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Abstract

The Logic of Proofs LP solved a long standing Gddel’s problem con-
cerning his provability calculus (cf. [4]). It also opened new lines of re-
search in proof theory, modal logic, typed programming languages, knowl-
edge representation, etc. The propositional logic of proofs is decidable and
admits a complete axiomatization. In this paper we show that the first
order logic of proofs is not recursively axiomatizable.

1 Introduction

The study of provability by means of modal logic was originated by Godel in
the 1930s in [12, 13]. He suggested reading the modality O as provability; so
the formula OF is interpreted as “F' is provable”. This Gddel’s proposal led
to two substantially different provability interpretations of OF' each having its
own specific mathematical model. We will call them model A and model B.
Model A treats modal sentence OF as a formal proposition “F is derivable
in Peano Arithmetic PA”, which in turn can be expressed by an arithmeti-
cal formula. Provability Logic consists of modal formulas which are valid under
this interpretation. Definitions and a detailed presentation of results concerning
this approach can be found in [11]. The well known Solovay Completeness The-
orem (see [11] or [18]) demonstrates that the propositional Provability Logic
is decidable, admits a concise axiomatization and a natural semantical char-
acterization in terms of Kripke models. In fact, Solovay has shown that the
modal logic GL' axiomatized all propositional properties of the formal prov-
ability predicate. The logic GL is a normal classical modal logic having modal
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axioms O(P — @) — (OP — 0OQ) and O(OP — P) — OP. The latter is
known as the Lob’s Principle: it is a direct formalization of the well known
Léb’s theorem [11, 17]. Artemov and Vardanyan in [5, 9, 10] demonstrated that
the first order Provability Logics was not recursively axiomatizable (in fact, the
lower complexity bounds for all reasonable versions of it were the worst possi-
ble). Comprehensive surveys of the studies in Provability Logics can be found
in [11, 14].

Model B was defined by Godel axiomatically via his famous modal provabil-
ity calculus a.k.a. modal logic S4 which eventually led to the Gddel’s problem
mentioned above?. Godel pointed out in [12, 13] that S4 is incompatible with
model A (which reads OF is a formal provability assertion “F is derivable in
Peano Arithmetic PA”). More exactly, the reflexivity axiom OF — F of S4 along
with the necessitation rule H F OH produce a formula O(OF — F) which is
false under the formal provability interpretation A. Indeed, if F' is interpreted
as the boolean constant false, then O(OF — F') asserts the provability of con-
sistency in PA, which does not take place by the Godel Second Incompleteness
Theorem. Despite Godel’s hints in [13] and quite a history of attempts to solve
it, the problem of the provability semantics for Godel’s provability calculus S4
remained open for more then 60 years until it was eventually solved by the Logic
of Proofs LP (cf. [4]) which combined explicit character of A-calculus with iter-
ative capacities of modal logic. Tt turned out that Goédel’s provability calculus
S4 corresponds to the reading of modalities OF as explicit provability assertions
“t is a proof of F” for an appropriate proof term ¢ (called proof polynomial).
A complete decidable axiom system of propositional logic of proofs (called the
Logic of Proofs LP) has been presented in [2, 3, 4]. Logic of Proofs also gives
a fair mathematical model for the intended Brouwer-Heyting-Kolmogorov se-
mantics for the propositional intuitionistic logic. In addition, proof polynomials
subsume typed A-calculus and typed combinatory logic. Those features make
proof polynomials and the Logic of Proofs attractive for applications in typed
programming languages, knowledge representation, automated deduction and
verification, etc.

In this paper we consider logic of proofs formulated in the first-order language
(see also [6, 16, 20]). In section 2 we discuss the appropriate first order language
of logic of proofs and give exact definitions of the arithmetical semantics and
of first order logic of proofs. The answers to natural axiomatizability questions
for the first order logic of proofs considered in this paper are all negative. In
section 3 we prove that if proofs are represented by special symbols for recursive

2Godel’s problem was raised in [12] where Gddel introduced a special modal calculus for
provability (S4) and used it to provide an intended provability interpretation for intuitionistic
logic. In this paper Godel noticed that the straightforward interpretation of S4-modality
as the formal provability operator does not work thus leaving open the problem of finding a
provability interpretation to S4. In [13] Gddel considered this problem once again and specified
the format of the intended solution. The Logic of Proofs gives the solution to Gédel’s problem
in the format suggested in [13].



functions then the corresponding logic is nonaxiomatizable. In section 4 we
consider first order logics with proof constants; we establish that those logics
are not axiomatizable either.

