
Safe and Explicit Composition of Class Properties

Stéphane Ducasse, Nathanael Schärli, Roel Wuyts

Institut für Informatik und Angewandte Mathematik
University of Bern, Switzerland

IAM-03-007

September 11, 2003

Abstract

As object-oriented programmers, we are trained to capture common properties of objects in
classes that can be reused. Similarly, we would like to capture common properties of classes
in metaclass properties that can be reused. This goal has led researchers to propose models
based on explicit metaclasses, but this has opened Pandora’s box leading to metaclass com-
position problems. Numerous approaches have been proposed to fix the problem of metaclass
composition, but the composition of conflicting properties was always resolved in an adhoc
manner. Our approach uses traits, groups of methods that act as a unit of reuse from which
classes are composed, and represent metaclass properties as traits. Metaclasses are then com-
posed from these traits. This solution supports the reuse of metaclass properties, and their
safe and automatic composition based on explicit conflict resolution. The paper compares
existing models for composing metaclass properties, discusses traits and our solution, and
shows some concrete examples implemented in the Smalltalk environment Squeak.

CR Categories and Subject Descriptors: D.3.1 [Programming Languages]: D.3.2 Lan-
guage Classifications, D.3.3 Language Constructs and Features (E.2), 68N15 Programming
languages, 68N19 Other programming techniques (object-oriented, sequential, concurrent,
automatic, etc.) [New MSC2000 code]

Safe and Explicit Composition of Class
Properties

STÉPHANE DUCASSE
and
NATHANAEL SCHÄRLI
and
ROEL WUYTS
{stephane.ducasse, nathanael.schaerli, roel.wuyts}@iam.unibe.ch
Software Composition Group
University of Berne

As object-oriented programmers, we are trained to capture common properties of objects in classes

that can be reused. Similarly, we would like to capture common properties of classes in meta-
class properties that can be reused. This goal has led researchers to propose models based on

explicit metaclasses, but this has opened Pandora’s box leading to metaclass composition prob-

lems. Numerous approaches have been proposed to fix the problem of metaclass composition, but
the composition of conflicting properties was always resolved in an ad-hoc manner. Our approach
uses traits, groups of methods that act as a unit of reuse from which classes are composed, and

represent metaclass properties as traits. Metaclasses are then composed from these traits. This
solution supports the reuse of metaclass properties, and their safe and automatic composition
based on explicit conflict resolution. The paper compares existing models for composing meta-
class properties, discusses traits and our solution, and shows some concrete examples implemented
in the Smalltalk environment Squeak.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution and Maintenance—documen-
tation; H.4.0 [Information Systems Applications]: General

General Terms: Metaclass composition, Inheritance, Mixins, Traits

Additional Key Words and Phrases: Inheritance, Metaclass Composition, Mixins, Multiple Inher-

itance, Reuse, Smalltalk, Traits

1. REUSING METACLASS PROPERTIES

In class-based object-oriented programming, classes are used as instance generators and
to implement the behaviour of objects. In some object-oriented languages that feature
classes, like CLOS or Smalltalk, classes themselves are first-class objects, and instances
of so-calledmetaclasses[Ingalls 1976; Cointe 1987]. In the same way that classes define
the properties for their instances (objects), metaclasses implement the properties for their

Author’s address: Stéphane Ducasse.
Software Composition Group, University of Berne, 10 Neubrueckstrasse, CH-3012 Berne. Switzerland.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c©

ACM Transactions on , Vol. XX, No. X, Month Year, Pages 1–??.

2 · Stéphane Ducasse, Nathanael Schärli, and Roel Wuyts

instances (classes). Properties of metaclasses are calledmetaclass properties. Examples
of metaclass properties areSingleton, Final, Abstractness. . . [Ledoux and Cointe 1996]

Treating classes as first class-objects and having metaclasses is important for two main
reasons:

—Uniformity and Control. In a pure object-oriented language it is natural for classes to
be instances of metaclasses. The uniformity defines metaclasses as the natural place to
specifyandcontrolobject creation and other class behavior.

—Reuse of Class Behavior.Since a metaclass is just like any other class, class behavior
is reused and conventional reuse and decomposition techniques are applied to the meta-
classes [Ledoux and Cointe 1996]. Hence the same techniques available for base classes
(inheritance and overriding of methods, for example) are applicable at the meta-level.

When a language has metaclasses, those metaclasses can beimplicit or explicit. With
implicit metaclasses the programmer cannot specify the metaclass for a class [Goldberg and
Robson 1989]. As such, implicit metaclasses successfully address the goal of “uniformity
and control”, but they provide very little help for achieving “reuse of class behavior”.
Explicit metaclassesavoid this limitation because the programmer can explicitly state from
which metaclass his or her classes are instances [Ingalls 1976; Cointe 1987; Briot and
Cointe 1989; Kiczales et al. 1991; Danforth and Forman 1994].

Languages without explicit metaclasses suffer from the fact that metaclass properties
cannot be reused across classes, and that they cannot be combined. For example, every
time one needs a class with the Singleton behaviour, the same implementation needs to be
done over and over again. With explicit metaclasses, however, the singleton class property
can be factored out to a Singleton metaclass, which can then be used to instantiate classes
that exhibit the Singleton behavior.

There is a long tradition of languages trying to achieve reuse and composition of meta-
class properties by treating classes as first-class objects: from Lisp-based object-oriented
extensions such as CLOS [Steele 1990], Flavors, or ObjVlisp [Cointe 1987] via C++-based
reflective cores such as SOM [Danforth and Forman 1994; Forman et al. 1994; Forman and
Danforth 1999], to pure object-oriented languages such as Smalltalk [Ingalls 1976; Gold-
berg and Robson 1989], ClassTalk [Briot and Cointe 1989], or NeoClassTalk [Bouraqadi-
Saadani et al. 1998; Ducasse 1999]. Related approaches such as CodA [McAffer 1995],
Moostrap [Mulet et al. 1995], Iguana/J [Redmond and Cahill 2002], Guarana [Oliva and
Buzato 1999], OpenC++ [Chiba and Masuda 1993], or Reflex [Tanter et al. 2001], support
the composition and reuse of meta-objects.

While these languages achieve some support for the reuse of metaclass properties, they
also suffer from several limitations. First of all some approaches sacrifice the compatibil-
ity between the class and the metaclass level [Cointe 1987; Graube 1989]. Secondly there
are some approaches that are specifically designed to avoid the compatibility problems
from the first point. Their solutions, however, rely onad-hoccomposition mechanisms
that are based on automatic code generation and dynamically changing the meta-metaclass
[Bouraqadi-Saadani et al. 1998]. Not only does this make it hard to understand the resulting
code, it also leads to problems in case of conflicting properties and results in hierarchies
that are fragile with respect to changes. The solutions are not satisfactory from a con-
ceptual point of view either, because the metalevel (or meta-metalevel) does not employ
object-oriented techniques (such as inheritance or instantiation) butad-hocmechanisms
only applicable on the meta-level to do metaclass composition. This breaks the funda-

ACM Transactions on , Vol. XX, No. X, Month Year.

