
Contractual Types

Oscar Nierstrasz

Institut für Informatik und Angewandte Mathematik
University of Bern, Switzerland

IAM-03-004

August 20, 2003

Abstract

Real software systems are open and evolving. It is a constant challenge in such environments
to ensure that software components are safely composed in the face of changing dependencies
and incomplete knowledge. To address this problem, we propose a new kind of type system
which allows us to infer not only the type provided by a software component in an open
system, but also the type it requires of its environment, subject to certain constraints. The
contractual type we infer for components can then be statically checked when components are
composed. To illustrate our approach, we introduce the form calculus, a calculus of explicit
environments, and we present a type system that infers types for form expressions.

CR Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal
Definitions and Theory—Semantics; F.3.3 [Logics and Meanings of Programs]: Studies of
Program Constructs—Type structure; F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Lambda calculus and related systems

1 INTRODUCTION 1

1 Introduction

Real software systems evolve with time. Individual components are often developed and
adapted without complete knowledge of the rest of the system. In order for one to determine
whether a system is safely composed, all the pieces must typically be frozen and available.
Changes to the interfaces offered by components can have far-reaching effects, and can require
extensive analysis to ensure that no dependencies are broken. We propose to alleviate this
problem by means of a type system that expresses not only what a software component
provides, but also what it requires from an environment in which it will be used. Software
components can then be safely composed when provided types satisfy the corresponding
required types.

Consider, for example, the following code written in a Java-like language:

import com.dohickeys.*;
class Gadget extends Widget {

FooBar tinker(Whatsit w) {
return this.munge(new Thing(w));

}
}

Suppose now that we would like to reason about this software component without over-
specifying the components imported from com.dohickeys. (Let us assume, for simplicity, that
nothing is implicitly imported from anywhere else.) Based on a static analysis of this code,
we might express what it provides as follows:

Gadget:()→(munge:Thing→FooBar · tinker:Whatsit→FooBar)

i.e., a default constructor called Gadget, which yields an object with (at least) methods munge
and tinker. About the argument and return types of these methods, we can say nothing
further.

We can, however, say something more about the assumptions this component places on
its environment. In particular, the component will safely provide what it does if and only if
the environment satisfies the following requirement:

com:dohickeys:(Widget:()→munge:Thing→FooBar ∧ Thing:Whatsit→Thing)

i.e., within the environment com there must be an environment dohickeys which in turn must
provide suitable constructors for Widget and Thing, and a Widget must provide a munge
method.

The key idea is to express as a required type the requirements posed by the free variables of
our software component on the environment. If we close our Gadget component by composing
it with a concrete dohickeys component, we must check that the services provided by dohickeys
satisfy the required type of Gadget. If we later substitute another version of dohickeys, we
do not require that these two versions be in a subtype relation with each other, merely that
both satisfy the required type of Gadget, and nothing more.

We propose a type system in which the type T{S} of a software component specifies a
contract : it will provide the services specified in T if the environment satisfies the required

2 THE FORM CALCULUS 2

type S. The type of our component might then be given as:

Gadget:()→(munge:Thing→FooBar · tinker:Whatsit→FooBar) {
com:dohickeys:(Widget:()→munge:Thing→FooBar ∧ Thing:Whatsit→Thing)

}

Note that the type names Thing, FooBar, and Whatsit are unconstrained type variables. The
environment may freely bind them to any concrete type. In general, type variables may have
to satisfy certain constraints of the form P ↪→R, which express that a provided type P must
satisfy the required type R. As we shall see, there is a close affinity between the contractual
type P{R} of an open component, and the functional type R→P of a closed expression that
abstracts over the environment in which that component will be instantiated.

From this example it should be clear that we wish to manipulate, compose, type and
typecheck environments. For this reason we introduce the pure form calculus, a simple,
untyped calculus of first-class environments. The form calculus is essentially a λ calculus of
explicit substitutions [1] in which substitutions are first-class values [19].

The contributions of this paper are:

• Syntax and semantics of the pure form calculus,

• a proposed system of contractual types for form expressions,

• type inference rules that generate contractual type expressions, with satisfaction con-
straints, for both closed and open form expressions, and

• partial type-checking rules for validating type constraints.

In section 2 we introduce the pure form calculus. In section 3 we introduce contractual
types for the form calculus. We evaluate the type system with the help of a series of examples
in section 4. In section 5 we discuss related work. Finally, in section 6, we outline ongoing
and future work, and present our conclusions.

2 The Form Calculus

It is now generally accepted that a software component is “a unit of independent deployment,
a unit of third-party composition [that] has no persistent state” [22]. A key aspect in this
definition, however, is the term composition, which suggests that deployment may not always
be so independent. In fact, a useful alternative definition of component is “a static abstraction
with plugs” [17], which emphasizes that a component not only provides, but also requires
services. In what way, however, should we characterize what components provide and require,
independently of concrete implementations of other third-party components?

We claim that composition of software components can be understood in terms of com-
position of namespaces, and we therefore propose to model components with a calculus of
first-class environment.

We seek to model software components that both provide and require sets of services.
We are not concerned here with issues of concurrency or reflection, and therefore limit our
attention here to purely functional composition without side effects. We are also not concerned
here with non-uniform service availability, and so do not consider issues of specifying or

2 THE FORM CALCULUS 3

checking protocols over provided services. In order to study the composition of software
components, we propose a simple calculus of first-class environments, or forms.