2 Main definitions.

2.1 Some standard definitions and facts.

Firstly, let us recall several standard definitions and facts concerning Peano
Arithmetic (see [17] for details).

Hierarchy of arithmetical formulas. By induction on n we define ¥,,-formulas
and II,,-formulas as follows: both Yy-formulas and IIy-formulas are formulas in
which all quantifiers are bounded, ¥,,41-formulas have the form 3z where ¢ is
IT,,, I, 4+1-formulas have the form Vxy where ¢ is X,,.

A formula is provably X, (or IT,) if PA proves that it is equivalent to a X,
(or, respectively, IT,,) formula. A formula is provably A, if both the formula
and its negation is provably ¥,,.

Also we shall use the following definitions and facts from recursion theory
(see [15] for details).

A set R of natural numbers is arithmetical if there exists an arithmetical
formula ¢(x) such that

n € R <= ¢(n) is true

for every n. Arithmetical relations on natural numbers are the ones correspond-
ing to arithmetical sets.

Arithmetical hierarchy. Tt is well-known that all decidable sets are arith-
metical. Arithmetical hierarchy separates arithmetical relations with respect to
the least number of alternating quantifiers in a prenex formula which defines
the relation in terms of decidable relations. A set is Iy if it is decidable. A set
is ¥4 if it is a projection of a II,,-set. A set is II,, if its complement is is a
Y,-set. For example, the class 1 consists of all recursively enumerable sets.

This definition can be easily modified for sets of words in any finite alpha-
bet with the help of the appropriate coding of words by numbers (i.e. Godel
numbering). So we can speak about arithmetical sets of formulas and so on.

In what follows X and Y are sets of natural numbers. A set X is called
m-reducible to Y if there exists a total recursive function f such that for every
n

neX < f(n)evY.

If this function f is one-to-one then we say that X is 1-reducible to Y.

Classes ¥, and II,, are close under m-reducibility: if YV € ¥, (II,,) and X
is m-reducible to Y then X € X, (IT,). In particular, if ¥ is decidable or
recursively enumerable then so is X.



Let K be any of classes X, and II,,. We say that a set X is K-hard if any
set from K is 1-reducible to X. If X is K-hard and X € K then X is called
K -complete.

2.2 The language of first order logic of proofs.

By predicate language £ we mean the first order language without function
symbols and equality containing countable set of predicate letters of any arity.

First order provability logic is formulated in the extension of the language £
by the modal operator O for provability; the modal formula OF is interpreted
as a proposition about provability “there exists a proof of F'”. As we mentioned
before, the transition from Provability Logic to the Logic of Proofs, generally
speaking, consists in eliminating the existential quantifiers hidden in the modal-
ity of provability and replacing them by the concrete proofs. In the propositional
logic the formula F' above represents a proposition without parameters. So the
proof of F' needs not depend on the parameters, thus it can be represented by
proof variables ranging over codes of proofs, or natural numbers.

In order to define an appropriate language of quantified logic of proofs let us
look at the provability formula OA(z), where a formula A under the modality
depends on a parameter x. It represents the proposition “for a given x the for-
mula A(x) is provable” which contains x as a parameter (see [5, 9]). If we write
down the existential quantifier on proofs hidden in the provability operator, then
we obtain the proposition “for a given x there exists y such that y is a code of
proof of A(x)” with two parameters  and y. Then the standard procedure
of skolemization (which consists, roughly, in replacing existential quantifiers by
function symbols) provides us with a function f which produces a proof of A(x)
being given a number x.

DA(z) [f(z)]A(2)
f f
intended intended
interpretation interpretation
g g

“for a given x there erists
y which is a proof of A(zx)”

“for a given z, f(x)

< skolemization = is a proof of A(x)”

The language £/ described below captures Skolem functions of this sort. It is
the extension of the predicate language £ by symbols for recursive functions on
proofs and operational symbol [-](-) for proof predicate.

Definition 1. The language £f contains:
individual variables x, y, z ...
countable set of predicate letters of any arity P, Q, R...
countable set of proof functional letters of any arity: f, g, h...
operational symbol [-](+)



boolean connectives and quantifiers.
Let £¢ denote the fragment of the language £/ which contains only constants
on proofs (i.e. proof functional letters of arity 0).