· 3

mental idea of reflective programming that uses theavailable features of a language to
define and control the behavior of the language itself [Kiczales et al. 1991]. Last but not
least other approaches used in the specific context of meta-objects use chain of responsi-
bility [Mulet et al. 1995] or composite meta-objects [Oliva and Buzato 1999] to compose
meta-objects. The first approach does not provide the full control of the composition. The
second forces the programmer to develop specific meta-objects to compose others.

Our approach allows one to safely compose and reuse metaclass properties based on
a general-purpose object-oriented language technology calledtraits [Scḧarli et al. 2003].
Traits are composable units of behavior that close the large conceptual gap between a
single method and a complete class. Consequently, we model metaclass properties with
traits and use trait composition to safely combine and reuse them in our metaclasses. In
this way we enjoy all the conceptual benefits of the traits composition model. In particular,
composition and conflict resolution areexplicit and undercontrolof the composing entity.
This allows explicit control over a composition and resolution of conflicts that occur when
two properties are composed that do not quite fit together. Our approach is safe in the sense
that it supports upward and downward compatibility [Bouraqadi-Saadani et al. 1998].

The rest of the paper is structured as follows. Section 2 summarizes the criteria to dif-
ferentiate approaches that solve metaclass compatibility problems. Section 3 then does a
detailed analysis of Smalltalk, CLOS, SOM, and NeoClasstalk, comparing their solutions.
Section 4 gives an overview of traits, and Sections 5 and 6 show how traits successfully
support the definition and composition of metaclasses based on a set of metaclass proper-
ties. Section 7 evaluates our approach, in Section 8 we have a look at related work, and
Section 9 concludes this paper and gives an outlook on future work.

2. EVALUATION CRITERIA

Offering explicit metaclasses is a way to reuse metaclass properties but it also opens the
door for metaclass compatibility problems [Graube 1989]. This section defines criteria
by which approaches that solve metaclass composition problems can be characterized and
distinguished. We start by listing two criteria that were already identified in [Bouraqadi-
Saadani et al. 1998] (upwardsanddownwardscompatibility), and then introduce four new
ones that were not previosuly considered (per class property, property composition, prop-
erty application, andcontrol of the composition).
Upward Compatibility. The fact that classes are instances of other classes which define
their behavior introduces hidden dependencies in the inheritance relationships between the
classes and their metaclasses. Careless inheritance at one level (be it the class or metaclass
level), can break inter-level communication. N. Bouraqadi et al. [Bouraqadi-Saadani et al.
1998] refined the metaclass compatibility problems in two precise cases namedupward
anddownwardcompatibility.

Let B be a subclass of A, MetaB the metaclass of B, and MetaA the metaclass of A.
Upward compatibility is ensured for MetaB and MetaA iff: every possible message that
does not lead to an error for any instance of A, will not lead to an error for any instance
of B.

Figure 1 left illustrates upwards compatibility. When an instance ofB receives the mes-
sagei-foo, the messagec-bar is sent toMetaB. The composition ofMetaA andMetaB is
upward compatible, ifMetaB understands the messagec-bar, i.e., MetaB should imple-
ment it or somehow inherit it fromMetaA.

ACM Transactions on , Vol. XX, No. X, Month Year.

4 · Stéphane Ducasse, Nathanael Schärli, and Roel Wuyts

Upward Compatibility

Meta A>>c-foo
^ self new i-bar

Meta A
c-bar

A
i-foo

Meta B

B

A>>i-foo
^ self class c-bar

? Meta A
c-foo

A
i-bar

Meta B

B?
Downward Compatibility

inherits from
instance of

Fig. 1. Left: Upward compatibility - dependencies on the base level need to be addressed at the meta-level. Right:
Downward compatibility - dependencies on the meta level need to be addressed at the base level.

Downward Compatibility. Let MetaB be a subclass of the metaclass MetaA. Downward
compatibility is ensured for two classes B, instance of MetaB and A, instance of MetaA iff:
every possible message that does not lead to an error for A, will not lead to an error for B.

Downward compatibility is illustrated in Figure 1 right. WhenMetaB receives the mes-
sagec-foo, the messagei-bar is sent to a newly created instance ofMetaB. The composition
of MetaA andMetaB is downward compatible, if that new instance ofB understands the
messagei-bar, i.e.,B should implement it or somehow inherit it fromA.

Per Class Property. In order to be at all useful, the usage of metaclass properties
should not be restricted by the class hierarchy. In particular, it should be possible to assign
different metaclass properties to different classes in an inheritance hierarchy [Bouraqadi-
Saadani et al. 1998]. As an example, the use of an abstract property would be absolutely
pointless if all subclasses of an abstract class had to be abstract as well.

Final
Singleton

FinalSingleton

MetaA

Metaclass Property
Composition

Metaclass Property
Application

A

(MetaA may not be
explicit)

Instantiation

Fig. 2. Property Composition and Property Application: two different periods in the process of reusing metaclass
properties.

Property Composition. One of the main goals of having explicit metaclasses is tocom-
bine metaclass propertiesas shown by the Figure 2, so that one class can for example be
both a Singleton and Final. Hence a mechanism is needed that supports such property

ACM Transactions on , Vol. XX, No. X, Month Year.

· 5

composition. This can be a general-purpose language mechanism such as multiple inher-
itance [Kiczales et al. 1991; Danforth and Forman 1994], mixin composition [Bouraqadi-
Saadani 2003], chain of responsibility [Mulet et al. 1995], or anad-hocmechanism such
as generation of new classes and methods [Bouraqadi-Saadani et al. 1998].
Property Application. Property application is the mechanism by which the composed
properties are applied to the metaclasses. As shown by the Figure 2 we distinguish the
compositionof properties from theapplicationof a property to a specific metaclass because
some approaches employ different techniques for these two purposes. As an example,
SOM uses ordinary multiple inheritance to combine metaclass properties but it employs a
combination of multiple inheritance and code generation to apply a metaclass properties to
a metaclass.
Control. The mechanism used to apply and combine metaclass properties can beimplicit
or explicit. We call the mechanismimplicit if the system automatically combines or applies
the metaclass properties and implicitly resolves conflicts in a way that may or may not be
what the programmer intends. We call the mechanismexplicit if the system gives the pro-
grammer explicit control over how the properties are combined and applied. In particular,
the programmer should haveexplicit controlover how conflicts are resolved. For many
approaches, this is not the case because the composition of properties is based on a chain
of responsibility which does not provide full control of the composition.

3. ANALYSIS OF THE CURRENT SOLUTIONS

This section shows how the main languages that have explicit metaclasses address the prob-
lems described in Section 2. We also discuss the solution offered by Smalltalk (although
it has implicit metaclasses) since it forms the basis for the NeoClasstalk solution and our
own solution. Table I summarizes the comparison of these approaches.

3.1 Smalltalk

In Smalltalk metaclasses areimplicit and createdautomaticallywhen a class is created
[Goldberg and Robson 1989]. Each class is the sole instance of its associated metaclass.
This way the two hierarchies are parallel (see Figure 3). Hence the architecture is safe as it
addresses compatibility issues but completely prevents metaclass property reuse between
several hierarchies.

Meta A>>c-foo
^ self new i-bar Meta A

c-bar
c-foo

A
i-foo
i-bar

Meta B

B

A>>i-foo
^ self class c-bar

inherits from
instance of

Fig. 3. Smalltalk addresses compatibilities by preventing reuse using implicit metaclasses and parallel hierarchies.