We introduce the word “form” rather than using “record” or “environment” to emphasize
the the multiple roles that forms play in the calculus:

• A form may provide a service which can be invoked;

• a form may contain zero or more bindings of labels to values;

• a form may be used as the environment in which an expression is evaluated;

• a form is itself a first-class value that may be bound to a label, or passed as an argument
to a service.

We similarly adopt the term “service” rather than “function” to emphasize the fact that our
goal is to model composition of software components, not composition of pure functions.

Table 1 presents the syntax and semantics of the form calculus. Application is left-
associative and · and ; are right associative. The terms are listed in order of precedence, with
; binding loosest. Closed form expressions may be evaluated and, if they terminate, reduce
to the sublanguage of form values. Evaluation consists in reducing applications (function
calls) and sandbox expressions (lookup of names in an environment). Pre-values may contain
such expressions only underneath a lambda. A form value is a closed pre-value. (x=y is a
pre-value, but not a value since free(x=y) = {y}.)

Note that the form calculus contains the usual untyped λ calculus as a sublanguage. Our
intent is that the embedded λ calculus should have the usual interpretation, except that
substitutions are made explicit through forms. The new constructs are the following: ()
represents an empty form providing neither a service to be invoked, nor any bindings that
can be looked up. x=F represents a binding of the label x to the form expression F . E·F
extends the form E by F . Bindings and services present in F override those present in E.
Finally, E;F evaluates F within the environment defined by the form E. Note that this
implies that E;F closes F . Any free labels occurring in F must be bound in E, or they
will lead to an error. In particular, ();x is an erroneous term since x is not bound in the
environment ().

Free labels are defined in the usual way. The only surprising rule is perhaps the last
one: free(E;F) = free(E). This makes clear that F is closed by E. In the expression
com; dohickeys;Widget, for example, the free name Widget must be bound in dohickeys, which
in turn must be looked up in com.

Only closed form expressions may be reduced. The rule Apply shows how β-reduction
is modeled by evaluating the body of an abstraction in an environment in which the formal
parameter is bound to the argument. Note that U and V must be form values since syntacti-
cally they are pre-values, and only closed expressions may be reduced. Evaluation is therefore
strict in the form calculus.

The rule Apply error states that an error may occur during application only if the form
being applied contains no service. The rule Substitute resolves all free names of an open
expression E by binding them in the environment U . Finally, closed subexpressions may also
be reduced within any context E[·], except underneath a lambda.

The identity function, for example, works as in the usual untyped λ calculus, but requires

2 THE FORM CALCULUS 4

Syntax of form expressions and pre-values
E,F, G ::= () Empty form

| x Label lookup
| FE Service application
| λx.F Service definition
| x=F Label binding
| E·F Form extension
| E;F Sandbox

U, V,W ::= ()
| x
| λx.F
| x=V
| U ·V

Free names
free(()) = ∅
free(x) = {x}

free(x=F) = free(F)
free(λx.F) = free(F)− {x}

free(FE) = free(F) ∪ free(E)
free(E·F) = free(E) ∪ free(F)
free(E;F) = free(E)

Reduction of closed form expressions
U V → x=V ;F if Uλ = λx.F Apply
U V → ⊥ if Uλ = ⊥ Apply error
U ;E → U [[E]] Substitute
E[F] → E[F ′] if F → F ′ and E[·] 6= λx.[·] Nested reduction

Lookup of services and labels

Uλ =
{

λx.F
⊥

if U ≡ V ·λx.F
otherwise

Ux =
{

W
⊥

if U ≡ V ·x=W
otherwise

Structural equivalence of form values

()·U ≡ U
U ·() ≡ U

U ·(V ·W) ≡ (U ·V)·W

x=V ·x=W ≡ x=W
x=V ·y=W ≡ y=W ·x=V if x 6= y
λx.E·λy.F ≡ λy.F
x=V ·λy.F ≡ λy.F ·x=V

Substitution
U [[()]] = () Empty
U [[x]] = Ux Lookup

U [[x=E]] = x=U [[E]] Close binding
U [[λx.F]] = λx.((U ·x=x)[[F]]) Close service
U [[FE]] = U [[F]] U [[E]] Close application
U [[F ·E]] = U [[F]]·U [[E]] Close extension
U [[E;F]] = U [[E]];F Close sandbox

Table 1: Pure Form Calculus — Syntax and Semantics

2 THE FORM CALCULUS 5

an extra reduction step:

(λx.x) () → x=();x
= ()

Forms may contain both ordinary label bindings as well as services, so we have lookup
functions for each of these. Note that a Substitute reduction may result in an error if the label
x being looked up is not bound in the environment U . So errors may arise only when applying
a form without a service, or when looking up a label that is not bound. The definition of
lookup makes use of structural equivalence for form pre-values.

U [[E]] looks up all free names in E and replaces them by their bindings in the pre-value
U . For example,

x=()[[x]] = ()

The only unusual equation is Close service. Note that in U [[λx.F]] we want all free labels in
F to be looked up in U , except for x, which must be captured by λx. This is achieved by the
translation to λx.(U ·x=x)[[F]], which overrides any binding for x that may occur in U by a
binding to the enclosing λx. Consider, for example,

x=()[[λx.x]] = λx.((x=()·x=x)[[x]])
= λx.x (and not λx.() !)

This example illustrates why (open) pre-values, like x=x, and not just (closed) values can be
used as environments for substitution.