Formulas of the language £/ are defined in the standard way with the only
additional clause for formulas representing proof predicate. We denote the set
of formulas by Fm(£7). So:

e | and P(x1,...,x,) are atomic formulas, where P is a predicate letter
and z; are individual variables;

e the set of formulas is closed under the boolean connectives and quantifiers;

e if F'is a formula, ¢g” is a proof functional letter of arity n and zq, ..., x,
are individual variables, then [¢™(z1,...,2,)]F is a formula.

The set of free variable of a formula F' is denoted by FreeVar(F'), where
FreeVar([g" (z1,...,20)]F) = FreeVar(F) U {z1,...,2,}.

Remark 1. Note that proof functional letters of the language £/ are not func-
tion symbols of a usual first order language in the standard meaning of the term.
They can appear in a formula only in the scope of [-]-part of the operational

symbol [-](+).

2.3 Arithmetical interpretation.

Let us describe the intended arithmetical semantics for £f. In what follows PA
denotes Peano Arithmetic , TA stands for ” Truth Arithmetic”, that is, the set of
arithmetical formulas which are true in the standard model (natural numbers).
In order to represent recursive functions we consider Peano Arithmetic en-
riched by recursive (—terms. For every formula ¢(z1, ..., 2,,y) such that

PAF o(z1,...;zn,y) Ap(x1, ... Tn,2) 2y =2

the expression vy.p(x1, ..., Ty, y) is a t-term of arity n. It is supposed to rep-
resent a (partial) function f(z1,...,z,) which assigns to x1, ..., x, the unique
y such that ¢(x1,..., 2, y). We use the expression ¢ (1y.0(Z,y)) to abbreviate
the formula Jy(Y(y) A o(F,v)).

Definition 2. A (—term 1y.p(Z,y) is called recursive if the formula ¢ is provably
¥, in PA. If PA V2 Jy (%, y), then the corresponding (—term is called provably
total (the corresponding function represented by provably total i-term is also
called provably total).

The following lemma says that all recursive functions can be represented as
recursive (-terms; it is a reformulation of the theorem on arithmetical represen-
tation of recursive functions.



Lemma 1. The following holds

1. Every recursive (—term represents a recursive function. And vice versa,
every recursive function can be represented by a recursive (—term.

2. Every primitive recursive function can be represented by a provably total
recursive (—term.

Example 1. By [¢(91,...,9n)] we denote provably total recursive (—term for
primitive recursive function Akq,...,kn.[@(k1,...,ky)] that being given any
k1, ..., ky, calculates the Godel number of a formula p(k1, ..., k).

Definition 3. Let T be a recursively enumerable arithmetical theory, PA C
T C TA. A proof predicate for a theory T is a provably Aj—formula Prf(z,y)
which enumerates theorems of T in PA, that is for any arithmetical sentence ¢

Tk ¢ < PAF Prf(n,[¢]) for some n,
where [p] stands for the Gédel number of a formula .

Example 2. Here are some examples of proof predicates. The standard Godel
proof predicate for T is an arithmetical formula

=  “r is a Gédel number of a derivation in T andy is the
Godel number of the last formula in it”

Proof (x,y)

One can consider the multi-conclusion version of this predicate:

PROOFr(z,y) = “xis a Gddel number of a derivation in T and y is
the Gédel number of some formula in it”

Here is another version of multi-conclusion proof predicate for 7T':

—

Prfr(z,y) = “xis a Gidel number of a finite set of derivations in T
and y is the Godel number of the last formulas in one
of them”

Now we are ready to define an arithmetical interpretation of the language

Lt

Definition 4. An arithmetical interpretation * = (Prf,¢) of the language £/
has the following parameters

e a proof predicate Prf for a recursively enumerable theory PA C T C TA;

e an evaluation e, which assigns to proof functional letters provably recur-
sive arithmetical (-terms of the same arity, and maps atomic formulas to
arithmetical formulas with the same free variables. We assume that ¢
commutes with renaming of free variables.



Given an arithmetical interpretation * one could translate all formulas of the
language £7 by arithmetical formulas in the following canonical way. For atomic
formulas @Q* = @), * commutes with boolean connectives and quantifiers, and

(lo@JAG)" = Prf(eg(@), TA"(5)1).

2.4 First order logics of proofs

Let us give the definition of first order logic of proofs. In what follows U stands
for an arithmetical theory such that PA C U C TA.