ACM Transactions on , Vol. XX, No. X, Month Year.

6 · Stéphane Ducasse, Nathanael Schärli, and Roel Wuyts

3.2 CLOS

CLOS’s approach could be summarized as “do it yourself”. Indeed by default in CLOS,
a class and its subclasses must be instances of the same metaclass, prohibiting classes in
the same hierarchy from having different metaclass properties. For example, in Figure 4,
classB has by default the same metaclass as its superclassA, and this cannot be changed.
So classB always has the same metaclass properties as classA. Note that since CLOS has
explicit metaclasses, multiple inheritance can be used for composing metaclass properties.
For example, in the context described by Figure 2 it is possible to use multiple inheritance
to explicitly combine the two propertiesFinal andSingleton expressed as metaclasses into
a new classSingletonFinal. Note that such an implementation suffers from the same prob-
lems as multiple inheritance based on linearization occurring at the base-level [Ducournau
et al. 1992].

The general CLOS rule that a class and its subclasses must be instances of the same
metaclass can be circumvented using CLOS’s meta-object protocol (MOP). Indeed, the
generic functionvalidate-superclass [Kiczales et al. 1991] offers a meta-programmer the
possibility to specify that a class and its subclasses can be instances of different classes.
However, this comes at a very high price because the CLOS MOP does not provide prede-
fined strategies for avoiding compatibility problems or for dealing with possible conflicts.
Hence the semantics of the composition has to be implemented manually, a far from trivial
undertaking that leads to code duplication and is hard to maintain and debug.

This means that by default CLOS is upward and downward compatible but it prevents
usage of different metaclasses within an inheritance hierarchy and reuse of metaclass prop-
erties. Both the composition of metaclass properties and the application of properties are
done with multiple inheritance. The control of the composition is explicit, because the
user has to use multiple inheritance to create a new metaclass. However, since multiple
inheritance in CLOS uses implicit linearization, the well-known problems associated with
this form of conflict resolution also apply to the meta-level [Schärli et al. 2003].

Meta A
c-bar
c-foo

A
i-foo

B

A>>i-foo
^ self class c-bar

Meta A>>c-foo
^ self new i-bar

inherits from
instance of

Fig. 4. By default CLOS addresses compatibilities by preventing subclasses to have different metaclasses than
their superclasses.

3.3 SOM

The solution proposed by SOM (System Object Model) [Forman and Danforth 1999] is
based on the automatic generation ofderived metaclasses, that multiply inherit from the
metaclasses to compose metaclass properties. When at compile time a class is specified
to be an instance of a certain metaclass, SOM automatically determines whether upward
compatibility is ensured and if necessary creates a derived metaclass. In Figure 5 left,
the classB (originally an instance ofMetaB), inheriting from classA (instance ofMetaA)

ACM Transactions on , Vol. XX, No. X, Month Year.

· 7

Meta A
c-bar

A
i-foo

Derived

B

A>>i-foo
^ self class c-bar

inherits from
instance of

Meta B

Automatic
Upward Compatibility

SomClass

SomObject

Meta A
c-foo

A
i-bar

Meta B

B

Meta A>>c-foo
^ self new i-bar

SOM Downward
 Compatibility Failure

Fig. 5. Left: SOM supports upward compatibility by automatically deriving new metaclasses and changing the
class of the inheriting classB. Right: SOM downward compatibility failure example.

finally becomes an instance of a derived metaclass inheriting fromMetaA andMetaB. Note
that SOM ensures that the existing metaclassMetaB takes precedence overMetaA in case
of multiple inheritance ambiguities (sinceB is a subclass ofA).

While SOM supports upward compatibility as shown in Figure 5 left, it does not support
downward compatibility [Bouraqadi-Saadani et al. 1998] as shown in Figure 5 right. When
the classB receives thec-foo message, a run-time error will occur because its instances
do not understand thei-bar message. However, in SOM, contrary to CLOS, two distinct
classes need not have the same metaclass. But as in CLOS, the composition of metaclass
properties is based on multiple inheritance. The application of a metaclass property is done
by a combination of multiple inheritance and automatic class generation. Since this hap-
pens at compile time, the programmer has no explicit control over how possible conflicts
are resolved.

3.4 NeoClasstalk

NeoClasstalk’s approach is interesting since it supports both downward and upward com-
patibility and enables metaclass property reuse between different hierarchies [Rivard 1997;
Bouraqadi-Saadani et al. 1998; Ducasse 1999]. NeoClasstalk uses two techniques to ac-
complish this: dynamic changeof classes and the composition of metaclasses bycode
generation. It generalizes the parallel inheritance solution of Smalltalk by enabling meta-
class properties reuse, but introduces some problems on its own that we discuss in detail
after explaining the basic principles.

NeoClasstalk allows properties to be assigned to classes. Figure 6 shows what happens
when assigning a property toMeta B. B inherits from classA, and before the property
is assigned it is an instance of the classMeta B. When assigning a property, the system
automatically creates a new metaclassProperty m + Meta B (called aproperty metaclass),
which inherits from the metaclassMeta B and defines the property code. It then changes
the class ofB to be that newly created metaclass.

In order to be able to reuse the property metaclasses, NeoClasstalk stores the metaclass
properties in strings on methods of so-calledmeta-metaclasses. The actual metaclasses are
then generated from these strings, as shown for our example in Figure 7. For example, the
Property m represented by a meta-metaclass is used to generate a new metaclass named
Property m + Meta B from the metaclassMeta B and theProperty m.

ACM Transactions on , Vol. XX, No. X, Month Year.

8 · Stéphane Ducasse, Nathanael Schärli, and Roel Wuyts

compatibility
metaclasses

Meta A
c-bar
c-foo

A>>i-foo
^ self class c-bar

A
i-foo
i-bar

B

Meta B
Meta A>>c-foo

^ self new i-bar

Property n
+ Meta A

Property m
+ Meta B

inherits from
instance of

inherits from
instance of

Fig. 6. NeoClasstalk addresses compatibilities and supports reuse using dynamically generated metaclasses and
parallel hierarchies.

compatibility
metaclasses

property
metaclasses

Meta A
c-bar
c-foo

A>>i-foo
^ self class c-bar

A
i-foo
i-bar

B

Meta B
Meta A>>c-foo

^ self new i-bar

Property
Metaclass

Property m

Property n

Property n
+ Meta A

Property m
+ Meta B

inherits from
instance of

inherits from
instance of

generated from

Fig. 7. Assigning the property m to classMeta B and property n to the classMeta A in NeoClasstalk. The light
grey area denotes the metaclass area. The dark grey area is the realm of the metaclass properties.

Besides the intrinsic complexity of NeoClasstalk’s approach, it has the following draw-
backs:

Dynamic class creation and dynamic change of class.The approach relies on the dy-
namic creation of classes and the dynamic changes of classes. It induces a complex man-
agement of meta-metaclass changes that should be propagated to the generated instances.
Moreover as programming at the meta-metalevel is based on string manipulation that rep-
resents the body of the method of metaclasses, it is not the same as programming at the
metaclass or the base level. Basically, despite the name, the property metaclasses are not
really at the meta-metaclass level, but merely storage holders for strings. The relation be-
tween the meta-metaclass level and the metaclass level is therefore not instantiation, as one
would expect, but code generation.

