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Abstra
t

The Logi
 of Proofs LP solved a long standing G�odel's problem 
on-


erning his provability 
al
ulus (
f. [4℄). It also opened new lines of re-

sear
h in proof theory, modal logi
, typed programming languages, knowl-

edge representation, et
. The propositional logi
 of proofs is de
idable and

admits a 
omplete axiomatization. In this paper we show that the �rst

order logi
 of proofs is not re
ursively axiomatizable.

1 Introdu
tion

The study of provability by means of modal logi
 was originated by G�odel in

the 1930s in [12, 13℄. He suggested reading the modality 2 as provability; so

the formula 2F is interpreted as \F is provable". This G�odel's proposal led

to two substantially di�erent provability interpretations of 2F ea
h having its

own spe
i�
 mathemati
al model. We will 
all them model A and model B.

Model A treats modal senten
e 2F as a formal proposition \F is derivable

in Peano Arithmeti
 PA", whi
h in turn 
an be expressed by an arithmeti-


al formula. Provability Logi
 
onsists of modal formulas whi
h are valid under

this interpretation. De�nitions and a detailed presentation of results 
on
erning

this approa
h 
an be found in [11℄. The well known Solovay Completeness The-

orem (see [11℄ or [18℄) demonstrates that the propositional Provability Logi


is de
idable, admits a 
on
ise axiomatization and a natural semanti
al 
har-

a
terization in terms of Kripke models. In fa
t, Solovay has shown that the

modal logi
 GL

1

axiomatized all propositional properties of the formal prov-

ability predi
ate. The logi
 GL is a normal 
lassi
al modal logi
 having modal

�
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axioms 2(P ! Q) ! (2P ! 2Q) and 2(2P ! P ) ! 2P . The latter is

known as the L�ob's Prin
iple: it is a dire
t formalization of the well known

L�ob's theorem [11, 17℄. Artemov and Vardanyan in [5, 9, 10℄ demonstrated that

the �rst order Provability Logi
s was not re
ursively axiomatizable (in fa
t, the

lower 
omplexity bounds for all reasonable versions of it were the worst possi-

ble). Comprehensive surveys of the studies in Provability Logi
s 
an be found

in [11, 14℄.

Model B was de�ned by G�odel axiomati
ally via his famous modal provabil-

ity 
al
ulus a.k.a. modal logi
 S4 whi
h eventually led to the G�odel's problem

mentioned above

2

. G�odel pointed out in [12, 13℄ that S4 is in
ompatible with

model A (whi
h reads 2F is a formal provability assertion \F is derivable in

Peano Arithmeti
 PA"). More exa
tly, the re
exivity axiom2F ! F of S4 along

with the ne
essitation rule H ` 2H produ
e a formula 2(2F ! F ) whi
h is

false under the formal provability interpretation A. Indeed, if F is interpreted

as the boolean 
onstant false, then 2(2F ! F ) asserts the provability of 
on-

sisten
y in PA, whi
h does not take pla
e by the G�odel Se
ond In
ompleteness

Theorem. Despite G�odel's hints in [13℄ and quite a history of attempts to solve

it, the problem of the provability semanti
s for G�odel's provability 
al
ulus S4

remained open for more then 60 years until it was eventually solved by the Logi


of Proofs LP (
f. [4℄) whi
h 
ombined expli
it 
hara
ter of �-
al
ulus with iter-

ative 
apa
ities of modal logi
. It turned out that G�odel's provability 
al
ulus

S4 
orresponds to the reading of modalities 2F as expli
it provability assertions

\t is a proof of F" for an appropriate proof term t (
alled proof polynomial).

A 
omplete de
idable axiom system of propositional logi
 of proofs (
alled the

Logi
 of Proofs LP) has been presented in [2, 3, 4℄. Logi
 of Proofs also gives

a fair mathemati
al model for the intended Brouwer-Heyting-Kolmogorov se-

manti
s for the propositional intuitionisti
 logi
. In addition, proof polynomials

subsume typed �-
al
ulus and typed 
ombinatory logi
. Those features make

proof polynomials and the Logi
 of Proofs attra
tive for appli
ations in typed

programming languages, knowledge representation, automated dedu
tion and

veri�
ation, et
.

In this paper we 
onsider logi
 of proofs formulated in the �rst-order language

(see also [6, 16, 20℄). In se
tion 2 we dis
uss the appropriate �rst order language

of logi
 of proofs and give exa
t de�nitions of the arithmeti
al semanti
s and

of �rst order logi
 of proofs. The answers to natural axiomatizability questions

for the �rst order logi
 of proofs 
onsidered in this paper are all negative. In

se
tion 3 we prove that if proofs are represented by spe
ial symbols for re
ursive

2

G�odel's problem was raised in [12℄ where G�odel introdu
ed a spe
ial modal 
al
ulus for

provability (S4) and used it to provide an intended provability interpretation for intuitionisti


logi
. In this paper G�odel noti
ed that the straightforward interpretation of S4-modality

as the formal provability operator does not work thus leaving open the problem of �nding a

provability interpretation to S4. In [13℄ G�odel 
onsidered this problem on
e again and spe
i�ed

the format of the intended solution. The Logi
 of Proofs gives the solution to G�odel's problem

in the format suggested in [13℄.
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fun
tions then the 
orresponding logi
 is nonaxiomatizable. In se
tion 4 we


onsider �rst order logi
s with proof 
onstants; we establish that those logi
s

are not axiomatizable either.