Definition 5. Suppose that Prf is a proof predicate for a recursively enumer-
able theory T', where PA C T C TA. We define two versions of the logic of proofs
for the predicate Prf:

QL'PJ;W@(U) = {A € Fm(L') | for any interpretation * = (Prf,e) U F A*},
QLPG(U) = {A € Fm(L®) | for any interpretation * = (Prf,e) U - A*}.

For a given class of proof predicates K we define the corresponding logics of
proofs by
QLPLU) = N QLPL, (),
PrfeKk
QLP(U) = () QLPH,(U).
Prfek

The logics QEPQ(U ) and QLP,(U) describe all universal properties of the
predicates Prf € K that can be proved in U. We shall be interested mostly in
the cases U = PA and U = TA.

Remark 2. Propositional logics of proofs for PA and TA coincide (sf. [1]).
However, this property does not hold in the predicate case even for the lan-
guage with proof constants. In order to show that QLP(PA) # QLP(TA) we
consider weak reflexivity principle [¢]P(z) — P(x). Obviously it is arithmeti-
cally valid and thus belongs to QLP°(TA). But this principle can not be proven
in PA under the interpretation x = (Prf,¢), where eP = =Proofpa(z,[L1]),
et = 1 and proof predicate Prf(z,y) is defined by the formula

Proofpa(z,y) V (z = 1A 3z <y (y = [=Proofpa(, [ L])1))-

Actually, from the definition of Prf we immediately conclude that
PAF Prf(1,[P*(z)])-

Godel’s second incompleteness theorem provides that PA I P*(z), a contradic-
tion.



3 Lower complexity bounds for QLPL(U).

In this section we show that the logic QL'PQ (TA) is nonarithmetical and that
QEP,’CC(PA) is TIy-hard for any class of proof predicates K. We obtain these

facts as a corollary of a more general theorem which gives the lower complexity
bounds for all the logics QL'P,fC(U).

3.1 Preliminaries.

Definition 6. Arithmetical formula ¢(z) is decidable in a theory U if for any
natural number n € w either U F p(n) or U F =p(n). If ¢ is decidable in U,
then the set of form {n | U F ¢(n)} is called decidable in U. A set belongs to
the class IT,, in U (X, in U) if it is of complexity IT,, (3,) with respect to a set
decidable in U.

Lemma 2. ([9, 11]) Let the set P be II, in U. Then there exists a formula
Q(y, z) decidable in U such that

neP < VeIy>zUkFQy,n).

We also need the following lemma which is a strengthened version of the
well-known Tennenbaum theorem. The theorem says that any model of Peano
Arithmetic in which addition and multiplication are recursive functions is iso-
morphic to the standard model. The lemma says that the same fact holds for a
finite fragment of Peano Arithmetic.

Lemma 3. ([5]) There exists a finite set Ten of theorems of Peano Arithmetic
such that every model of Ten with the domain w in which + (addition) and x
(multiplication) are recursive functions is isomorphic to the standard model.

3.2 The main theorem.

Theorem 1. Suppose that U is any arithmetically correct theory and K is an
arbitrary nonempty class of proof predicates. Then any set, which is IIy in U,
is m-reducible to QLPL(U).

The proof of this theorem goes on lines of proofs of similar facts for predicate
provability logics (sf. [5, 9, 10]).
Proof. Let P be IIy in U. Lemma 2 provides us with a formula Q(y, 2)
decidable in U such that for any n

neP < VeIy >z UkF Qy,n).

Let us describe an algorithm that performs the reduction of P to QEPQ(U )-



Description of the reduction algorithm. Consider the predicate language
EAM consisting of a binary predicate symbol E and two ternary predicate sym-
bols A and M. We apply the standard procedure of replacing function symbols
by predicate symbols to arithmetical language, where E, A and M stand for
equality, addition and multiplication predicates respectively. Let {¢} denote
the result of the described translation of an arithmetical formula ¢ into the
language FAM.

Let T denote the conjunction of all formulas {¢} (¢ € Ten) and standard
axioms in the language FAM expressing basic properties of equality for the
predicate E and functionality of the predicates A and M. Put

Eq=Vr,y [Er,y) = (W(z) & W(y)) |-

Suppose that W (z) is a unary predicate symbol and p(z,y, z), ¢(x,y, z),
r(z,y), t(x) are proof functional letters of the indicated arity. We define a
formula that expresses decidability of F, A, M and W in the following way:

(A(z,y,2) « [p(z,y,2)]A(z,y, 2))
E (z,y,2) & [g(z,y,2)]M(x,y,2))
(

D = Vrxy,z

[
N(M
NE(z,y) < [r(z,y)|E(z,y))
AW (x) < [t(2)]W (2)) ].