Ad-hoc and Implicit Composition.Property metaclasses are composed by code gener-
ation and applied implicitly by defining them in an inheritance chain. The composition

ACM Transactions on , Vol. XX, No. X, Month Year.

· 9

is based on the assumption that a metaclass is designed to be plugged in this inheritance
chain and that other composed behavior can be reached via super invocations. The com-
posite metaclass has only limited control over the composed behavior as it can only invoke
overridden behavior but does not have the full composition control.

As a summary, NeoClasstalk provides both downward and upward compatibility, and it
allows one to assign metaclass properties on a per-class basis. The composition of meta-
class properties is implicit and based on code generation and chain of responsibility. The
application of metaclass properties is based on dynamic class changes and code generation.
As the system automatically generates code and creates new metaclasses, the composition
is implicit.

3.5 MetaClasstalk

Metaclasstalk is an extension of NeoClasstalk whose most recent implementation uses
mixin composition instead of code generation [Bouraqadi-Saadani 2003]. This experiment
makes Metaclasstalk the closest model to our own approach as it supports both downward
and upward compatibility while allowing the reuse of metaclass properties.

3.6 Our Approach in a Nutshell

Our approach is based on the Smalltalk concept of parallel hierarchies and as such it pro-
vides upward and downward compatibility. However, it circumvents the Smalltalk limits
and supports metaclass properties reuse between different hierarchies. This is done by ex-
pressing metaclass properties astraits: reusable units of behavior that areexplicitly com-
bined to define classes [Schärli et al. 2003] according to a set of simple rules that give the
programmer explicit control over the composition.

Assigning a metaclass property to a specific metaclass therefore comes down to com-
posing this metaclass from the trait that expresses this property. Similarly, composition of
metaclass properties is expressed by creating a new trait as the composition of the traits
representing the properties that are to be combined. As a result, both property application
and composition are explicit and under complete control of the programmer. Section 4
gives an overview of traits, and Section 5 shows in detail how our approach works.

4. TRAITS IN A NUTSHELL

The traits model [Scḧarli et al. 2003] is an extension of single inheritance with a similar
purpose as mixins but avoiding their problems. Traits are essentially groups of methods
that serve as building blocks for classes and are primitive units of code reuse. As such, they
allow one to factor out common behaviour and form an intermediate level of abstraction
between single methods and complete classes.

A trait consists ofprovided methodsthat implement its behaviour, and ofrequired meth-
odsthat parameterize the provided behaviour. Traits cannot specify any instance variables,
and the methods provided by traits never directly access instance variables. Instead re-
quired methods can be mapped to state when the trait is used by a class.

With traits, the behavior of a class is specified as the composition of traits and someglue
methodsthat are implemented at the level of the class. These glue methods connect the
traits together and can serve as accessors for the necessary state. The semantics of such a
class is defined by the following three rules:

—Class methods take precedence over trait methods.This allows the glue methods defined
in the class to override equally named methods provided by the traits.

ACM Transactions on , Vol. XX, No. X, Month Year.

10 · Stéphane Ducasse, Nathanael Schärli, and Roel Wuyts

—Flattening property.A non-overridden method in a trait has the same semantics as the
same method implemented in the class.

—Composition order is irrelevant.All the traits have the same precedence, and hence
conflicting trait methods must be explicitly disambiguated.

Because the composition order is irrelevant, aconflictarises if we combine two or more
traits that provide identically named methods that do not originate from the same trait.
Traits enforce explicit resolution of conflicts. This can be done by implementing a glue
method at the level of the class that overrides the conflicting methods, or bymethod exclu-
sion, which allows one to exclude the conflicting method from all but one trait.

In addition traits allowmethod aliasing; this makes it possible for the programmer to
introduce an additional name for a method provided by a trait. The new name can be used
to obtain access to a method that would otherwise be unreachable, for example, because it
has been overridden.

Traits can also be composed from subtraits; a trait containing subtraits is called acom-
posite trait. The composition semantics is the same as explained above with the only
difference being that the composite trait plays the role of the class. This means that the or-
der of the subtraits is irrelevant, that methods implemented in the composite trait override
equally named methods of the subtraits, and that the semantics of a method defined in a
subtrait is identical to the semantics of the same method defined in the composite trait.

To summarize, traits composition is automatic with an explicit resolution of conflicts. It
is important to understand that trait composition does not subsume single inheritance; trait
composition and inheritance are complementary. Whereas inheritance is used to derive
one class from another, traits are used to achieve structure and reusabilitywithin a class
definition. We can summarize this relationship with the equation

Class = Superclass + State + Traits + Glue

Example: Geometric Objects.Suppose that we want to represent a graphical object such
as a circle or square that is drawn on a canvas. Such a graphical object can be decomposed
into three reusable aspects — its geometry, its color and the way that it is drawn on a
canvas.

Figure 8 shows this for the case of a circle. First of all, the geometry of a circle is
expressed with a traitTCircle. Furthermore the color is expressed using a traitTColor, and
the behaviour for drawing an object on a canvas is provided by a traitTDrawing:

—TCircle defines the geometry of a circle: it requires the methodscenter, center:, radius,
andradius: and provides methods such asbounds, hash, and=.

—TDrawing requires the methodsdrawOn: bounds and provides the methodsdraw, refresh,
andrefreshOn:.

—TColor requires the methodsrgb, rgb: and provides all kind of methods manipulating
colors. We only show the methodshash and= as they will be conflicting with others at
composition time.

The classCircle is then defined as follows: it specifies three instance variablescenter,
radius, andrgb and their respective accessors methods. It is composed from the three traits
TDrawing, TCircle, andTColor. As there is a conflict for the methodshash and= between
the traitsTCircle andTColor, we alias those methods in both traits to be able to access them
in the methodshash and= of the classCircle resolving the conflicts.

ACM Transactions on , Vol. XX, No. X, Month Year.

· 11

TColor
red
green
~=
=
hash

rgb
rgb:

TDrawing
draw
refresh
refreshOn:

bounds
drawOn:

TCircle
=
hash
...
bounds
area

center
center:
radius
radius:

Circle
initialize
=
hash
rgb
rgb:
center
center:
radius
radius:
drawOn:

X

TDrawing
draw
refresh
refreshOn:

bounds
drawOn:

TCircle
=
hash
...
bounds
area

center
center:
radius
radius:

TColor
red
green
~=
=
hash

rgb
rgb:

Fig. 8. Left: Three traitsTColor,TCircle, andTDrawing. Right: The classCircle composed from these
traits. The class circle resolves conflicts by redefininghash and=. Note that the traits figures list their provided
methods on the left, and their required methods on the right.

This is expressed in the following piece of Smalltalk code for classCircle, where meth-
ods resolving conflicts are shown in bold. Note that the way a class is defined remains
largely the same, except for the addition ofuses: to specify the composition clause, which
defines how the class is composed from traits. Note that we use→ for method aliasing and
thatm1 → m2 means thatm1 is an alternative name for the methodm2.

Object subclass: #Circle
instanceVariableNames: ’center radius rgb’
uses: { TDrawing .

TCircle @ {#circleHash → #hash .
#circleEqual: → #=} .