2 Main de�nitions.

2.1 Some standard de�nitions and fa
ts.

Firstly, let us re
all several standard de�nitions and fa
ts 
on
erning Peano

Arithmeti
 (see [17℄ for details).

Hierar
hy of arithmeti
al formulas. By indu
tion on n we de�ne �

n

-formulas

and �

n

-formulas as follows: both �

0

-formulas and �

0

-formulas are formulas in

whi
h all quanti�ers are bounded, �

n+1

-formulas have the form 9x' where ' is

�

n

, �

n+1

-formulas have the form 8x' where ' is �

n

.

A formula is provably �

n

(or �

n

) if PA proves that it is equivalent to a �

n

(or, respe
tively, �

n

) formula. A formula is provably �

n

if both the formula

and its negation is provably �

n

.

Also we shall use the following de�nitions and fa
ts from re
ursion theory

(see [15℄ for details).

A set R of natural numbers is arithmeti
al if there exists an arithmeti
al

formula '(x) su
h that

n 2 R () '(n) is true

for every n. Arithmeti
al relations on natural numbers are the ones 
orrespond-

ing to arithmeti
al sets.

Arithmeti
al hierar
hy. It is well-known that all de
idable sets are arith-

meti
al. Arithmeti
al hierar
hy separates arithmeti
al relations with respe
t to

the least number of alternating quanti�ers in a prenex formula whi
h de�nes

the relation in terms of de
idable relations. A set is �

0

if it is de
idable. A set

is �

n+1

if it is a proje
tion of a �

n

-set. A set is �

n

if its 
omplement is is a

�

n

-set. For example, the 
lass �

1


onsists of all re
ursively enumerable sets.

This de�nition 
an be easily modi�ed for sets of words in any �nite alpha-

bet with the help of the appropriate 
oding of words by numbers (i.e. G�odel

numbering). So we 
an speak about arithmeti
al sets of formulas and so on.

In what follows X and Y are sets of natural numbers. A set X is 
alled

m-redu
ible to Y if there exists a total re
ursive fun
tion f su
h that for every

n

n 2 X () f(n) 2 Y:

If this fun
tion f is one-to-one then we say that X is 1-redu
ible to Y .

Classes �

n

and �

n

are 
lose under m-redu
ibility: if Y 2 �

n

(�

n

) and X

is m-redu
ible to Y then X 2 �

n

(�

n

). In parti
ular, if Y is de
idable or

re
ursively enumerable then so is X .

3



Let K be any of 
lasses �

n

and �

n

. We say that a set X is K-hard if any

set from K is 1-redu
ible to X . If X is K-hard and X 2 K then X is 
alled

K-
omplete.

2.2 The language of �rst order logi
 of proofs.

By predi
ate language L we mean the �rst order language without fun
tion

symbols and equality 
ontaining 
ountable set of predi
ate letters of any arity.

First order provability logi
 is formulated in the extension of the language L

by the modal operator 2 for provability; the modal formula 2F is interpreted

as a proposition about provability \there exists a proof of F". As we mentioned

before, the transition from Provability Logi
 to the Logi
 of Proofs, generally

speaking, 
onsists in eliminating the existential quanti�ers hidden in the modal-

ity of provability and repla
ing them by the 
on
rete proofs. In the propositional

logi
 the formula F above represents a proposition without parameters. So the

proof of F needs not depend on the parameters, thus it 
an be represented by

proof variables ranging over 
odes of proofs, or natural numbers.

In order to de�ne an appropriate language of quanti�ed logi
 of proofs let us

look at the provability formula 2A(x), where a formula A under the modality

depends on a parameter x. It represents the proposition \for a given x the for-

mula A(x) is provable" whi
h 
ontains x as a parameter (see [5, 9℄). If we write

down the existential quanti�er on proofs hidden in the provability operator, then

we obtain the proposition \for a given x there exists y su
h that y is a 
ode of

proof of A(x)" with two parameters x and y. Then the standard pro
edure

of skolemization (whi
h 
onsists, roughly, in repla
ing existential quanti�ers by

fun
tion symbols) provides us with a fun
tion f whi
h produ
es a proof of A(x)

being given a number x.

2A(x) [[f(x)℄℄A(x)

* *

intended intended

interpretation interpretation

+ +

\for a given x there exists

y whi
h is a proof of A(x)"

( skolemization )

\for a given x, f(x)

is a proof of A(x)"

The language L

f

des
ribed below 
aptures Skolem fun
tions of this sort. It is

the extension of the predi
ate language L by symbols for re
ursive fun
tions on

proofs and operational symbol [[�℄℄(�) for proof predi
ate.

De�nition 1. The language L

f


ontains:

individual variables x, y, z : : :


ountable set of predi
ate letters of any arity P , Q, R : : :


ountable set of proof fun
tional letters of any arity: f , g, h : : :

operational symbol [[�℄℄(�)

4



boolean 
onne
tives and quanti�ers.

Let L




denote the fragment of the language L

f

whi
h 
ontains only 
onstants

on proofs (i.e. proof fun
tional letters of arity 0).

Formulas of the language L

f

are de�ned in the standard way with the only

additional 
lause for formulas representing proof predi
ate. We denote the set

of formulas by Fm(L

f

). So:

� ? and P (x

1

; : : : ; x

n

) are atomi
 formulas, where P is a predi
ate letter

and x

i

are individual variables;

� the set of formulas is 
losed under the boolean 
onne
tives and quanti�ers;

� if F is a formula, g

n

is a proof fun
tional letter of arity n and x

1

, . . . , x

n

are individual variables, then [[g

n

(x

1

; : : : ; x

n

)℄℄F is a formula.