Let S(z,y) be a natural arithmetical ¥;-formula expressing the relation
“Turing machine having number x terminates on input y”. Now we can de-
scribe the desired algorithm. For any n € w it produces the formula

®, = TADANEq— (1)
S 33y (o {<y A Q) AV (2) & (S} 2)).

Let us show that a (recursive) function n — ®,, performs the reduction of
P to QEP,’CC(U). It suffices to establish that

Vedy >z Uk Qy,n) < VYPrf e KVx= (Prf,e) UF @;. (2)

Proof of (=>). Suppose Vx Jy > = U + Q(y,n). Let Prf be an arbitrary
proof predicate from I and ¢ an arbitrary evaluation. Consider the interpreta-
tion x = (Prf,e). Let us prove that U - ®%.

Step 1. Since Prf is provably decidable and since arithmetical terms assigned
to functional variables are provably total, we conclude that for any evaluation

PAF D* — “cE, €A, eM and W are decidable”. (3)

For example, the decision algorithm for €A for given x, y and z calculates the
value of ep(x,y, z) and then checks whether Prf(ep(z,y, z), [eA(%, 7, 2)]) holds.
The formula D* guarantees that e A(x,y, z) is true if the answer is positive and
false otherwise. Decision algorithms for the remaining predicates work similarly.



Step 2. Arithmetical formula R(z,y) defined below expresses the relation “y
represents a number x in the model defined by the arithmetical interpretation x”

R(z,y) = “there exists a finite sequence s of length = + 1,
such that (s)o = 0%, (s), =y and Vz <z A*(1%,(5)2, (8)2+1)"

where constants 0* and 1* are defined in terms of A* and M* in the standard
manner:

(x =0") = A" (z,z,2), (x=1")= M*(x,z,2) A\ A" (z,x,2).
The following properties of R(x,y) are established in [9, 11].
(R1) UFT*AR(z,21) ANR(z,22) = E*(21, 22);
(R2) U+ T* — Ya3bR(a,b);

(R3) (formalized Tennenbaum theorem)
Uk T*A“E,cA and eM are decidable” — Vy3xzR(x,y).

Step 3. We can show by induction on formula ¢(¥) that
U T AVb3aR(a,b) A R(T, §) = (p(T) < {}" (7)),

where & = (21, ...,2n,) denotes the set of all free variables of a formula ¢ and
R(Z,7) is an abbreviation for A, R(z;,y;). Hence from (3) and (R3) it follows
that

Uk T"AD*AR(Z, ) = (¢(T) & {} (7). (4)

Step 4. There exists a natural number & such that
Utk D" — [3z (R(v,2) AW*(2)) & S(k,v)] (5)

Actually, according to (3) from D* it follows that the relations A*, M* and
E* are decidable. In view of the definition, R(v,z) is recursively enumerable.
Since relation W*(z) is recursive by (3), the set {v | 3z (R(v,z) A W*(2))} is
enumerable too. This provides us with the desired k.

Step 5. Let us show that
UL T*AD*ANEq¢" AR(v,z) = (W*(z) & S(k,v)). (6)

We reason in U. In view of T* A D* A E¢* and (5), from W*(z) we imme-
diately obtain S(k,v). For the converse assume that S(k,v). From (5) we get
Jz1 (R(v, 21)AW*(z1)). According to (R1), R(v, z) and R(v, z1) imply E*(z, z1).
In view of Eq*, we conclude that W*(z1) <> W*(z), whence W*(z).

10



Step 6. According to our original assumption (see (2)), there exists a number [
such that k <l and U - Q(I,n). Then U F k <IAQ(l,n). Using (4) we derive

UbET*AD" AR(k,z) ANR(l,y) = 2{<}y AH{Q} (y,n). (7)
Step 7. Reason in U. From (6) and (4) it follows that
T*AND* NEq* AR(k,z) AR(v,z) = (W*(2) + {S}*(x, 2)).

Applying (R3), (7), (R2) and doing standard manipulations in predicate calculus
we conclude the desired

T*AD* AN Eq* — 32Ty [x{<Iy A{Q} (y,n) AVz(W*(z) & {S}(z,2))].

Proof of (<=). Suppose that U I ®} under every arithmetical interpretation
x = (Prf,e), where Prf € K. Let us show that Ym3l > m U F Q(m,n).