TColor @ {#colorHash → #hash .
#colorEqual: → #=} }

Circle�rbg Circle�rgb: aNumber
↑rgb rgb := aNumber

Circle�center Circle�center: aNumber
↑center center := aNumber

Circle�radius Circle�radius: anInteger
↑radius radius := anInteger

Circle�hash
↑self circleHash

bitXor: self colorHash

ACM Transactions on , Vol. XX, No. X, Month Year.

12 · Stéphane Ducasse, Nathanael Schärli, and Roel Wuyts

Circle�= anObject
↑(self circleEqual: anObject)

and: [self colorEqual: anObject]

5. USING TRAITS TO REUSE AND COMPOSE METACLASS PROPERTIES

Our approach is based on using traits to compose and reuse metaclass properties within the
traditional parallel inheritance schema proposed by Smalltalk (See Figure 3). Therefore
our approach is safei.e., it supports downward and upward compatibility still it promotes
the reuse of metaclass properties. Composition and application of metaclass properties are
based on trait composition, which gives the programmer explicit control.

A

Meta B

B

inherits from
instance of

Class
Property1

Meta B

Class
Property2

Fig. 9. Metaclasses are composed from traits representing metaclass properties. Traits supports upward and
downward compatibility.

We represent metaclass properties as traits, which are then used to compose metaclasses
as shown in Figure 9. Since traits have been fully implemented in the open-source Squeak
Smalltalk environment [Ingalls et al. 1997], we implemented all the examples shown here
in Squeak. During our refactorings of Squeak code we identified the following metaclass
properties:TAbstract, TSingleton, TAllInstances, TCreator, andTFinal which we explain
below. We start with a simple example illustrating how a class is composed by reusing
a metaclass property, then we look how the traditionalBoolean hierarchy [Ledoux and
Cointe 1996; Bouraqadi-Saadani et al. 1998] is re-expressed with traits and finally Sec-
tion 6 shows that traits provide a good basis to engineer the meta-level.

5.1 Singleton

To represent the fact that a class is a Singleton, we define the traitTSingleton. This trait
defines the following methods:default which returns the default instance,new which raises
an error, andreset which invalidates the current Singleton instance. It requiresbasicNew
which returns a newly created instance1, and the methodsuniqueInstance anduniqueIn-
stance:. Note that these accessor methods are needed because traits cannot contain instance
variables. Figure 10 left shows the traitTSingleton.

1UsingbasicNew is the traditional way to implement Singleton in Smalltalk when we want to forbid the use
of thenew method [Alpert et al. 1998].basicNew allocates objects without initializing them. It is a Smalltalk
idiom to never override methods starting with ‘basic’ names.

ACM Transactions on , Vol. XX, No. X, Month Year.

· 13

Trait named: #TSingleton
uses: {} category: ’Traits-Example’

TSingleton�default
self uniqueInstance isNil

ifTrue: [self uniqueInstance: self basicNew].
↑ self uniqueInstance

TSingleton�new
self error: ’You should use default’

TSingleton�reset
self uniqueInstance: nil

As an example, suppose that we want to specify that a certain classWebServer is a
Singleton. First of all we define the classWebServer in the traditional Smalltalk way as
follows:

Object subclass: #WebServer
instanceVariableNames: ”
classVariableNames: ”
poolDictionaries: ”
category: ’Traits-Example’

Then we specify at the metaclass leveli.e., in the classWebServer class, that the class is
a Singleton by specifying that the class is composed from the traitTSingleton. The meta-
class defines the required state, under the form of the instance variableuniqueInstance, to
support the trait definition. It also defines two glue methodsuniqueInstance anduniqueIn-
stance: as accessor methods for the instance variableuniqueInstance. Note that the method
basicNew is provided by the classBehavior (see Figure 10 right).

WebServer class
uses: {TSingleton }
instanceVariableNames: ’uniqueInstance’

WebServer class�uniqueInstance
↑ uniqueInstance

WebServer class�uniqueInstance: anObject
uniqueInstance := anObject

5.2 The Boolean Hierarchy Revisited

The SmalltalkBoolean hierarchy is composed of the classBoolean which is abstract and
has two subclassesTrue andFalse which are singleton classes. Using traits the boolean hi-
erarchy is refactored as shown in Figure 11. Note that we designed the refactored solution
to be backwards compatible with the idioms existing in the current Smalltalk implemen-
tation and literature [Alpert et al. 1998]. So we assume a methodbasicNew defined on
the classBehavior that can always be invoked to allocate instances and that should not be
overriden.
Boolean. The classBoolean is an abstract class so its classBoolean class is composed
from the traitTAbstract.

Trait named: #TAbstract
uses: {} category: ’Traits-Example’

TAbstract�new
self error: ’Abstract class. You cannot create instances’

TAbstract�new: size

ACM Transactions on , Vol. XX, No. X, Month Year.

14 · Stéphane Ducasse, Nathanael Schärli, and Roel Wuyts

ultimately inherits
from Behavior

Behavior
TCreator

new
basicNew

WebServer class
uniqueInstance
uniqueInstance:

TSingleton
new
default
reset

basicNew
uniqueInstance
uniqueInstance:

TSingleton
new
default
reset

basicNew
uniqueInstance
uniqueInstance:

Fig. 10. Left. The traitTSingleton. Right. The classBehavior, the root of metaclasses in Smalltalk, is
composed from the traitTCreator and as such provides the methodbasicNew.

self error: ’Abstract class. You cannot create instances’

False and True.The classesFalse andTrue are Singletons so their classesFalse class and
True class are composed from the traitTSingleton which is then reused in the two classes.

As mentioned above, the traitTSingleton requires the methodsbasicNew, uniqueIn-
stance, anduniqueInstance:. Therefore the classFalse class (resp. True class) has to
define an instance variableuniqueInstance and the two associate accessor methodsunique-
Instance anduniqueInstance:. Note that the methodbasicNew does not have to be redefined
locally in theclass False or True class as it is inherited ultimately from the classBehavior,
the inheritance root of the metaclasses [Goldberg and Robson 1989] (see Figure 12).

False class
uses: {TSingleton }
instanceVariableNames: ’uniqueInstance’

False class�uniqueInstance
↑ uniqueInstance

False class�uniqueInstance: anObject
uniqueInstance := anObject

Boolean
False

True

False class

True class

TSingleton

Boolean class

TAbstract

TSingleton

Fig. 11. Boolean hierarchy refactored with traits.

ACM Transactions on , Vol. XX, No. X, Month Year.

· 15

Behavior
TCreator

new
basicNew

Boolean class
TAbstract

new

False class
TSingleton

new
default
reset

basicNew
uniqueInstance
uniqueInstance:

Fig. 12. The complete picture for theBoolean hierarchy solution.

This example shows that metaclass properties are reused over different classes and that
metaclasses are composed from different properties.

6. ENGINEERING THE META-LEVEL

So far we presented simple examples that show how traits are well-suited to model meta-
class properties, which can then be combined or applied to arbitrary classes. In this section,
we show that traits also allow more fine-grained architectures of metaclass properties. We
also want to stress that the techniques used here are exactly the same that are used to
architect base-level programs and as such traits provide a uniform model.

Since many of these properties are related to instance creation, we first clarify the basic
instance creation concept of Smalltalk. In Smalltalk, creation of a new instance involves
two different methods, namelybasicNew andnew 2. The methodbasicNew is a low-level
primitive which simply allocates a new instance of the receiver class. The methodnew
stands at a higher level and its purpose is to return a usable instance of the receiver class.
For most classes,new therefore callsbasicNew to obtain a new instance and then initializes
it with reasonable default values.