The set of free variable of a formula F is denoted by FreeVar(F ), where

FreeVar([[g

n

(x

1

; : : : ; x

n

)℄℄F ) = FreeVar(F ) [ fx

1

; : : : ; x

n

g:

Remark 1. Note that proof fun
tional letters of the language L

f

are not fun
-

tion symbols of a usual �rst order language in the standard meaning of the term.

They 
an appear in a formula only in the s
ope of [[�℄℄-part of the operational

symbol [[�℄℄(�).

2.3 Arithmeti
al interpretation.

Let us des
ribe the intended arithmeti
al semanti
s for L

f

. In what follows PA

denotes Peano Arithmeti
 , TA stands for "Truth Arithmeti
", that is, the set of

arithmeti
al formulas whi
h are true in the standard model (natural numbers).

In order to represent re
ursive fun
tions we 
onsider Peano Arithmeti
 en-

ri
hed by re
ursive �{terms. For every formula '(x

1

; : : : ; x

n

; y) su
h that

PA ` '(x

1

; : : : ; x

n

; y) ^ '(x

1

; : : : ; x

n

; z)! y = z

the expression �y:'(x

1

; : : : ; x

n

; y) is a �-term of arity n. It is supposed to rep-

resent a (partial) fun
tion f(x

1

; : : : ; x

n

) whi
h assigns to x

1

; : : : ; x

n

the unique

y su
h that '(x

1

; : : : ; x

n

; y). We use the expression  (�y:'(~x; y)) to abbreviate

the formula 9y( (y) ^ '(~x; y)).

De�nition 2. A �{term �y:'(~x; y) is 
alled re
ursive if the formula ' is provably

�

1

in PA. If PA ` 8~x 9y '(~x; y), then the 
orresponding �{term is 
alled provably

total (the 
orresponding fun
tion represented by provably total �-term is also


alled provably total).

The following lemma says that all re
ursive fun
tions 
an be represented as

re
ursive �-terms; it is a reformulation of the theorem on arithmeti
al represen-

tation of re
ursive fun
tions.

5



Lemma 1. The following holds

1. Every re
ursive �{term represents a re
ursive fun
tion. And vi
e versa,

every re
ursive fun
tion 
an be represented by a re
ursive �{term.

2. Every primitive re
ursive fun
tion 
an be represented by a provably total

re
ursive �{term.

Example 1. By d'( _y

1

; : : : ; _y

n

)e we denote provably total re
ursive �{term for

primitive re
ursive fun
tion �k

1

; : : : ; k

n

:d'(k

1

; : : : ; k

n

)e that being given any

k

1

; : : : ; k

n


al
ulates the G�odel number of a formula '(k

1

; : : : ; k

n

).

De�nition 3. Let T be a re
ursively enumerable arithmeti
al theory, PA �

T � TA. A proof predi
ate for a theory T is a provably �

1

{formula Prf (x; y)

whi
h enumerates theorems of T in PA, that is for any arithmeti
al senten
e '

T ` ' () PA ` Prf (n; d'e) for some n;

where d'e stands for the G�odel number of a formula '.

Example 2. Here are some examples of proof predi
ates. The standard G�odel

proof predi
ate for T is an arithmeti
al formula

Proof

T

(x; y)

*

)

\x is a G�odel number of a derivation in T and y is the

G�odel number of the last formula in it"

One 
an 
onsider the multi-
on
lusion version of this predi
ate:

PROOF

T

(x; y)

*

)

\x is a G�odel number of a derivation in T and y is

the G�odel number of some formula in it"

Here is another version of multi-
on
lusion proof predi
ate for T :

Prf

T

(x; y)

*

)

\x is a G�odel number of a �nite set of derivations in T

and y is the G�odel number of the last formulas in one

of them"

Now we are ready to de�ne an arithmeti
al interpretation of the language

L

f

.

De�nition 4. An arithmeti
al interpretation � = (Prf ; ") of the language L

f

has the following parameters

� a proof predi
ate Prf for a re
ursively enumerable theory PA � T � TA;

� an evaluation ", whi
h assigns to proof fun
tional letters provably re
ur-

sive arithmeti
al �-terms of the same arity, and maps atomi
 formulas to

arithmeti
al formulas with the same free variables. We assume that "


ommutes with renaming of free variables.
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Given an arithmeti
al interpretation � one 
ould translate all formulas of the

language L

f

by arithmeti
al formulas in the following 
anoni
al way. For atomi


formulas Q

�

*

)

"Q, � 
ommutes with boolean 
onne
tives and quanti�ers, and

([[g(~x)℄℄A(~y))

�

*

)

Prf ("g(~x); dA

�

(

_

~y)e):

2.4 First order logi
s of proofs

Let us give the de�nition of �rst order logi
 of proofs. In what follows U stands

for an arithmeti
al theory su
h that PA � U � TA.

