inputFile = $ARGV[0];

2 $outputFile = $ARGV[1];

3 open IN, $inputFile or die "Could not open ’$inputFile’: $!.\n";

4 $sourceText = join ’’, <IN>;

5 close IN;

6
7 $sourceText =~ s{

8 (

9 /\*.*?\*/ # recognize multiline comments

10 |

11 //.*?\n # recognize C++-style comments

12 |

13 " # recognize literal strings

14 (

15 \\. # do not choke on "\""

16 |

17 [^\\] # recognizes all unescaped characters

18 )*?

19 "
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20 |

21 ’ # recognize literal characters,

22 \\? # be aware of ’\n’ etc.

23 .

24 ’

25 )

26 }

27 {

28 treatDelimitedText($&)

29 }xgse;

30
31 $sourceText =~ s/[ \t\f\r]//g; # remove all whitespace except newlines

32
33 open OUT, ">$outputFile" or die "Could not open ’$outputFile’: $!.\n";

34 print OUT lc($sourceText); # change all text to lowercase

35 close OUT;

36
37 sub treatDelimitedText {

38 my ($delimitedText) = @_;

39 # Comments: remove everything except for newlines

40 if($delimitedText =~ m{^(/\*|//)}) {

41 $delimitedText =~ s/[^\n]//g;

42 }

43 # Literal Strings/Characters: turn into spaces, leave but the delimiters

44 if($delimitedText =~ m{^(\"|\’)}) {

45 $delimitedText = substr($delimitedText,0,1)

46 . ’ ’x(length($delimitedText)-2)

47 . substr($delimitedText,0,1);

48 }

49 return $delimitedText

50 }

Appendix C

The following perl 5 regular expression implements a scanner with looka-
head one non-whitespace character which recognizes identifiers in C code
and transforms them into arbitrary strings. A list of all keywords of the
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programming language is needed to distinguish identifiers. The input to this
expression is expected to be free of comments or literal strings. Note that
the expression does not match function definitions or function calls.

1 $sourceText =~ s/

2 ([a-zA-Z_]\w*) # recognizes alphanumeric strings

3 (

4 \s*? # identifiers are followed by white space

5 [ # or any of the characters from this list.

6 \)\}\[\]\/\- # Note that ( is not part of this list,

7 +*!?=|&<>.,;: # thus failing to match function

8 ] # definitions or function calls.

9 )

10 /

11 replaceIfNotKeyword($1) # do not transform keywords

12 .$2 # do not loose lookahead

13 /xeg;

The regular expressions to match other elements of program text, e.g.,
constants of various types, are much simpler.
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