Step 1. Let € denote the standard arithmetical evaluation of the language EAM
which assigns to the predicate letters E, A and M the equality, addition and
multiplication predicates respectively:

eE = (x=vy),
eA = (x+4y=2), (8)
eM = (ry=2z).
Step 2. We fix a proof predicate Prf € I and an arbitrary m € w and consider
the evaluations e (k =1,...,m) which are extensions of ¢ defined as follows:
eeW = (Z = k’),
epr = pw.Prf(w, [ =9]) A (z=y),
qp 2 g Prf(w, [i+j =) A (0 4y =2), (9)
erg = pw.Prf(w,[ig = 2]) A (zy = 2),
ext = pw.Prf(w,[k=k])A(z=k)
For any k =0, ..., m consider the interpretation *; = (Prf,ey).

Step 3. It can be easily seen that U = 7% A D*t A Eq**. Since U F ®}* for all
k=0,...,m, we have

Ub3Jz Iy [z <yAQy,n) AVz((z =k) < S(z,2))].

Therefore

Utk 3z Iy [x<y/\Q(y,n)/\/\((i=k)<—>S(x,i))]. (10)
i=0

11



Step 4. For any k = 0,...,m consider the number x;, satisfying (10). Let us
show that x; > m for some k. Suppose that x, < m for all £ = 0,...,m.
Applying the pigeonhole principle, we obtain xy, = xp, for some ki # ky. For
interpretations 3, and *j, consider the conjunct corresponding to ¢ = k; in
formula (10). We obtain respectively that

Uk (kl = kl) — S(Iklakl)
and
(k’l = kz) < S(ku,kl) is true.

From U ki = ky it follows that U F S(xy,, k1). Since xp, = xp, we can derive
Ut S(zk,,k1). Therefore formula ky = ko with ky # ko is true in the standard
model.

The contradiction obtained shows that x; > m for some &k = 0,...,m. In
accordance with (10), there exists a natural number | > x;, such that Q(I,n)
holds. Since @ is decidable in U we conclude that U F Q(I,n). Then we have
I>mand UF Q(,n) Q.E.D.

3.3 Corollaries.

Corollary 1. Suppose that Prf is a proof predicate. Then any set that is Il
in U is m-reducible to QLPY, . (U).

Corollary 2. For every proof predicate Prf the set QEPJ;Tf(TA) is not arith-
metical.

Proof. Note that all arithmetical sets are decidable in TA. According to
theorem 1, all these sets can be reduced to QEP’;Tf (TA). Thus QEPJ;Tf(TA) is
nonarithmetical. [

Remark 3. It is immediate from the definition that the logic QEP’;# (TA)

belongs to the complexity class TI{(TA). According to corollary 2, this logic
is nonarithmetical. This result can be strengthened using a method from [10].
Namely, it can be shown that QEP’;Tf (TA) is I (TA)—complete.

Corollary 3. For each proof predicate Prf the set QEP’;Tf (PA) is TI;-complete.

Proof. From the definitions, one can easily see that QEP’;,Tf(PA) belongs to
IT,. From the other side, all recursive relations are decidable in PA, whence, by
theorem 1, any ITy-set can be reduced to QEPJ;Tf(PA). |

12



4 First order logics with constants on proofs.

In this section we find lower complexity bounds for first order logics of proofs
formulated in the language with constants on proofs £¢. We consider two cases:

1. the class of all proof predicates and the class of all proof predicates for a
given recursively enumerable theory PA C T C TA;

2. any class consisting of normal multi-conclusion proof predicates, that is,
proof predicates which imitate real proof processes (for the exact definition
see page 14);

4.1 Logic of all proof predicates.

The logic of all proof predicates formulated in the language £¢ is denoted by
QLPC(U). Let T be any recursively enumerable arithmetical theory, PA C T C
TA. The logic of all proof predicates for T is denoted by QLPH(U).

Theorem 2. For every arithmetical theory U such that PA C U C TA
1) any set which is Iy in U is m-reducible to QLP¢(U).
2) any set which is Iy in U is m-reducible to QLPS(U).