De�nition 5. Suppose that Prf is a proof predi
ate for a re
ursively enumer-

able theory T , where PA � T � TA. We de�ne two versions of the logi
 of proofs

for the predi
ate Prf :

QLP

f

Prf

(U)

*

)

fA 2 Fm(L

f

) j for any interpretation � = (Prf ; �) U ` A

�

g;

QLP




Prf

(U)

*

)

fA 2 Fm(L




) j for any interpretation � = (Prf ; �) U ` A

�

g:

For a given 
lass of proof predi
ates K we de�ne the 
orresponding logi
s of

proofs by

QLP

f

K

(U)

*

)

T

Prf2K

QLP

f

Prf

(U);

QLP




K

(U)

*

)

T

Prf2K

QLP




Prf

(U):

The logi
s QLP

f

K

(U) and QLP




K

(U) des
ribe all universal properties of the

predi
ates Prf 2 K that 
an be proved in U . We shall be interested mostly in

the 
ases U = PA and U = TA.

Remark 2. Propositional logi
s of proofs for PA and TA 
oin
ide (sf. [1℄).

However, this property does not hold in the predi
ate 
ase even for the lan-

guage with proof 
onstants. In order to show that QLP




(PA) 6= QLP




(TA) we


onsider weak re
exivity prin
iple [[t℄℄P (x) ! P (x). Obviously it is arithmeti-


ally valid and thus belongs to QLP




(TA). But this prin
iple 
an not be proven

in PA under the interpretation � = (Prf ; �), where �P

*

)

:Proof

PA

(x; d?e),

�t = 1 and proof predi
ate Prf (z; y) is de�ned by the formula

Proof

PA

(z; y) _ (z = 1 ^ 9x < y (y = d:Proof

PA

( _x; d?e)e)):

A
tually, from the de�nition of Prf we immediately 
on
lude that

PA ` Prf (1; dP

�

( _x)e):

G�odel's se
ond in
ompleteness theorem provides that PA 6` P

�

(x), a 
ontradi
-

tion.
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3 Lower 
omplexity bounds for QLP

f

K

(U).

In this se
tion we show that the logi
 QLP

f

K

(TA) is nonarithmeti
al and that

QLP

f

K

(PA) is �

2

-hard for any 
lass of proof predi
ates K. We obtain these

fa
ts as a 
orollary of a more general theorem whi
h gives the lower 
omplexity

bounds for all the logi
s QLP

f

K

(U).

3.1 Preliminaries.

De�nition 6. Arithmeti
al formula '(x) is de
idable in a theory U if for any

natural number n 2 ! either U ` '(n) or U ` :'(n). If ' is de
idable in U ,

then the set of form fn j U ` '(n)g is 
alled de
idable in U . A set belongs to

the 
lass �

n

in U (�

n

in U) if it is of 
omplexity �

n

(�

n

) with respe
t to a set

de
idable in U .

Lemma 2. ([9, 11℄) Let the set P be �

2

in U . Then there exists a formula

Q(y; z) de
idable in U su
h that

n 2 P () 8x 9y > x U ` Q(y; n):

We also need the following lemma whi
h is a strengthened version of the

well-known Tennenbaum theorem. The theorem says that any model of Peano

Arithmeti
 in whi
h addition and multipli
ation are re
ursive fun
tions is iso-

morphi
 to the standard model. The lemma says that the same fa
t holds for a

�nite fragment of Peano Arithmeti
.

Lemma 3. ([5℄) There exists a �nite set Ten of theorems of Peano Arithmeti


su
h that every model of Ten with the domain ! in whi
h + (addition) and �

(multipli
ation) are re
ursive fun
tions is isomorphi
 to the standard model.

3.2 The main theorem.

Theorem 1. Suppose that U is any arithmeti
ally 
orre
t theory and K is an

arbitrary nonempty 
lass of proof predi
ates. Then any set, whi
h is �

2

in U ,

is m-redu
ible to QLP

f

K

(U).

The proof of this theorem goes on lines of proofs of similar fa
ts for predi
ate

provability logi
s (sf. [5, 9, 10℄).

Proof. Let P be �

2

in U . Lemma 2 provides us with a formula Q(y; z)

de
idable in U su
h that for any n

n 2 P () 8x 9y > x U ` Q(y; n):

Let us des
ribe an algorithm that performs the redu
tion of P to QLP

f

K

(U).

8



Des
ription of the redu
tion algorithm. Consider the predi
ate language

EAM 
onsisting of a binary predi
ate symbol E and two ternary predi
ate sym-

bols A and M . We apply the standard pro
edure of repla
ing fun
tion symbols

by predi
ate symbols to arithmeti
al language, where E, A and M stand for

equality, addition and multipli
ation predi
ates respe
tively. Let f'g denote

the result of the des
ribed translation of an arithmeti
al formula ' into the

language EAM.

Let T denote the 
onjun
tion of all formulas f'g (' 2 Ten) and standard

axioms in the language EAM expressing basi
 properties of equality for the

predi
ate E and fun
tionality of the predi
ates A and M . Put

Eq

*

)

8x; y [ E(x; y)! (W (x)$ W (y)) ℄:

Suppose that W (x) is a unary predi
ate symbol and p(x; y; z), q(x; y; z),

r(x; y), t(x) are proof fun
tional letters of the indi
ated arity. We de�ne a

formula that expresses de
idability of E, A, M and W in the following way:

D

*

)

8x; y; z [ (A(x; y; z)$ [[p(x; y; z)℄℄A(x; y; z))

^(M(x; y; z)$ [[q(x; y; z)℄℄M(x; y; z))

^(E(x; y) $ [[r(x; y)℄℄E(x; y))

^(W (x) $ [[t(x)℄℄W (x)) ℄:

Let S(x; y) be a natural arithmeti
al �

1

-formula expressing the relation

\Turing ma
hine having number x terminates on input y". Now we 
an de-

s
ribe the desired algorithm. For any n 2 ! it produ
es the formula

�

n

*

)

T ^D ^ Eq !