6.1 Metaclass Properties

Figure 13 gives an overview of our metaclass properties. Note that all of these properties
are traits, and that they are therefore composed using trait composition.
Allocation. As indicated by its name, the traitTAllocator provides the behavior to allocate
new instances. In our case, this is the standard SmalltalkbasicNew method, but of course
we could also create another trait with an alternative allocation strategy.
Instantiation. The traitsTInstantiator andTInitInstantiator are two metaclass properties
for instance creation. The traitTInstantiator uses the traitTAllocator and implements the
methodnew in the traditional Smalltalk manner, which means that it does not initialize
the newly created instance. The traitTInitInstantiator uses the traitTAllocator. However,
as suggested by its name, it actually initializes the newly created instance by calling the
methodinitialize before the instance is returned.

2Note that there are also the methodsbasicNew: andnew:, which are used to create objects with indexed
fields (i.e.,arrays). For sake of simplicity, we do not take these methods into account here.

ACM Transactions on , Vol. XX, No. X, Month Year.

16 · Stéphane Ducasse, Nathanael Schärli, and Roel Wuyts

TRememberInstances
new
rememberInstance
instances
reset

rememberedInstances
rememberedInstances:

TInstantiator
new

TAllocate
basicNew

TInitInstantiator
new initialize

TAbstract
new

TFinal
subclass:

TSharedInstance
reset
sharedInstance

directSharedInstance
directSharedInstance:

TDefault TSingleton
new

sharedNew → new

default →
sharedInstance uniqueInstance →

sharedInstance

nonRememberingNew → new

is composed from
TSingleton
new

Trait

m1 → m2
creates an alias

m2 referring to m1

Legend

Fig. 13. A fine-grained architecture of metaclass properties based on traits

TInstantiator�new
↑self basicNew

TInitInstantiator�new
↑self basicNew initialize

Remembering Instances.
The traitTRememberInstances represents an instance creation property ensuring that

all the created instances are remembered by the class. It uses the traitTInitInstantiator
and aliases the methodnew of the traitsTInitInstantiator which is then available asnonRe-
memberingNew. This aliasing allows one to access the originalnew method of the trait
TInitInstantiator while letting the possibility to override the methodnew in the traitTInitIn-
stantiator. It requires the methodsrememberedInstances andrememberedInstances: that
access the collection storing the created instances. Then, it implements the methodsnew,
rememberInstance:, instances, andreset as follows:

TRememberInstances�new
↑ self rememberInstance: self nonRememberingNew

TRememberInstances�rememberInstance: anObject
↑ self instances add: anObject

TRememberInstances�instances
self rememberedInstances ifNil: [self reset].
↑ self rememberedInstances

TRememberInstances�reset
self rememberedInstances: IdentitySet new

Note that another implementation could be to define the methodsreset and remem-
beredInstances: as trait requirements. This would leave the class with the option to use
other implementations for keeping track of the created instances.

ACM Transactions on , Vol. XX, No. X, Month Year.

· 17

Default and Singleton.The traitsTDefault andTSingleton implement the metaclass prop-
erties corresponding to the Default Instance and Singleton design patterns. Whereas a Sin-
gleton can only have one single instance, a class adhering to the Default Instance pattern
has one default instance but can also have an arbitrary number of other instances.

Since these two properties are very similar, we factored out the common code into the
trait TSharedInstance. In order to get the basic instantiation behavior, this trait uses the
propertyTInitInstantiator and again applies an alias to ensure that the methodnew is avail-
able under the namesharedNew. Then, it implements the methodsreset andsharedIn-
stance as follows:

TSharedInstance�reset
self directSharedInstance: self sharedNew.

TSharedInstance�sharedInstance
self directSharedInstance ifNil: [self reset].
↑ self directSharedInstance.

The propertyTDefault is then defined as an extension of the traitTSharedInstance that
simply introduces the aliasdefault for the methodsharedInstance. Similarly, the property
TSingleton introduces the aliasuniqueInstance for the same method. In addition,TSingle-
ton overrides the methodnew so that it cannot be used to create a new instance:

TSingleton�new
self error: ’Cannot create new instances of a Singleton.

Use uniqueInstance instead’.

Another useful metaclass property popularized by Java is the metaclass propertyTFinal
which ensures that the class cannot have subclasses. In Smalltalk, this is achieved by
overriding the messagesubclass: 3. Note that unlike all the other properties presented
in this section,TFinal is not concerned with instance creation and therefore is entirely
independent of the other properties. In Section 7.2 we discuss the relevance of the class
properties we presented.

6.2 Advantages for the Programmer

Having an architecture of metaclass properties has many advantages for a programmer.
Whenever a new class needs to be created, a choice can be made regarding how instances
should be created and whether the class should be final or not. Besides the advantage
that this avoids a lot of code duplication, it also makes the design much more explicit
and therefore facilitates understandability of the class. The level of abstraction of the
trait design is at the right level: the traits correspond to the metaclass properties, and the
properties can be combined to implemented metaclasses.

In addition, factoring out the properties in such a fine-grained way also gives the user
a lot of control about some crucial parts of the system. As an example, consider that we
have at first decided to use the traitTInitInstantiator as the basis for all the other instance
creation properties. If later on, we would decide to comply to the Smalltalk standard and
create uninitialized instances by default, this could be done without modifying any of the
involved methods. The only thing we would need to do is to make sure that the traits
TRememberInstances and TSharedInstance use the traitTInstantiator instead ofTInitIn-
stantiator.

3In reality, the method to create a subclass takes more arguments but this is not relevant here

ACM Transactions on , Vol. XX, No. X, Month Year.

18 · Stéphane Ducasse, Nathanael Schärli, and Roel Wuyts

up down per class application composition control
Smalltalk Yes Yes Yes No No No
CLOS Yes Yes No multiple in-

heritance
multiple
inheritance

explicit +
lineariza-
tion

SOM Yes No Yes multiple in-
heritance +
code genera-
tion

multiple
inheritance

implicit

NeoST Yes Yes Yes inheritance
+ generation

inheritance +
code genera-
tion

implicit

MetaST
with mix-
ins

Yes Yes Yes inheritance mixin compo-
sition

implicit
mixin lin-
earisation

Traits Yes Yes Yes trait compo-
sition

trait composi-
tion

explicit

Table I. Comparison of the models from Section 3 on how they handle the composition
problems described in Section 2.

Explicit Composition Control Power. By providing several different properties that are
all related to instance creation behavior, this example also shows why it is so important
to have explicit control over composition and application of metaclass properties. In our
example, there are many different properties which essentially introduce variants of the
methodnew, and therefore, combining these properties typically leads to conflicts that can
only be resolved in asemanticallycorrect manner if the user has explicit control over the
composition. In case of traits, this is ensured by allowing partially ordered compositions,
exclusions, and aliases.

As an example, imagine that we want to combine the propertiesTDefault andTRemem-
berInstances in order to get a property that allows both a default instance and also re-
members all its instances. With our trait based approach, we do this by creating a new
trait TDefaultAndRememberInstances which usesTRememberInstances andTDefault as
follows:

Trait named: TDefaultAndRememberInstances
uses: { TDefault @ {#defaultReset → #reset}.