Proof.  The proof of both 1) and 2) is a slight modification of the proof of
theorem 1. We describe changes needed for 2). Let P be any set which is IT5 in
U. The algorithm performing a reduction of P to QLPT(U) to every natural
number n € w assigns the following formula ®,, defined similarly to (1)

o, = TADAEq—
= 3z Jy ({<Jy A{Q} (Y, n) AV2(W(2) & {S}(z,2))

with the only difference in formula D in which we have to replace proof func-
tional symbols by proof constants. Now D is defined as follows

D = Vr,y,2[ (A(z,y,2) & [PlA(z,y, 2))
NM(z,y,2) < [ddM(2,y, %))
NE(z,y) < [r]E(z,y))

AW (z) < [t]W (2)) ],

where p, ¢, r and ¢ are proof constants.
It remains to show that recursive function n — @, performs a reduction of
P to QLPL(U), that is

Vedy >z Uk Q(y,n) < Vx=(Prfr,e) UF ®;. (11)

A detailed analysis of the proof of theorem 1 shows that the proof of the
left-to-right implication does not change. To establish the converse, in the proof
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of theorem 1 we considered an interpretation of a special form (see (8) and (9)).
Here we do the same thing, but we need to define a specific proof predicate
on which this interpretation is based. An appropriate proof predicate can be
defined by the formula

Prip(ey) = Proofp(z,y) |
Ve=1A3a,bc<y(a+b=cAhy=Ta+b=¢])
Vr=2A3a,be<y(axb=cAy=T[axb=¢])
Ve=3Ada,b<y (a=bAy=[a=Dh])

(12)

where Proof r(x,y) denotes the standard Godel proof predicate for T'. Consider

evaluations ¢; (k = 1,...,m) extending the standard evaluation ¢ from (8) as
follows:

W = (Z = k),

ERT = 1,

Erp = 2,

Erq = 3,

ext = pw.Prfp(w, [k=k])A(z=k).
The remaining part of the proof does not change. ]

Corollary 4. The logics QLPT(TA), QLP(TA) are nonarithmetical. (In fact,
the last one is II{(TA)—complete). The logics QLPS(PA), QLPC(PA) are Il
complete.

Remark 4. In the proof of theorem 2 the essential point was to construct a
proof predicate such that all true formulas of the form z +y = 2z, xy = z and
z = y had a common proof. Therefore, this theorem remains true for all classes
of proof predicates L which contain at least one proof predicate of this sort. In
case K contains only proof predicates that imitate real computation processes
and does not include predicates of the sort (12) we can prove somewhat weaker
results (below) which however suffice to rule out recursive axiomatizability of
those logics.

4.2 First order logic of normal proof predicates.
Definition 7. A proof predicate Prf is called normal if for every n € w the set
Th(n) = {z | Prf(n,x)} is finite and the function

“n — the Godel number of Th(n)”

is recursive provably total.

A proof predicate Prf . for T is normal multi-conclusion if any finite set M
of theorems of 7" has a common proof, namely, there exists n such that for every
@ € M we have Prf(n, [¢])-
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Remark 5. If a proof predicate Prf(x,y) is normal, then PA + 7k proves a
finite set of theorems” for every k € w, that is, there exists n € w such that

PA FVy(Prf(k,y) = y <n).

We show that for every class A of normal multi-conclusion proof predicates
the corresponding logic QLPS,(U) is II;-hard.

Let Lz, denote the predicate logic of finite models, that is, the set of pred-
icate formulas that are true in all finite models. It is well-known that Lg, is
II;-complete. We reduce Lg, to QLPS(U). First we have to prove a kind of
arithmetical completeness result for Lgy,, namely, that Lz, is complete with
respect to the class of arithmetical interpretations of the predicate language by
formulas that define provably finite or cofinite relations.

Definition 8. Let ¢(z1,...,2,) be an arbitrary arithmetical formula with all
free variables shown. We define the following formulas:

an¢(y) = Var.oap(e(en, .. zm) = Ay 2 <)
( ) = Fin¢(y) \ Fz’n_.“,(y).

Formula ¢ is called provably finite (provably stable) if ¢ is a Aj-formula and
PA + Fin,(k) (PA & St,(k) resp.) for some k € w.

Let Fin and Stab denote the classes of all interpretations of the pure predicate
language by provably finite and provably stable formulas respectively.

Theorem 3. Let U be any arithmetical theory, PA C U C TA. Then for every
predicate formula F

Felp, < VaecFin Utk aF < Vac Stab UF oF.

Proof. To prove this theorem it suffices to show that
1. if F ¢ Lg,, then da € Fin TAY oF;
2. if F € Lgp, then Va € Stab PAF oF.

The first proposition is obvious. Let us prove the second one.