! 9x 9y (xf<gy ^ fQg(y; n) ^ 8z(W (z)$ fSg(x; z)):

(1)

Let us show that a (re
ursive) fun
tion n 7! �

n

performs the redu
tion of

P to QLP

f

K

(U). It suÆ
es to establish that

8x 9y > x U ` Q(y; n) () 8Prf 2 K 8� = (Prf ; ") U ` �

�

n

: (2)

Proof of (=)). Suppose 8x 9y > x U ` Q(y; n). Let Prf be an arbitrary

proof predi
ate from K and " an arbitrary evaluation. Consider the interpreta-

tion � = (Prf ; "). Let us prove that U ` �

�

n

.

Step 1. Sin
e Prf is provably de
idable and sin
e arithmeti
al terms assigned

to fun
tional variables are provably total, we 
on
lude that for any evaluation "

PA ` D

�

! \"E, "A, "M and "W are de
idable": (3)

For example, the de
ision algorithm for "A for given x, y and z 
al
ulates the

value of "p(x; y; z) and then 
he
ks whether Prf ("p(x; y; z); d"A( _x; _y; _z)e) holds.

The formula D

�

guarantees that "A(x; y; z) is true if the answer is positive and

false otherwise. De
ision algorithms for the remaining predi
ates work similarly.

9



Step 2. Arithmeti
al formula R(x; y) de�ned below expresses the relation \y

represents a number x in the model de�ned by the arithmeti
al interpretation �"

R(x; y)

*

)

\there exists a �nite sequen
e s of length x+ 1,

su
h that (s)

0

= 0

�

; (s)

x

= y and 8z < x A

�

(1

�

; (s)

z

; (s)

z+1

)";

where 
onstants 0

�

and 1

�

are de�ned in terms of A

�

and M

�

in the standard

manner:

(x = 0

�

)

*

)

A

�

(x; x; x); (x = 1

�

)

*

)

M

�

(x; x; x) ^ :A

�

(x; x; x):

The following properties of R(x; y) are established in [9, 11℄.

(R1) U ` T

�

^ R(z; z

1

) ^R(z; z

2

)! E

�

(z

1

; z

2

);

(R2) U ` T

�

! 8a9bR(a; b);

(R3) (formalized Tennenbaum theorem)

U ` T

�

^ \"E, "A and "M are de
idable"! 8y9xR(x; y):

Step 3. We 
an show by indu
tion on formula '(~x) that

U ` T

�

^ 8b9aR(a; b) ^ R(~x; ~y)! ('(~x)$ f'g

�

(~y));

where ~x = (x

1

; : : : ; x

m

) denotes the set of all free variables of a formula ' and

R(~x; ~y) is an abbreviation for

V

m

i=1

R(x

i

; y

i

). Hen
e from (3) and (R3) it follows

that

U ` T

�

^D

�

^R(~x; ~y)! ('(~x)$ f'g

�

(~y)): (4)

Step 4. There exists a natural number k su
h that

U ` D

�

! [9z (R(v; z) ^W

�

(z))$ S(k; v)℄ (5)

A
tually, a

ording to (3) from D

�

it follows that the relations A

�

, M

�

and

E

�

are de
idable. In view of the de�nition, R(v; z) is re
ursively enumerable.

Sin
e relation W

�

(z) is re
ursive by (3), the set fv j 9z (R(v; z) ^W

�

(z))g is

enumerable too. This provides us with the desired k.

Step 5. Let us show that

U ` T

�

^D

�

^Eq

�

^ R(v; z)! (W

�

(z)$ S(k; v)): (6)

We reason in U . In view of T

�

^ D

�

^ Eq

�

and (5), from W

�

(z) we imme-

diately obtain S(k; v). For the 
onverse assume that S(k; v). From (5) we get

9z

1

(R(v; z

1

)^W

�

(z

1

)). A

ording to (R1), R(v; z) and R(v; z

1

) imply E

�

(z; z

1

).

In view of Eq

�

, we 
on
lude that W

�

(z

1

)$W

�

(z), when
e W

�

(z).

10



Step 6. A

ording to our original assumption (see (2)), there exists a number l

su
h that k < l and U ` Q(l; n). Then U ` k < l ^Q(l; n). Using (4) we derive

U ` T

�

^D

�

^ R(k; x) ^ R(l; y)! xf<gy ^ fQg

�

(y; n): (7)

Step 7. Reason in U . From (6) and (4) it follows that

T

�

^D

�

^ Eq

�

^R(k; x) ^ R(v; z)! (W

�

(z)$ fSg

�

(x; z)):

Applying (R3), (7), (R2) and doing standard manipulations in predi
ate 
al
ulus

we 
on
lude the desired

T

�

^D

�

^ Eq

�

! 9x9y [xf<gy ^ fQg

�

(y; n) ^ 8z(W

�

(z)$ fSg

�

(x; z))℄:

Proof of ((=). Suppose that U ` �

�

n

under every arithmeti
al interpretation

� = (Prf ; "), where Prf 2 K. Let us show that 8m9l > m U ` Q(m;n).