2.1 Errors

Errors arise when at attempt is made to invoke a form expression that does not contain a
service, or when a label is looked up in a form that does not contain a binding for it. Here
getb is bound to a service that looks up b in its argument form. When we apply it to x, which
contains a binding for a, but not for b, an error occurs:

x=a=()·getb=λy.(y; b); getb x → (λy.(y; b)) (a=())
→ y=a=(); y; b
→ a=(); b
→ ⊥

By the same token, if we try to apply x to getb, this will result in an error, because x
contains no service:

x=a=()·getb=λy.(y; b);x getb → (a=()) (λy.(y; b))
→ ⊥

A type system for open form expressions should not only express what is provided and
required, but should be able to determine which composite expressions are erroneous.

3 CONTRACTUAL TYPES 6

2.2 Form Calculus — Expressiveness

The form calculus we have presented here captures the essential aspects concerning compo-
nent composition that we wish to study: nested namespaces providing and requiring various
services, composition of first-class namespaces, and abstraction over namespaces and compo-
sition. We ignore, on the other hand, issues of state, concurrency and synchronization.

If we reconsider the example outlined in the introduction, we might express it in the form
calculus as follows:

com; dohickeys; gadget=λx.(widget ()·tinker=λw.(widget ();munge) (thing w))

The only free name here is com, which represents an environment containing the dohickeys
namespace. Note that FooBar, Whatsit and Thing are absent, as they represent types, which
are not modelled in the form calculus.

3 Contractual Types

We want to be able to type not only closed form expressions but also open ones. The type of
an open expression will specify not only what it provides, but also what it requires from the
environment. As a consequence, our type judgments will take the form:

` F :: P{R} | C

where P represents what F provides, and R represents what F requires of an environment
that binds its free variables. (Since we use : in the syntax of types, we will avoid confusion
by using :: to indicate that a form F has a certain type P{R}.) C is a set of constraints on
the free type variables occurring in P and R of the form P ↪→ R, which express that provided
type P must satisfy the requirements posed by R.

Our intention is that whenever these constraints can be satisfied, we will derive a simpler
type judgment of the form ` F :: P{R}. If, on the other hand, we can derive ` F :: ⊥,
then F will be untypable, and consequently erroneous. As we shall see, the type-checking
rules we propose are partial, and constraints can only be checked when enough information
is available.

The syntax of contractual types is shown in table 2.
Provided types characterize form values and closed form expressions. () is the type of the

empty form. α is a type variable, as in λx.x :: α→α. We use Greek letters to range over type
variables. Later we will need to distinguish between type variables that occur positively (i.e.,
with a positive superscript), representing a provided type, and those that occur negatively,
representing a required type. Generally we will drop the superscripts for readability, as they
can easily be recovered from the syntactic context of a variable, so we may write λx.x :: α→α
instead of λx.x :: α−→α+.

x:P types a form with a bound label, as in x=() :: x:(). In the expression P1·P2, P2 may
override P1.

Required types are syntactically distinct from provided types, since they express conjunc-
tions of logical requirements on an environment. Conjunctions of requirements are written
R ∧R (cf. intersection types [11]).

Finally, contractual types characterize open expressions. If F is closed, then R is empty.
So any provided type P can also be interpreted as the contractual type P{()}.

3 CONTRACTUAL TYPES 7

Syntax of Provided, Required
and Contractual Types

P ::= ()
| α+

| x:P
| P ·P
| R→P

R ::= ()
| α−

| x:R
| R ∧R
| P→R

C ::= >
| ⊥
| C,P ↪→ R

T ::= P
| P{R}
| P{R} | C

Type Equivalence
()·P ≡ P
P ·() ≡ P

P ·(S·Q) ≡ (P ·S)·Q
x:P ·x:S ≡ x:S
x:P ·y:S ≡ y:S·x:P if x 6= y

R→P ·Q→S ≡ Q→S
x:S·R→P ≡ R→P ·x:S

R ∧Q ≡ Q ∧R
R ∧ () ≡ R

P ≡ P{()}
P{R} ≡ P{R} | >

Type Inference Rules

Empty
` () :: ()

Lookup
` x :: τ{x:τ}

` E :: P{R} | C
Label

` x=E :: x:P{R} | C

` E :: P{R} | C1 ` F :: S{Q} | C2
Extend

` E·F :: P ·S{R ∧Q} | C1, C2

` E :: P{R} | C
Abstract

` λx.E :: Rx→P{R\x} | C

` E :: P{R} | C1 ` F :: S{Q} | C2
Close

` E;F :: S{R} | C1, C2, P ↪→ Q

` E :: P{R} | C1 ` F :: S{Q} | C2
Apply

` E F :: β{R ∧Q} | C1, C2, P ↪→ S→β

Type operators for required types
()x = ()

(x:R)x = R
(x:R)y = () x6=y

(Q ∧R)x = Qx ∧Rx

αx = ⊥
(P→R)x = ⊥

()\x = ()
(x:R)\x = ()
(x:R)\y = (x:R) x6=y

(Q ∧R)\x = Q\x ∧R\x
α\x = ⊥

(P→R)\x = ⊥

Table 2: Contractual Types — Syntax and Semantics

3 CONTRACTUAL TYPES 8

Equivalences for type expressions largely mimic those for form expressions. Only unbound
type variables do not commute under extension, so, in general, τ ·σ 6= σ·τ . (τ might later be
bound to x:() and σ might be bound to x:y:(), either of which could override the other.)

3.1 Type Inference

The type inference rules are used to infer a judgment ` F :: P{R} | C for a form expression
F . The task of checking whether the constraints in C can be satisfied is deferred to the type
checking rules (section 3.2).