TRememberInstances − {#new}
@ {#storeNew → #new.

#storeReset → #reset}}

TDefaultAndRememberInstances�sharedNew
↑self storeNew

TDefaultAndRememberInstances�reset
self storeReset.
self defaultReset

Since both traits provide a methodnew, we exclude this method from the traitTRemem-

ACM Transactions on , Vol. XX, No. X, Month Year.

· 19

berInstances when it is composed. As a consequence the trait contains thenew method
provided byTDefault, which usessharedNew in order to create a new instance. Since we
want to make sure that each new instance is also stored, we overridesharedNew so that it
callsstoreNew, which is an alias for thenew method provided byTRememberInstances.

Also the methodreset is provided by both traits, and we therefore use aliasing to make
sure that we can access the conflicting methods. Then, we resolve the conflict by overriding
the methodreset so that it first removes the stored instances (by callingstoreReset) and
then creates a new default instance (by callingdefaultReset). Note that the newly created
instance will be remembered as the default instance and will also be stored in the collection
with all the instances of the class.

7. DISCUSSION

In this section we first discuss the advantages and the limitations of using traits .

7.1 Advantages and Limits of Traits

Advantages. Traits support the decomposition of metaclass properties as reusable units
of behavior. Since metaclasses are composed from traits and the model is based on the
parallell hierarchy of Smalltalk, it is upward and downward compatible and supports the
reuse of metaclass properties across different hierarchies.

In addition the proposed model is uniform with respect to the concepts used at the base
and the meta-level (like CLOS). Both levels use the same concepts (traits and inheritance).
Furthermore, the model is simple, and there is no need for on-the-fly code generation (as
in SOM or NeoClasstalk) or the dynamic change of classes (as in NeoClasstalk).

Metaclass properties can be composed by composing the traits that represent those prop-
erties. The application of the properties to an actual metaclass is accomplished by using the
approriate composite trait in the construction of the metaclass. The composing metaclass
has thecompletecontrol of the composition, and possible conflicts are resolvedexplicitly
when the property is applied on a metaclass.

Having explicit control over the composition is especially important because it allows
a programmer to freely adapt the behavior of the composite metaclass and to compose
metaclass properties that may not quite fit together. This means that our approach allow
the system designers to ship their class hierarchies together with a set ofprefabricated
metaclass properties in the form of traits, which can then be used and combined by the
programmers. And in case some metaclass properties built by different vendors will not
quite fit together, the traits model will not only indicate the resulting conflicts, but will
also provide the programmer with the necessary means to resolve these conflicts in order
to achieve the expected semantics.
Limits. Glue methods and state have to be redefined in the metaclass where a property is
applied. For example, the instance variableuniqueInstance and the two accessor methods
have to be defined in the classes that implement a Singleton.

It may happen that instance variables defined in a superclass are not necessary in the
subclasses. For example, if the superclass implements a Singleton and the subclasses do
not, then the instance variable that holds the Singleton instance as well as the methods to
access it will be inherited by the subclasses. However, this problem is not due to traits by
itself but is a result of using the inheritance mechanism in general. Table I compares the
approaches.

ACM Transactions on , Vol. XX, No. X, Month Year.

20 · Stéphane Ducasse, Nathanael Schärli, and Roel Wuyts

7.2 About Class Properties

The traits model let us decide if a given functionality is defined as a trait or as a class.
When defining a functionality as a trait we automatically offer the possibility to future
classes to use the identified behavior. It should be noted that all the functionality of a
classi.e., method management, instance memory layout, ancestors and descendant man-
agement, method compilation, class description can all defined as traits. However, we do
not called them class properties contrary to some authors [Ledoux and Cointe 1996] be-
cause we did not reuse them over multiple classes but only within theClass, Metaclass,
ClassDescription, Behavior traditional Smalltalk hierarchy. Another point to consider is
the role of the classes in the context of a Meta-Object Protocol [Kiczales et al. 1991]; we
believe that a lot of class properties identified in [Ledoux and Cointe 1996] are due to the
fact that the classes were the single entry point in their MOP, while certain responsibilities
are definitively the responsibilities of other meta-entities such as methods.

In this article we present the mainclass propertiesthat we identified during our imple-
mentation. It is worth to realize that other important effort building metaclass libraries such
as SOM [Forman and Danforth 1999] presents nearly the same kind of class properties.

8. RELATED WORK

In the Section 3 we evaluated how the main languages supporting metaclasses allow one
to compose them and reuse metaclass properties. The Table I presents how the different
approaches position themselves according to the problems and criteria enounced in Sec-
tion 2. The only thing we want to add to this analysis is that the table shows the influence
of the CLOS approach based on multiple inheritance to support metaclass composition in
SOM.

Other approaches such as CodA [McAffer 1995], Moostrap [Mulet et al. 1995], Iguana/J
[Redmond and Cahill 2002], OpenC++ [Chiba and Masuda 1993], or Reflex [Tanter et al.
2001], support the composition and reuse of meta-objects. From these approaches the only
part that is relevant to the research of this paper is the way meta-objects are composed.
Indeed, the application of a meta-object is often done simply by invoking the right MOP
entry point on the right object or group of objects. Such a composition is often based on
chain of responsibility [Mulet et al. 1995]i.e., a meta-object is designed to be composed
in a chain of meta-objects by invoking the overridden functionality. The problem with
chain of responsibility is that it forces all the meta-objects to follow a certain architecture
but more important the composing meta-object has only a very limited control over the
composition, it can invoke the rest or nothing. With traits when there is no conflict, the
composition is automatically done. In presence of conflict, the composing metaclass has
the complete control over all the composed class properties.

To circumvent the chain of responsibility problem, the authors of Guarana [Oliva and
Buzato 1999] proposes the use of composite meta-objectsi.e., a meta-objects defined the
semantics of the composition of several meta-objects. While this approach works well
for coarse-grain composition such as change in the message passing semantics (broadcast,
concurrent dispatch, or remote invocations), in the case of metaclass properties it is too
heavyweight as it would force the developer to define an explicit composite for any simple
conflicts whose reuse is even questionable.

The work developed in CodA [McAffer 1995] is interesting as it structures the meta-
level architecture around the life-time of objects. Several meta-objects are responsible for

ACM Transactions on , Vol. XX, No. X, Month Year.

· 21

the different actions (accessing state, receiving, sending, looking up for messages...). How-
ever it raises the issue of compatibility between all the meta-objects associated to a given
objects. The proposed solution is to manually define a semantically coherent configuration
of meta-objects implementing the desired semantics [McAffer 1995].

9. CONCLUSION AND FUTURE WORK

The need to reuse metaclass properties led to the meta-level architectures based on ex-
plicit metaclassesi.e., the class of a class may be explicitly specified [Ingalls 1976; Cointe
1987]. While offering the possible reuse of metaclass properties, such models introduced
metaclass composition problems [Graube 1989]. Different approaches exist that try to
solve metaclass compositions problems, based on multiple inheritance, code generation
or automatic change of metaclasses [Danforth and Forman 1994; Forman et al. 1994;
Bouraqadi-Saadani et al. 1998]. However, the definition, the composition and the con-
trol of the application of the metaclass property were not controllable by the developer or
meta-programmer.