Step 1. Let � denote the standard arithmeti
al evaluation of the language EAM

whi
h assigns to the predi
ate letters E, A and M the equality, addition and

multipli
ation predi
ates respe
tively:

"E

*

)

(x = y);

"A

*

)

(x+ y = z);

"M

*

)

(xy = z):

(8)

Step 2. We �x a proof predi
ate Prf 2 K and an arbitrarym 2 ! and 
onsider

the evaluations "

k

(k = 1; : : : ;m) whi
h are extensions of " de�ned as follows:

"

k

W

*

)

(z = k);

"

k

r

*

)

�w:Prf (w; d _x = _ye) ^ (x = y);

"

k

p

*

)

�w:Prf (w; d _x + _y = _ze) ^ (x+ y = z);

"

k

q

*

)

�w:Prf (w; d _x _y = _ze) ^ (xy = z);

"

k

t

*

)

�w:Prf (w; dk = ke) ^ (z = k):

(9)

For any k = 0; : : : ;m 
onsider the interpretation �

k

= (Prf ; "

k

).

Step 3. It 
an be easily seen that U ` T

�

k

^D

�

k

^Eq

�

k

: Sin
e U ` �

�

k

n

for all

k = 0; : : : ;m, we have

U ` 9x 9y [x < y ^Q(y; n) ^ 8z((z = k)$ S(x; z))℄:

Therefore

U ` 9x 9y [x < y ^Q(y; n) ^

m

^

i=0

((i = k)$ S(x; i))℄: (10)

11



Step 4. For any k = 0; : : : ;m 
onsider the number x

k

satisfying (10). Let us

show that x

k

> m for some k. Suppose that x

k

< m for all k = 0; : : : ;m.

Applying the pigeonhole prin
iple, we obtain x

k

1

= x

k

2

for some k

1

6= k

2

. For

interpretations �

k

1

and �

k

2


onsider the 
onjun
t 
orresponding to i = k

1

in

formula (10). We obtain respe
tively that

U ` (k

1

= k

1

)! S(x

k

1

; k

1

)

and

(k

1

= k

2

)$ S(x

k

2

; k

1

) is true:

From U ` k

1

= k

1

it follows that U ` S(x

k

1

; k

1

). Sin
e x

k

1

= x

k

2

we 
an derive

U ` S(x

k

2

; k

1

). Therefore formula k

1

= k

2

with k

1

6= k

2

is true in the standard

model.

The 
ontradi
tion obtained shows that x

k

� m for some k = 0; : : : ;m. In

a

ordan
e with (10), there exists a natural number l > x

k

su
h that Q(l; n)

holds. Sin
e Q is de
idable in U we 
on
lude that U ` Q(l; n). Then we have

l > m and U ` Q(l; n) Q.E.D.

3.3 Corollaries.

Corollary 1. Suppose that Prf is a proof predi
ate. Then any set that is �

2

in U is m-redu
ible to QLP

f

Prf

(U).

Corollary 2. For every proof predi
ate Prf the set QLP

f

Prf

(TA) is not arith-

meti
al.

Proof. Note that all arithmeti
al sets are de
idable in TA. A

ording to

theorem 1, all these sets 
an be redu
ed to QLP

f

Prf

(TA). Thus QLP

f

Prf

(TA) is

nonarithmeti
al.

Remark 3. It is immediate from the de�nition that the logi
 QLP

f

Prf

(TA)

belongs to the 
omplexity 
lass �

0

1

(TA). A

ording to 
orollary 2, this logi


is nonarithmeti
al. This result 
an be strengthened using a method from [10℄.

Namely, it 
an be shown that QLP

f

Prf

(TA) is �

0

1

(TA){
omplete.

Corollary 3. For ea
h proof predi
ate Prf the setQLP

f

Prf

(PA) is �

2

-
omplete.

Proof. From the de�nitions, one 
an easily see that QLP

f

Prf

(PA) belongs to

�

2

. From the other side, all re
ursive relations are de
idable in PA, when
e, by

theorem 1, any �

2

-set 
an be redu
ed to QLP

f

Prf

(PA).
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4 First order logi
s with 
onstants on proofs.

In this se
tion we �nd lower 
omplexity bounds for �rst order logi
s of proofs

formulated in the language with 
onstants on proofs L




. We 
onsider two 
ases:

1. the 
lass of all proof predi
ates and the 
lass of all proof predi
ates for a

given re
ursively enumerable theory PA � T � TA;

2. any 
lass 
onsisting of normal multi-
on
lusion proof predi
ates, that is,

proof predi
ates whi
h imitate real proof pro
esses (for the exa
t de�nition

see page 14);

4.1 Logi
 of all proof predi
ates.

The logi
 of all proof predi
ates formulated in the language L




is denoted by

QLP




(U). Let T be any re
ursively enumerable arithmeti
al theory, PA � T �

TA. The logi
 of all proof predi
ates for T is denoted by QLP




T

(U).

Theorem 2. For every arithmeti
al theory U su
h that PA � U � TA

1) any set whi
h is �

2

in U is m-redu
ible to QLP




(U).

2) any set whi
h is �

2

in U is m-redu
ible to QLP




T

(U).

Proof. The proof of both 1) and 2) is a slight modi�
ation of the proof of

theorem 1. We des
ribe 
hanges needed for 2). Let P be any set whi
h is �

2

in

U . The algorithm performing a redu
tion of P to QLP




T

(U) to every natural

number n 2 ! assigns the following formula �

n

de�ned similarly to (1)

�

n

*

)

T ^D ^ Eq !