The rules Empty, Lookup, Label directly build up contractual types for empty forms, labels,
and bindings. Extend overrides provided types and merges required types. Abstract makes
use of type operators to lookup and remove requirements on specific labels from required
types. The rules Close and Apply generate constraints to check if the provided environment
P or argument satisfies its requirements R.

Let us consider each of the type inference rules in turn. The rule Empty is straightforward.
The empty form has the empty type.

The Lookup rule is less obvious. The judgment x :: τ{x:τ} states that a form x provides
τ if it is bound in an environment where its type is τ . If we combine this with the Label rule,
we see that a binding x=y has type x:σ{y:σ}:

` y :: σ{y:σ}

` x=y :: x:σ{y:σ}

This expresses precisely what we intend: the form x=y provides something (x:σ), as long as
the environment satisfies the requirement y:σ.

The Extend rule forms the logical conjunction of two requirements.

` x :: τ{x:τ} ` y :: σ{y:σ}

` x·y :: τ ·σ{x:τ ∧ y:σ}

This expresses clearly that x·y provides τ ·σ as long as the environment satisfies x:τ and y:σ.
The Abstract rule assumes that the formal parameter x may occur free in the body E. It

then extracts the requirement on x from R, the requirement E places on the environment.
Since λx.E binds x in E, the requirement on x must be removed from R. The identity
function is closed, so we expect its required type to be empty:

` x :: τ{x:τ}
(x:τ)x = τ, (x:τ)\x = ()

` λx.x :: τ→τ

Consider, on the other hand, the function λx.y. Since it is open, we expect it to have a
non-empty required type:

` y :: σ{y:σ}
(y:σ)x = (), (y:σ)\x = y:σ

` λx.y :: ()→σ{y:σ}

The resulting type says that we place no requirement on the argument x, but the environment
has the requirement y:σ.

3 CONTRACTUAL TYPES 9

The remaining rules, Close and Apply, generate constraints to be checked by the type-
checking rules. A sandbox expression E;F provides whatever F provides, and requires what-
ever E requires. Close additionally imposes the constraint that the type P provided by E
must satisfy the requirement Q of F , i.e., P ↪→ Q.

Consider, for example, that x :: τ{x:τ} and y :: σ{y:σ}:

` x :: τ{x:τ} ` y :: σ{y:σ}

` x; y :: σ{x:τ} | τ ↪→ y:σ

Here we see that x; y provides type σ (the type of y) if it is evaluated in an environment where
x has type τ , given the constraint that τ satisfies y:σ. As we shall see below, this constraint
can be trivially satisfied, but this is not always the case.

The Apply rule merges the requirements on the environment of E and F , and furthermore
checks that E satisfies the requirement that it be an arrow type accepting the type of F .
Consider the open expression x y:

` x :: τ{x:τ} ` y :: σ{y:σ}

` x y :: β{x:τ ∧ y:σ} | τ ↪→ σ→β

The resulting type expresses that x y provides β, requires x:τ and y:σ, and τ must satisfy
σ→β.

As we shall see, these constraints are often trivial to satisfy, but may sometimes lead to
difficulties.

3.2 Type Checking

We distinguish between the type inference rules, which are used to infer a judgment ` F ::
P{R} | C for a form expression F , and the type checking rules which attempt to satisfy the
constraints in C and produce a judgment of the form ` F :: P{R}, or alternatively fail and
produce a judgment ` F :: ⊥. If type checking succeeds, then we know that F can be safely
evaluated in any environment that satisfies its required type R and not lead to an error. The
type checking rules are partial in the sense that they do not always succeed in either satisfying
C or demonstrating that C cannot be satisfied.

Type checking proceeds as follows:

• First, type constraints are simplified using the equivalences in table 3 to constraints of
the form α+↪→R or P ↪→α−.

• Next, constraints over the same positive type variable are coalesced into a single con-
straint using the Join equivalence.

• Then, constraints are resolved by unifying type variables with type expressions using
the rules Bind right and Bind left.

• Finally, iterate until all constraints are resolved (>), are shown to be unresolvable (⊥),
or no further substitutions are possible.

4 DISCUSSION 10

Equivalence of type constraints
P ↪→ () ≡ > Trivial

P ↪→ Q ∧R ≡ P ↪→Q,P ↪→R Split
P ·x:S ↪→ x:R ≡ S↪→R Resolve label
P ·y:S ↪→ x:R ≡ P ↪→x:R x 6= y Skip label

() ↪→ x:R ≡ ⊥ No label 1
Q→S ↪→ x:R ≡ ⊥ No label 2

S′·(Q→S) ↪→ P→R ≡ P ↪→ Q,S ↪→ R Resolve service
S′·x:S ↪→ P→R ≡ S′ ↪→ R→R Skip label 2

() ↪→ R→R ≡ ⊥ No service
α ↪→ R,α ↪→ Q ≡ α ↪→ R ∧Q Join

Type checking rules

` F :: P{R} | C,α+↪→Q
α+ does not occur in C Bind left

` F :: (P{R} | C)[α− 7→Q]

` F :: P{R} | C,S↪→α−

α− does not occur in C Bind right
` F :: (P{R} | C)[α+ 7→S]

Table 3: Type-checking Rules

Substitution of type variables T [α− 7→ R] and T [α+ 7→ P] is defined in the obvious way, and
we skip the formal definition.

Let us briefly consider the last example of section 3.1 to see how the constraint may be
resolved.