In this article we present the traditional problems linked to metaclass property com-
position, define precisely the life-cycle of a metaclass property (definition, composition,
and application) and compare various approaches that tried to solve metaclass property
composition problems. Then we show how traits supports the definition, composition and
control of metaclass property applications. We model metaclass properties as traits, first
class groups of methods and use trait composition to safely combine and reuse them. Using
traits to compose metaclass properties solves the metaclass composition problem (upward
and downard compatibility is ensured) while supporting the reuse of metaclass properties.
In addition, composition and conflict resolution areexplicit and undercontrol of the com-
posing entity.

Whereas the other approaches use special-purpose mechanisms that are invented solely
to tackle metaclass composition problems, our approach is based on traits, which are a
general-purpose composition mechanism for object-oriented languages. In fact, traits were
not designed with meta-programming in mind, and we have already successfully applied
them to refactor the Smalltalk collection hierarchy [Black et al. 2003]. The clarity, flexibil-
ity, and consistency of the meta-level architecture based on traits is another strong indica-
tion that traits are a sound and useful foundation for structuring object-oriented programs.

With our implementation of the Traits model in Squeak we implemented all the exam-
ples shown in this article. This proves the power of the traits model to support the definition
and composition of metaclass properties. However, we did not introduce traits in the meta-
classes of the Squeak kernel. Indeed as Smalltalk is defined in terms of itself this requires
a subtle bootstrap when we are modifying its deep kernel. We are currently working on
this bootstrapping so that we can introduce traits in the core part of the Squeak reflective
architecture.

Acknowledgments

We gratefully acknowledge the financial support of the Swiss National Science Founda-
tion for the projects “Tools and Techniques for Decomposing and Composing Software”
(SNF Project No. 2000-067855.02) and “Recast: Evolution of Object-Oriented Applica-
tions” (SNF 2000-061655.00/1). We also like to thank Oscar Nierstrasz, Andrew Black
and Noury Bouraqadi for their valuable comments and discussions.

ACM Transactions on , Vol. XX, No. X, Month Year.

22 · Stéphane Ducasse, Nathanael Schärli, and Roel Wuyts

REFERENCES

ALPERT, S. R., BROWN, K., AND WOOLF, B. 1998. The Design Patterns Smalltalk Companion. Addison
Wesley.

BLACK , A. P., SCHÄRLI , N., AND DUCASSE, S. 2003. Applying traits to the Smalltalk collection hierarchy. In
Proceedings OOPSLA 2003. To appear.

BOURAQADI-SAADANI , N. M. N. 2003. Mixin-based inheritance for and with explicit metaclasses. InProceed-
ings of ESUG’2003 Conference.

BOURAQADI-SAADANI , N. M. N., LEDOUX, T., AND RIVARD , F. 1998. Safe metaclass programming. In
Proceedings OOPSLA ’98. 84–96.

BRIOT, J.-P.AND COINTE, P. 1989. Programming with explicit metaclasses in Smalltalk-80. InProceedings
OOPSLA ’89, ACM SIGPLAN Notices. Vol. 24. 419–432.

CHIBA , S.AND MASUDA, T. 1993. Designing an extensible distributed language with a meta-level architecture.
In Proceedings ECOOP ’93, O. Nierstrasz, Ed. LNCS, vol. 707. Springer-Verlag, Kaiserslautern, Germany,
483–502.

COINTE, P. 1987. Metaclasses are first class: the objvlisp model. InProceedings OOPSLA ’87, ACM SIGPLAN
Notices. Vol. 22. 156–167.

DANFORTH, S.AND FORMAN, I. R. 1994. Derived metaclass in SOM. InProceedings of TOOLS EUROPE ’94.
63–73.

DUCASSE, S. 1999. Evaluating message passing control techniques in Smalltalk.Journal of Object-Oriented
Programming (JOOP) 12,6 (June), 39–44.

DUCOURNAU, R., HABIB , M., HUCHARD, M., AND MUGNIER, M. 1992. Monotonic conflict resolution mech-
anisms for inheritance. InProceedings OOPSLA ’92, ACM SIGPLAN Notices. Vol. 27. 16–24.

FORMAN, I. R. AND DANFORTH, S. 1999.Putting Metaclasses to Work: A New Dimension in Object-Oriented
Programming. Addison-Wesley.

FORMAN, I. R., DANFORTH, S.,AND MADDURI , H. 1994. Composition of before/after metaclasses in SOM.
In Proceedings of OOPSLA ’94, ACM, Ed. ACM Sigplan Notices, vol. 29. ACM, Portland, 427–439.

GOLDBERG, A. AND ROBSON, D. 1989.Smalltalk-80: The Language. Addison Wesley. book scglib.

GRAUBE, N. 1989. Metaclass compatibility. InProceedings OOPSLA ’89, ACM SIGPLAN Notices. Vol. 24.
305–316.

INGALLS, D. 1976. The smalltalk-76 programming system design and implementation. InPOPL’76, Principles
of Programming Languages. ACM Press, 9–16.

INGALLS, D., KAEHLER, T., MALONEY, J., WALLACE , S.,AND KAY, A. 1997. Back to the future: The story
of Squeak, A practical Smalltalk written in itself. InProceedings OOPSLA ’97. 318–326.

K ICZALES, G., DES RIVI ÈRES, J.,AND BOBROW, D. G. 1991.The Art of the Metaobject Protocol. MIT Press.

LEDOUX, T. AND COINTE, P. 1996. Explicit metaclasses as a tool for improving the design of class libraries. In
Proceedings of ISOTAS ’96, LNCS 1049. JSSST-JAIST, 38–55.

MCAFFER, J. 1995. Meta-level programming with coda. InProceedings ECOOP ’95, W. Olthoff, Ed. LNCS,
vol. 952. Springer-Verlag, Aarhus, Denmark, 190–214.

MULET, P., MALENFANT, J.,AND COINTE, P. 1995. Towards a methodology for explicit composition of metaob-
jects. InProceedings of OOPSLA ’95. Austin, 316–330.

OLIVA , A. AND BUZATO, L. E. 1999. The design and implementation of guarana. InUSENIX Conference on
Object-Oriented Technologies and Systems (COOTS’99).

REDMOND, B. AND CAHILL , V. 2002. Supporting unanticipated dynamic adaptation of application behaviour.
In Proceedings of European Conference on Object-Oriented Programming. Vol. 2374. Springer-Verlag, 205–
230.

RIVARD , F. 1997.évolution du comportement des objets dans les langagesà classes ŕeflexifs. Ph.D. thesis, Ecole
des Mines de Nantes, Université de Nantes, France.

SCHÄRLI , N., DUCASSE, S., NIERSTRASZ, O., AND BLACK , A. 2003. Traits: Composable units of behavior.
In Proceedings ECOOP 2003. LNCS. Springer Verlag. To appear.

STEELE, G. L. 1990.Common Lisp The Language, Second ed. Digital Press. book.

TANTER, E., BOURAQADI, N., AND NOYE, J. 2001. Reflex – towards an open reflective extension of java. In
Proceedings of the Third International Conference on Metalevel Architectures and Separation of Crosscutting
Concerns. LNCS, vol. 2192. Springer-Verlag, 25–43.

ACM Transactions on , Vol. XX, No. X, Month Year.