! 9x 9y (xf<gy ^ fQg(y; n) ^ 8z(W (z)$ fSg(x; z))

with the only di�eren
e in formula D in whi
h we have to repla
e proof fun
-

tional symbols by proof 
onstants. Now D is de�ned as follows

D

*

)

8x; y; z[ (A(x; y; z)$ [[p℄℄A(x; y; z))

^(M(x; y; z)$ [[q℄℄M(x; y; z))

^(E(x; y) $ [[r℄℄E(x; y))

^(W (x) $ [[t℄℄W (x)) ℄;

where p, q, r and t are proof 
onstants.

It remains to show that re
ursive fun
tion n 7! �

n

performs a redu
tion of

P to QLP




T

(U), that is

8x 9y > x U ` Q(y; n) () 8� = (Prf

T

; ") U ` �

�

n

: (11)

A detailed analysis of the proof of theorem 1 shows that the proof of the

left-to-right impli
ation does not 
hange. To establish the 
onverse, in the proof

13



of theorem 1 we 
onsidered an interpretation of a spe
ial form (see (8) and (9)).

Here we do the same thing, but we need to de�ne a spe
i�
 proof predi
ate

on whi
h this interpretation is based. An appropriate proof predi
ate 
an be

de�ned by the formula

Prf

T

(x; y)

*

)

Proof

T

(x; y)

_ x = 1 ^ 9a; b; 
 < y (a+ b = 
 ^ y = d _a+

_

b = _
e)

_ x = 2 ^ 9a; b; 
 < y (a� b = 
 ^ y = d _a�

_

b = _
e)

_ x = 3 ^ 9a; b < y (a = b ^ y = d _a =

_

be)

(12)

where Proof

T

(x; y) denotes the standard G�odel proof predi
ate for T . Consider

evaluations "

k

(k = 1; : : : ;m) extending the standard evaluation " from (8) as

follows:

"

k

W

*

)

(z = k);

"

k

r

*

)

1;

"

k

p

*

)

2;

"

k

q

*

)

3;

"

k

t

*

)

�w:Prf

T

(w; dk = ke) ^ (z = k):

The remaining part of the proof does not 
hange.

Corollary 4. The logi
s QLP




T

(TA), QLP




(TA) are nonarithmeti
al. (In fa
t,

the last one is �

0

1

(TA){
omplete). The logi
s QLP




T

(PA), QLP




(PA) are �

2

{


omplete.

Remark 4. In the proof of theorem 2 the essential point was to 
onstru
t a

proof predi
ate su
h that all true formulas of the form x + y = z, xy = z and

x = y had a 
ommon proof. Therefore, this theorem remains true for all 
lasses

of proof predi
ates K whi
h 
ontain at least one proof predi
ate of this sort. In


ase K 
ontains only proof predi
ates that imitate real 
omputation pro
esses

and does not in
lude predi
ates of the sort (12) we 
an prove somewhat weaker

results (below) whi
h however suÆ
e to rule out re
ursive axiomatizability of

those logi
s.

4.2 First order logi
 of normal proof predi
ates.

De�nition 7. A proof predi
ate Prf is 
alled normal if for every n 2 ! the set

Th(n) = fx j Prf (n; x)g is �nite and the fun
tion

\n 7! the G�odel number of Th(n)"

is re
ursive provably total.

A proof predi
ate Prf

T

for T is normal multi-
on
lusion if any �nite set M

of theorems of T has a 
ommon proof, namely, there exists n su
h that for every

' 2M we have Prf

T

(n; d'e).
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Remark 5. If a proof predi
ate Prf (x; y) is normal, then PA ` "k proves a

�nite set of theorems" for every k 2 !, that is, there exists n 2 ! su
h that

PA ` 8y(Prf (k; y)! y < n):

We show that for every 
lass N of normal multi-
on
lusion proof predi
ates

the 
orresponding logi
 QLP




N

(U) is �

1

-hard.

Let L

�n

denote the predi
ate logi
 of �nite models, that is, the set of pred-

i
ate formulas that are true in all �nite models. It is well-known that L

�n

is

�

1

-
omplete. We redu
e L

�n

to QLP




N

(U). First we have to prove a kind of

arithmeti
al 
ompleteness result for L

�n

, namely, that L

�n

is 
omplete with

respe
t to the 
lass of arithmeti
al interpretations of the predi
ate language by

formulas that de�ne provably �nite or 
o�nite relations.

De�nition 8. Let '(x

1

; : : : ; x

n

) be an arbitrary arithmeti
al formula with all

free variables shown. We de�ne the following formulas:

Fin

'

(y)

*

)

8x

1

: : : x

n

('(x

1

; : : : ; x

n

)!

V

n

i=1

x

i

� y)

St

'

(y)

*

)

Fin

'

(y) _ Fin

:'

(y):

Formula ' is 
alled provably �nite (provably stable) if ' is a �

1

-formula and

PA ` Fin

'

(k) (PA ` St

'

(k) resp.) for some k 2 !.

Let Fin and Stab denote the 
lasses of all interpretations of the pure predi
ate

language by provably �nite and provably stable formulas respe
tively.

Theorem 3. Let U be any arithmeti
al theory, PA � U � TA. Then for every

predi
ate formula F

F 2 L

�n

() 8� 2 Fin U ` �F () 8� 2 Stab U ` �F:

Proof. To prove this theorem it suÆ
es to show that

1. if F 62 L

�n

, then 9� 2 Fin TA 6` �F ;

2. if F 2 L

�n

, then 8� 2 Stab PA ` �F .

The �rst proposition is obvious. Let us prove the se
ond one.