` x; y :: σ+{x:τ−} | τ+ ↪→ y:σ−

Bind left
` x; y :: σ+{x:y:σ−}

Here we trivially satisfy the constraint τ ↪→ y:σ by substituting [τ 7→ y:σ].
In the next example we drop the superscripts:

` x y :: β{x:τ ∧ y:σ} | τ ↪→ σ→β
Bind right

x y :: β{x:σ→β ∧ y:σ}

Again, we see that the constraint is trivially satisfied by binding [τ− 7→ σ+→β−]. The
resulting judgment clearly states that x y is valid in an environment where x is bound to a
service and y is a suitable argument.

4 Discussion

The key feature of contractual types is that one may infer types not only for closed expressions,
but also for open expressions.

x y :: β{x:σ→β ∧ y:σ}

4 DISCUSSION 11

is an open expression that must be placed in an environment providing suitable bindings for
x and y.

Of course we may close such an expression as follows:

· · ·
` λx.λy.x y :: β→γ→α | β↪→γ→α

λx.λy.x y :: (γ→α)→γ→α

but this fails to capture the idea that such an expression will be evaluated when it is composed
with other components providing the missing bindings for x and y.

A better way of modeling this is as follows:

· · ·
` λe.(e;x y) :: α→β | γ↪→δ→β, α↪→x:γ∧y:δ

λe.(e;x y) :: (x:(δ→β)∧y:δ)→β

This captures the idea that x y will be evaluated in some environment e which is required to
provide the missing bindings.

It should be clear that any open expression can be closed in the same way, so there is a
natural relationship between contractual types, and ordinary functional types. It is easy to
demonstrate that if F :: P{R} then λe.(e;F) :: R→P

4.1 Erroneous terms

Errors may occur in the form calculus either when we attempt to lookup a non-existing label,
or when we apply a non-service to a form. Let us consider the two canonical cases.

First, consider invalid lookup:

` ();x :: τ | () ↪→ x:τ

Since () cannot possibly satisfy x:τ , we conclude that the term cannot be typed, and is
therefore erroneous.

Next, consider invalid application:

` () () :: β | () ↪→ ()→β

Since () cannot possibly satisfy ()→β, we again conclude that this term cannot be typed, and
is therefore erroneous.

We can similarly deduce that the example of section 2.1 is erroneous:

` x=a=()·f=λy.(y; b); f x :: ()↪→b:γ

4 DISCUSSION 12

Let us now reconsider the example of section 2.1:
· · ·

` x=a=()·f=λy.(y; b) :: x:a:()·f :(b:β→β)

· · ·

` f x :: α{f :(γ→α)∧x:γ}
` x=a=()·f=λy.(y; b); f x :: γ | α↪→b:β, δ↪→η→γ, x:a:()·f :(α→β)↪→f :δ∧x:η

` · · · :: γ | α↪→b:β, δ↪→η→γ, α→β↪→δ, a:()↪→η

` · · · :: γ | δ↪→η→γ, b:β→β↪→δ, a:()↪→η

` · · · :: γ | η↪→b:β, β↪→γ, a:()↪→η

` · · · :: γ | β↪→γ, ()↪→b:β

` · · · :: γ | ()↪→b:γ

` · · · :: ⊥

4.2 Contractual Types for Open Modules

Let us reconsider our motivating example from the introduction, which we encoded in the
form calculus as:

com; dohickeys; gadget=λx.(widget ()·tinker=λw.(widget ();munge) (thing w))

We can easily infer the following type for this expression:

gadget:(()→(γ·tinker:(β→η))){
com:dohickeys:((widget:(()→γ)∧widget:(()→munge:(ζ→η)))∧thing:(β→ζ))

}

which is close to, if not entirely identical to, the intuitive type we derived.
We may try to factor out the duplicated instantiation of widget as follows:

com; dohickeys; gadget=λx.(
super=widget ();
super·tinker=λw.(super;munge) (thing w)

) :: ⊥

This, however, generates the constraint ()↪→thing:(β→ζ), which is clearly erroneous. The
problem is that thing is not bound in the environment super=widget ().

We can fix our error as follows:

com; dohickeys; gadget=λx.(
thing=thing·super=widget ();
super·tinker=λw.(super;munge) (thing w)

)

which extracts the correct binding for thing from the enclosing environment dohickeys and
generates the contractual type:

gadget:(()→(τ ·tinker:(γ→σ))){
com:dohickeys:(widget:(()→(τ∧munge:(α→σ))))∧thing:(γ→α)

}

5 RELATED WORK 13

which arguably expresses what we set out to demonstrate.

4.3 Difficulties

Although we can infer types for any open or closed form expression, we are not always able
to typecheck all the generated constraints. The simplest example that illustrates the problem
is this one:

` x·y; z :: γ{x:α∧y:β} | α·β↪→z:γ

z is to be evaluated in the environment obtained by composing x and y. But since we have
neither x nor y, we do not know which of the two will actually provide a binding for z. This
is expressed by the constraint α·β↪→z:γ.

Closing this expression does not help in any way:

` λx.λy.(x·y; z) :: α→β→γ | α·β↪→z:γ

We conclude that certain constraints (and this is by far the simplest example) cannot be
resolved without more information.

A very different question is to ask whether any solution exists for a set of constraints. A
complete type-checking algorithm would generate at least one solution that satisfies a set of
constraints, or demonstrate that no solution exists. Our current type checking rules are far
from achieving this.

A second problem is that we have not addressed the issue of encoding recursively defined
services. It turns out that the usual fixed-point combinator can also be used effectively in the
form calculus:

fix=λf.(λx.f (λy.x x y)) (λx.f (λy.x x y))

The type we infer for this expression, however, generates a nasty set of constraints that
cannot be easily interpreted.