Step 1. For every formula ¢ the following formulas are provable in PA:

1. Sto(y) Ny < z = Sty(2)

2. Stw(y) A Sty (y) = Stony(y) A Stovy(y) A Stop(y)
Sta(y) = Stop(y)

4. Sto(y) = Fzp Iz < (¥ +1) 9)
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Items 1, 2 and 3 are trivial, 4 follows immediately from 3.

Step 2. For every predicate formula F' and interpretation « € Stab
1. there exists k € w such that PA F St,p(k);
2. aF € Ay.

We prove both facts by joint induction on formula F. Induction base when F
is an atomic formula holds by the definition of a stable interpretation.

Induction step. Suppose that F' = F; A F5. Item 2 holds since the class
of Ai-formulas is closed under boolean connectives. Let us prove 1. By the
induction hypothesis, there exist ki, ko, such that PA - St,p, (k;) for i = 1,2.
Put k = max(ki,k2). From lemma 1, (1) and (2), we consequently obtain
PA F Star (k) A Star, (k) and PA & Sty(p ar,) (k). The remaining boolean
connectives are treated in a similar way.

Suppose that F' = 32G(z,Z). From the induction hypothesis it follows that
aG € A; and there exists k& € w such that PA F St,c(k). Lemma 1 (3)
yields assertion 1. From lemma 1 (4) we obtain that PA F 3z aG(2,%)
Jz < (k+1) aG(z,Z). Since the class of Aj-formulas is closed under bounded
quantifiers, we conclude that oF € Aq.

Step 3. Suppose that F' € Lg, and o € Stab. From the definition it immedi-
ately follows that TAF aF. By lemma 2, aF € A;. Therefore PA - aF.

Theorem 4. Let N be any class of normal multi-conclusion proof predicates.
Then both logics QLPS(PA) and QLPS,(TA) are II;-hard and I;-hard.

Proof. Both logics QLPS,(PA) and QLP}(TA) are Tq-hard since they are
conservative over the predicate calculus PC which is known to be X;-complete.
To establish IT-hardness we reduce the logic of finite models Lg,, (which is IT;-
complete) to both systems. Consider the interpretation red of the predicate
language in the language £¢ defined in the following way. For every predicate
symbol P; put
red Pl(l_") = [[ql]]Pl(f)

We prove that function red performs the reduction of Lg, to QLPS (PA)

and QLPS(TA), that is

FeLlp, < red F € QLPS(PA) < red F € QLPS(TA).  (13)

Step 1. Suppose that F' € L5, and * = (Prf,¢) is an arbitrary arithmetical
interpretation of the language £¢ with Prf € A'. We define interpretation a of
the pure predicate language such that for every predicate symbol P;

aP (%) = (red Pi(¥))".
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Then aF = (red F)* for any predicate formula F. Since the predicate Prf is
normal, the interpretation « is provably stable. Thus by theorem 3 we have
that PA F aF, whence PA & (red F)*.

Step 2. Suppose that F' € Lg,. Then there exists an interpretation of the pure
predicate language « € Fin such that aF ¢ TA. We construct an interpretation
x of the language L£°¢ such that red F* ¢ TA.

Let us fix a proof predicate Prf; € N. Let P;, ... P, be the list of all
predicate symbols occurring in F'. Let M; be a set consisting of all true formulas

of the form aP;(k). Since aP; is a provably finite A;-formula, there exists a
number n; such that Prf;(n;,¢) holds for every ¢ € M;. It is also clear that

PA F aPy(Z) < Prfo(ng, [aP()]). (14)

Consider the interpretation x = (Prf, ), where ¢ coincides with a on pred-
icate letters and e(g;) = n;. In view of (14), by induction on formula D we can
show that PA - aD < (red D)*. Since aF ¢ TA, we conclude (red F)* & TA.

5 Discussion

Though finding a complete axiom system to the first order logic of proofs turned
out to be impossible, a more modest goal of finding an exact explicit companion
of major first order modal logics, e.g. S4 looks attractive. There are several
possible motivations to this problem. In particular, the explicit version of the
first order S4 is a step toward finding the BHK semantics for the first order
intuitionistic logic, since the Godel correspondence between intuitioinistic and
modal logics can be extended to the first order systems (cf. [8, 19]).

Another natural problem here might be to find an axiomatization of the frag-
ment of the logic of proofs with one individual variable only. The corresponding
fragment of the first order provability logic has been shown decidable in [7].
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