Step 1. For every formula ' the following formulas are provable in PA:

1. St

'

(y) ^ y < z ! St

'

(z)

2. St

'

(y) ^ St

 

(y)! St

'^ 

(y) ^ St

'_ 

(y) ^ St

:'

(y)

3. St

'

(y)! St

9z'

(y)

4. St

'

(y)! (9z'$ 9z � (y + 1) ')
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Items 1, 2 and 3 are trivial, 4 follows immediately from 3.

Step 2. For every predi
ate formula F and interpretation � 2 Stab

1. there exists k 2 ! su
h that PA ` St

�F

(k);

2. �F 2 �

1

.

We prove both fa
ts by joint indu
tion on formula F . Indu
tion base when F

is an atomi
 formula holds by the de�nition of a stable interpretation.

Indu
tion step. Suppose that F = F

1

^ F

2

. Item 2 holds sin
e the 
lass

of �

1

-formulas is 
losed under boolean 
onne
tives. Let us prove 1. By the

indu
tion hypothesis, there exist k

1

; k

2

, su
h that PA ` St

�F

i

(k

i

) for i = 1; 2.

Put k = max(k

1

; k

2

). From lemma 1, (1) and (2), we 
onsequently obtain

PA ` St

�F

1

(k) ^ St

�F

2

(k) and PA ` St

�(F

1

^F

2

)

(k). The remaining boolean


onne
tives are treated in a similar way.

Suppose that F = 9zG(z; ~x). From the indu
tion hypothesis it follows that

�G 2 �

1

and there exists k 2 ! su
h that PA ` St

�G

(k). Lemma 1 (3)

yields assertion 1. From lemma 1 (4) we obtain that PA ` 9z �G(z; ~x) $

9z � (k + 1) �G(z; ~x). Sin
e the 
lass of �

1

-formulas is 
losed under bounded

quanti�ers, we 
on
lude that �F 2 �

1

.

Step 3. Suppose that F 2 L

�n

and � 2 Stab. From the de�nition it immedi-

ately follows that TA ` �F . By lemma 2, �F 2 �

1

. Therefore PA ` �F .

Theorem 4. Let N be any 
lass of normal multi-
on
lusion proof predi
ates.

Then both logi
s QLP




N

(PA) and QLP




N

(TA) are �

1

-hard and �

1

-hard.

Proof. Both logi
s QLP




N

(PA) and QLP




N

(TA) are �

1

-hard sin
e they are


onservative over the predi
ate 
al
ulus PC whi
h is known to be �

1

-
omplete.

To establish �

1

-hardness we redu
e the logi
 of �nite models L

�n

(whi
h is �

1

-


omplete) to both systems. Consider the interpretation red of the predi
ate

language in the language L




de�ned in the following way. For every predi
ate

symbol P

i

put

red P

i

(~x)

*

)

[[q

i

℄℄P

i

(~x):

We prove that fun
tion red performs the redu
tion of L

�n

to QLP




N

(PA)

and QLP




N

(TA), that is

F 2 L

�n

() red F 2 QLP




N

(PA) () red F 2 QLP




N

(TA): (13)

Step 1. Suppose that F 2 L

�n

and � = (Prf ; ") is an arbitrary arithmeti
al

interpretation of the language L




with Prf 2 N . We de�ne interpretation � of

the pure predi
ate language su
h that for every predi
ate symbol P

i

�P

i

(~x)

*

)

(red P

i

(~x))

�

:
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Then �F = (red F )

�

for any predi
ate formula F . Sin
e the predi
ate Prf is

normal, the interpretation � is provably stable. Thus by theorem 3 we have

that PA ` �F , when
e PA ` (red F )

�

.

Step 2. Suppose that F 62 L

�n

. Then there exists an interpretation of the pure

predi
ate language � 2 Fin su
h that �F 62 TA. We 
onstru
t an interpretation

� of the language L




su
h that red F

�

62 TA.

Let us �x a proof predi
ate Prf

T

2 N . Let P

1

, . . .P

n

be the list of all

predi
ate symbols o

urring in F . LetM

i

be a set 
onsisting of all true formulas

of the form �P

i

(

~

k). Sin
e �P

i

is a provably �nite �

1

-formula, there exists a

number n

i

su
h that Prf

T

(n

i

; ') holds for every ' 2M

i

. It is also 
lear that

PA ` �P

i

(~x)$ Prf

T

(n

i

; d�P

i

(

_

~x)e): (14)

Consider the interpretation � = (Prf

T

; "), where " 
oin
ides with � on pred-

i
ate letters and "(q

i

) = n

i

. In view of (14), by indu
tion on formula D we 
an

show that PA ` �D $ (red D)

�

. Sin
e �F 62 TA, we 
on
lude (red F )

�

62 TA.

5 Dis
ussion

Though �nding a 
omplete axiom system to the �rst order logi
 of proofs turned

out to be impossible, a more modest goal of �nding an exa
t expli
it 
ompanion

of major �rst order modal logi
s, e.g. S4 looks attra
tive. There are several

possible motivations to this problem. In parti
ular, the expli
it version of the

�rst order S4 is a step toward �nding the BHK semanti
s for the �rst order

intuitionisti
 logi
, sin
e the G�odel 
orresponden
e between intuitioinisti
 and

modal logi
s 
an be extended to the �rst order systems (
f. [8, 19℄).

Another natural problem here might be to �nd an axiomatization of the frag-

ment of the logi
 of proofs with one individual variable only. The 
orresponding

fragment of the �rst order provability logi
 has been shown de
idable in [7℄.
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