` · · · :: fix:(((φ→δ)→β∧(τ→γ)→ζ)→α)
| ζ↪→φ→δ, η↪→η→τ→γ, η↪→η, ζ↪→τ→γ, (η→τ→γ∧η)→ζ↪→η, β↪→α

The problem seems to arise from the (necessary) presence of self application in the fixed-point
combinator, a traditional stumbling point for type systems. We suspect that a better approach
would be to add an explicit fixed-point operator to the form calculus, and a corresponding
notion of recursive types to the type system.

5 Related work

Other researchers have proposed type systems that explicitly document both provided and
required services. Shao and Appel infer constraints on environments in order to achieve
smartest recompilations for ML modules. Jim has proposed principal typings as a general
approach to inferring constraints on environments for open expressions. Neither approach
introduces first-class environments, but instead generates a type environment expressing the
type assumptions. We conjecture that principal typings exist for the form calculus.

More recently, Collaboration interfaces [15] express provided and expected contracts for
a software component, and enable components to be flexibly bound to services they require.
Zenger [23] has proposed a type-safe prototype-based model for component composition as

6 ONGOING AND FUTURE WORK 14

an extension to Featherwight Java with provides and requires declarations. Numerous archi-
tectural description languages (ADLs) [21], such as ArchJava [5] and Jiazzi, [14] also model
components as explicitly providing and requiring services, typically through named ports.

The inspiration for this work is the Piccola composition language [4] [3], whose formal
semantics are defined in terms of forms, agents and channels. Lumpe’s thesis [13] presents
the πL-calculus — a variant of the π calculus based on forms — together with its type system.
This simple type system, however, is very restrictive, and does not support polymorphism.
Schneider’s thesis [20] introduces a “form calculus” that includes agents and channels, but
does not treat environments as first-class. Achermann’s “Piccola calculus” [2] also includes
agents and channels, and can be seen as containing the pure form calculus presented here as
a sublanguage. Neither Schneider’s form calculus nor the Piccola calculus are typed.

Abadi’s calculus of explicit substitutions [1] makes environment explicit, but does not turn
them into first-class values. Dami’s calculus of names, λN [8], replaces variables by names, and
has a similar flavour to our form calculus, but still does not treat environments as first-class
values.

Nishizaki’s environment calculus [18] treats environments as first-class values, and sup-
ports a polymorphic, ML-style type system with a corresponding type-inference algorithm.
Although the environment calculus is superficially very similar to the form calculus, it skirts
the issue of when expressions are open or closed.

Sato’s λε calculus [19] bears remarkable resemblance the form calculus, but it is a typed
calculus requiring explicit type declarations, rather than an untyped calculus for which type
inference is defined. Although λε offers a definition of free names and open expressions, it
is strongly dependent on the type system. In particular, not all free names of an expression
need be captured by the environment in which it is evaluated. Unlike Nishizaki’s environment
calculus, λε only supports a simple type system.

Aside from Piccola, various other languages have supported explicit environments. Scheme
[9] is the best-known, and is dynamically typed. Pebble [6] is the other well-known exam-
ple, and is statically typed. Symmetric Lisp [10] is dynamically typed, and was developed
specifically with parallel applications in mind. Quest [7] was inspired by Pebble, and supports
explicit import and export of first-class modules.

The “contracts” expressed by contractual types are technically very weak, and do not
capture behavioural contracts, such as pre- or post-conditions to services, or protocols over
sets of services. Regular types [16] were an early attempt to express service protocols as finite
state processes, where protocol satisfaction was determined by deadlock freeness. It would be
interesting to see if contractual types could be extended to capture some degree of behavioural
contracts.

6 Ongoing and Future Work

We have introduced the form calculus as a platform for studying composition of software
components, and we have proposed contractual types as a means to express what a software
component not only provides, but also what it requires. We have presented a type system
for inferring contractual types, together with the type satisfaction constraints over free type
variables. Although the type system will infer types for arbitrary open or closed form expres-
sions, the type checking rules can only validate certain kinds of constraints. Other constraints
can only be checked when the missing environments are available.

REFERENCES 15

Although we have presented an operational semantics for the form calculus, a number
of important properties remain to be shown, such as confluence and faithfulness to the call-
by-value lambda calculus. We similarly conjecture, without proof, soundness and a subject
reduction theorem for contractual types.

We have developed an experimental prototype of the form calculus and its type system,
and the derivations shown here have been generated from this implementation. The semantics
given correspond closely to the rules of the Prolog implementation. A first attempt has been
made to apply contractual types to Piccola, where provided and required types can be used
to effectively capture the “plugs” of software components [12]. Even though Piccola is a small
language, there are several important extensions needed to the form calculus to adequately
express the type issues at stake, in particular, form introspection, recursive services, and root,
the mechanism Piccola offers to capture the current environment.

The next step would be to apply the type system to other more mainstream languages,
like Java or Smalltalk. This would require a translation of the compositional aspects of these
languages to the form calculus. Although concurrency and side effects can largely be ignored
for type inference and type-checking, reflective aspects of these languages may pose further
difficulties.

Acknowledgments We would like to thank Andrew Black, Luca Cardelli, Gerhard Jäger,
Stefan Kneubühl, Mathis Kretz, Peng Liang, Tom Mens, Roel Wuyts, and Matthias Zenger
for comments and suggestions, as well as anonymous reviewers who offered corrections and
pointers to related work.

References

[1] Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lévy. Explicit
substitutions. Technical Report 54, DEC Systems Research Center, Palo Alto, California,
February 1990.

[2] Franz Achermann. Forms, Agents and Channels - Defining Composition Abstraction with
Style. PhD thesis, University of Berne, January 2002.

[3] Franz Achermann, Markus Lumpe, Jean-Guy Schneider, and Oscar Nierstrasz. Piccola
– a small composition language. In Howard Bowman and John Derrick, editors, Formal
Methods for Distributed Processing – A Survey of Object-Oriented Approaches, pages
403–426. Cambridge University Press, 2001.

[4] Franz Achermann and Oscar Nierstrasz. Applications = Components + Scripts – A Tour
of Piccola. In Mehmet Aksit, editor, Software Architectures and Component Technology,
pages 261–292. Kluwer, 2001.

[5] Jonathan Aldrich, Craig Chambers, and David Notkin. Architectural reasoning in arch-
java. In Proceedings ECOOP 2002, volume 2374 of LNCS, pages 334–367, Malaga, Spain,
June 2002. Springer Verlag.

[6] Rod Burstall and Butler Lampson. A kernel language for abstract data types and mod-
ules. Information and Computation, 76(2/3), 1984. Also appeared in Proceedings of the

REFERENCES 16

International Symposium on Semantics of Data Types, Springer, LNCS (1984), and as
SRC Research Report 1.

[7] Luca Cardelli. Typeful programming. In E. J. Neuhold and M. Paul, editors, Formal
Description of Programming Concepts, IFIP State of the Art Reports Series, pages 431–
507. Springer-Verlag, 1991.

[8] Laurent Dami. A lambda-calculus for dynamic binding. Theoretical Computer Science,
192(2):201–231, February 1998.

[9] R. Kent Dybvig. The SCHEME Programming Language. Prentice-Hall, 1987.

[10] David Gelernter, Suresh Jagannathan, and Tom London. Environments as first-class
objects. In Principles of Programming Languages. ACM, 1987.

[11] Trevor Jim. What are principal typings and what are they good for? In Principles of
Programming Languages. ACM, 1996.

[12] Stefan Kneubuehl. Typeful compositional styles. Diploma thesis, University of Bern,
April 2003.

[13] Markus Lumpe. A Pi-Calculus Based Approach to Software Composition. Ph.D. thesis,
University of Bern, Institute of Computer Science and Applied Mathematics, January
1999.

[14] Sean McDirmid, Matthew Flatt, and Wilson Hsieh. Jiazzi: New age components for old
fashioned java. In Proceedings OOPSLA 2001, ACM SIGPLAN Notices, pages 211–222,
October 2001.

[15] Mira Mezini and Klaus Ostermann. Integrating independent components with on-
demand remodularization. In Proceedings OOPSLA 2002, pages 52–67, November 2002.

[16] Oscar Nierstrasz. Regular types for active objects. In Proceedings OOPSLA ’93, ACM
SIGPLAN Notices, volume 28, pages 1–15, October 1993.

[17] Oscar Nierstrasz and Laurent Dami. Component-oriented software technology. In Oscar
Nierstrasz and Dennis Tsichritzis, editors, Object-Oriented Software Composition, pages
3–28. Prentice-Hall, 1995.

[18] Shin-ya Nishizaki. A polymorphic environment calculus and its type-inference algorithm.
Higher-Order and Symbolic Computation, 13(3):241–280, 2000.

[19] Masahiko Sato, Takafumi Sakurai, and Rod M. Burstall. Explicit environments. In Jean-
Yves Girard, editor, Typed Lambda Calculi and Applications, volume 1581 of LNCS, pages
340–354, L’Aquila, Italy, April 1999. Springer-Verlag.

[20] Jean-Guy Schneider. Components, Scripts, and Glue: A conceptual framework for soft-
ware composition. Ph.D. thesis, University of Bern, Institute of Computer Science and
Applied Mathematics, October 1999.

[21] Mary Shaw and David Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice-Hall, 1996.

REFERENCES 17

[22] Clemens A. Szyperski. Component Software. Addison Wesley, 1998.

[23] Matthias Zenger. Type-safe prototype-based component evolution. In Proceedings
ECOOP 2002, volume 2374 of LNCS, pages 470–497, Malaga, Spain, June 2002. Springer
Verlag.

Appendix—Constraint unification for contractual types

Unification

Here we look at the examples in some detail, indicating in each case the parity of type variables,
according to whether they occur in positive (provided) or negative (required) positions. For
each example, we give first the plain inferred type. Then, if necessary, this type is normalized
so that each constraint in the constraint set contains a single type variable either on the left
(α↪→R) or on the right hand side (P ↪→α). Note that, in general, if a variable appears positively
or negatively in a constraint, it appears, respectively, negatively or positively somewhere else,
either in the type or in the constraint set. After normalization, a single unification step is
shown, in which either a RHS or LHS variable is unified with the provided or required type
that constrains it. Constraints on positive variables are merged into a type conjunction.
Negative variables are only unified if they occur uniquely.

To ease readability, the final type expression shown erases the parity. All the type expres-
sions here have been generated by the nanola formtypes package.

Simple substitutions

In these examples, the type variable is simply replaced by its requirement.

x; y :: β+{x:α−}[α+↪→y:β−]
→ β+{x:y:β−}
= β{x:y:β}

x y :: α+{x:β−∧y:γ−}[β+↪→γ+→α−]
→ α+{x:(γ+→α−)∧y:γ−}
= α{x:(γ→α)∧y:γ}

λx.(x; y) :: α−→β+[α+↪→y:β−]
→ y:β−→β+

= y:β→β

λx.λy.(x; y) :: α−→()→β+[α+↪→y:β−]
→ y:β−→()→β+

= y:β→()→β

x x :: α+{x:β−∧x:γ−}[β+↪→γ+→α−]
→ α+{x:(γ+→α−)∧x:γ−}
= α{x:(γ→α)∧x:γ}

REFERENCES 18

Positive and negative constraints

The first example here is interesting because α occurs twice. We must rewrite the constraint
as α+↪→f :γ∧x:δ to perform the substitution, i.e., “undoing” the type decomposition.

λe.(e; f x) :: α−→β+[γ+↪→δ+→β−, α+↪→f :γ−∧x:δ−]
= α−→β+[γ+↪→δ+→β−, α+↪→f :γ−, α+↪→x:δ−]
→ α−→β+[α+↪→f :(δ+→β−), α+↪→x:δ−]
→ (f :(δ+→β−)∧x:δ−)→β+

= (f :(δ→β)∧x:δ)→β

Note that we could also resolve the constraint by first binding α, which suggests that the
substitution order does not matter.

In the next two examples as well, substitution order does not matter:

(λx.x) (λx.x) :: α+[β−→β+↪→(γ−→γ+)→α−]
= α+[γ−→γ+↪→β−, β+↪→α−]
→ α+[γ−→γ+↪→α−]
→ γ−→γ+

= γ→γ

Here we have an example where a unification gives rise to the need for normalization.

(λx.(x; b)) (a=()·b=()) :: α+[β+↪→b:γ−, β−→γ+↪→(a:()·b:())→α−]
= α+[β+↪→b:γ−, a:()·b:()↪→β−, γ+↪→α−]
→ α+[a:()·b:()↪→b:γ−, γ+↪→α−]
= α+[()↪→γ−, γ+↪→α−]
→ α+[()↪→α−]
→ ()

Again, various substitution orders do not make a difference:

(λx.(x; b)) z :: α+{z:δ−}[β+↪→b:γ−, β−→γ+↪→δ+→α−]
= α+{z:δ−}[β+↪→b:γ−, δ+↪→β−, γ+↪→α−]
→ α+{z:δ−}[δ+↪→b:γ−, γ+↪→α−]
→ α+{z:b:γ−}[γ+↪→α−]
→ α+{z:b:α−}
= α{z:b:α}

Erroneous terms are easily recognized, since their constraint sets cannot reduce to normal
form ([()↪→x : τ] and [()↪→()→β]).

();x :: α+[()↪→x:α−]
→ ⊥

() () :: α+[()↪→()→α−]
→ ⊥

REFERENCES 19

Difficulties

Here is another case where unification leads to a complex constraint, which must then be
normalized to make further progress. We reach an impasse, since it is not clear how we
should unify α and β due to mixed parities.

x=λy.y;x x :: β+[γ+↪→δ+→β−, x:(α−→α+)↪→x:γ−∧x:δ−]
= β+[γ+↪→δ+→β−, α−→α+↪→γ−, α−→α+↪→δ−]
→ β+[α−→α+↪→δ+→β−, α−→α+↪→δ−]
= β+[δ+↪→α−, α+↪→β−, α−→α+↪→δ−]
→ β+[α+↪→β−, α−→α+↪→α−]
= β[α↪→β, α→α↪→α]

This expression seems to pose no problems:

λx.x x :: (β−∧γ−)→α+[β+↪→γ+→α−]
→ (γ+→α−∧γ−)→α+

= (γ→α∧γ)→α

Self-application of this expression (AKA Ω) seems to be untypable. In this example,
neither σ nor η occur as unifiable variables in the initial normal form, but only during later
normalization steps.

(λx.x x) (λx.x x)
:: α+[γ+↪→δ+→β−, τ+↪→σ+→η−, (γ−∧δ−)→β+↪→((τ−∧σ−)→η+)→α−]
= α+[γ+↪→δ+→β−, τ+↪→σ+→η−, (τ−∧σ−)→η+↪→γ−, (τ−∧σ−)→η+↪→δ−, β+↪→α−]
→ α+[τ+↪→σ+→η−, (τ−∧σ−)→η+↪→δ+→β−, (τ−∧σ−)→η+↪→δ−, β+↪→α−]
= α+[τ+↪→σ+→η−, δ+↪→τ−, δ+↪→σ−, η+↪→β−, (τ−∧σ−)→η+↪→δ−, β+↪→α−]
→ α+[δ+↪→σ+→η−, δ+↪→σ−, η+↪→β−, (σ+→η−∧σ−)→η+↪→δ−, β+↪→α−]
→ α+[η+↪→β−, (σ+→η−∧σ−)→η+↪→σ+→η−∧σ−, β+↪→α−]
= α+[η+↪→β−, σ+↪→σ+→η−, σ+↪→σ−, η+↪→η−, (σ+→η−∧σ−)→η+↪→σ−, β+↪→α−]
= α[η↪→β, σ↪→σ→η, σ↪→σ, η↪→η, (σ→η∧σ)→η↪→σ, β↪→α]

At this point we are stuck, and no further progress seems to be possible. Negative variables
occur multiply on the RHS of constraints, and other strange constraints appear. In the usual
typed polymorphic lambda calculus, only terminating expressions are typable. It is not clear
what should be the case here.

