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Abstrat

The Logi of Proofs LP solved a long standing G�odel's problem on-

erning his provability alulus (f. [4℄). It also opened new lines of re-

searh in proof theory, modal logi, typed programming languages, knowl-

edge representation, et. The propositional logi of proofs is deidable and

admits a omplete axiomatization. In this paper we show that the �rst

order logi of proofs is not reursively axiomatizable.

1 Introdution

The study of provability by means of modal logi was originated by G�odel in

the 1930s in [12, 13℄. He suggested reading the modality 2 as provability; so

the formula 2F is interpreted as \F is provable". This G�odel's proposal led

to two substantially di�erent provability interpretations of 2F eah having its

own spei� mathematial model. We will all them model A and model B.

Model A treats modal sentene 2F as a formal proposition \F is derivable

in Peano Arithmeti PA", whih in turn an be expressed by an arithmeti-

al formula. Provability Logi onsists of modal formulas whih are valid under

this interpretation. De�nitions and a detailed presentation of results onerning

this approah an be found in [11℄. The well known Solovay Completeness The-

orem (see [11℄ or [18℄) demonstrates that the propositional Provability Logi

is deidable, admits a onise axiomatization and a natural semantial har-

aterization in terms of Kripke models. In fat, Solovay has shown that the

modal logi GL

1

axiomatized all propositional properties of the formal prov-

ability prediate. The logi GL is a normal lassial modal logi having modal

�
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axioms 2(P ! Q) ! (2P ! 2Q) and 2(2P ! P ) ! 2P . The latter is

known as the L�ob's Priniple: it is a diret formalization of the well known

L�ob's theorem [11, 17℄. Artemov and Vardanyan in [5, 9, 10℄ demonstrated that

the �rst order Provability Logis was not reursively axiomatizable (in fat, the

lower omplexity bounds for all reasonable versions of it were the worst possi-

ble). Comprehensive surveys of the studies in Provability Logis an be found

in [11, 14℄.

Model B was de�ned by G�odel axiomatially via his famous modal provabil-

ity alulus a.k.a. modal logi S4 whih eventually led to the G�odel's problem

mentioned above

2

. G�odel pointed out in [12, 13℄ that S4 is inompatible with

model A (whih reads 2F is a formal provability assertion \F is derivable in

Peano Arithmeti PA"). More exatly, the reexivity axiom2F ! F of S4 along

with the neessitation rule H ` 2H produe a formula 2(2F ! F ) whih is

false under the formal provability interpretation A. Indeed, if F is interpreted

as the boolean onstant false, then 2(2F ! F ) asserts the provability of on-

sisteny in PA, whih does not take plae by the G�odel Seond Inompleteness

Theorem. Despite G�odel's hints in [13℄ and quite a history of attempts to solve

it, the problem of the provability semantis for G�odel's provability alulus S4

remained open for more then 60 years until it was eventually solved by the Logi

of Proofs LP (f. [4℄) whih ombined expliit harater of �-alulus with iter-

ative apaities of modal logi. It turned out that G�odel's provability alulus

S4 orresponds to the reading of modalities 2F as expliit provability assertions

\t is a proof of F" for an appropriate proof term t (alled proof polynomial).

A omplete deidable axiom system of propositional logi of proofs (alled the

Logi of Proofs LP) has been presented in [2, 3, 4℄. Logi of Proofs also gives

a fair mathematial model for the intended Brouwer-Heyting-Kolmogorov se-

mantis for the propositional intuitionisti logi. In addition, proof polynomials

subsume typed �-alulus and typed ombinatory logi. Those features make

proof polynomials and the Logi of Proofs attrative for appliations in typed

programming languages, knowledge representation, automated dedution and

veri�ation, et.

In this paper we onsider logi of proofs formulated in the �rst-order language

(see also [6, 16, 20℄). In setion 2 we disuss the appropriate �rst order language

of logi of proofs and give exat de�nitions of the arithmetial semantis and

of �rst order logi of proofs. The answers to natural axiomatizability questions

for the �rst order logi of proofs onsidered in this paper are all negative. In

setion 3 we prove that if proofs are represented by speial symbols for reursive

2

G�odel's problem was raised in [12℄ where G�odel introdued a speial modal alulus for

provability (S4) and used it to provide an intended provability interpretation for intuitionisti

logi. In this paper G�odel notied that the straightforward interpretation of S4-modality

as the formal provability operator does not work thus leaving open the problem of �nding a

provability interpretation to S4. In [13℄ G�odel onsidered this problem one again and spei�ed

the format of the intended solution. The Logi of Proofs gives the solution to G�odel's problem

in the format suggested in [13℄.
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funtions then the orresponding logi is nonaxiomatizable. In setion 4 we

onsider �rst order logis with proof onstants; we establish that those logis

are not axiomatizable either.

2 Main de�nitions.

2.1 Some standard de�nitions and fats.

Firstly, let us reall several standard de�nitions and fats onerning Peano

Arithmeti (see [17℄ for details).

Hierarhy of arithmetial formulas. By indution on n we de�ne �

n

-formulas

and �

n

-formulas as follows: both �

0

-formulas and �

0

-formulas are formulas in

whih all quanti�ers are bounded, �

n+1

-formulas have the form 9x' where ' is

�

n

, �

n+1

-formulas have the form 8x' where ' is �

n

.

A formula is provably �

n

(or �

n

) if PA proves that it is equivalent to a �

n

(or, respetively, �

n

) formula. A formula is provably �

n

if both the formula

and its negation is provably �

n

.

Also we shall use the following de�nitions and fats from reursion theory

(see [15℄ for details).

A set R of natural numbers is arithmetial if there exists an arithmetial

formula '(x) suh that

n 2 R () '(n) is true

for every n. Arithmetial relations on natural numbers are the ones orrespond-

ing to arithmetial sets.

Arithmetial hierarhy. It is well-known that all deidable sets are arith-

metial. Arithmetial hierarhy separates arithmetial relations with respet to

the least number of alternating quanti�ers in a prenex formula whih de�nes

the relation in terms of deidable relations. A set is �

0

if it is deidable. A set

is �

n+1

if it is a projetion of a �

n

-set. A set is �

n

if its omplement is is a

�

n

-set. For example, the lass �

1

onsists of all reursively enumerable sets.

This de�nition an be easily modi�ed for sets of words in any �nite alpha-

bet with the help of the appropriate oding of words by numbers (i.e. G�odel

numbering). So we an speak about arithmetial sets of formulas and so on.

In what follows X and Y are sets of natural numbers. A set X is alled

m-reduible to Y if there exists a total reursive funtion f suh that for every

n

n 2 X () f(n) 2 Y:

If this funtion f is one-to-one then we say that X is 1-reduible to Y .

Classes �

n

and �

n

are lose under m-reduibility: if Y 2 �

n

(�

n

) and X

is m-reduible to Y then X 2 �

n

(�

n

). In partiular, if Y is deidable or

reursively enumerable then so is X .
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Let K be any of lasses �

n

and �

n

. We say that a set X is K-hard if any

set from K is 1-reduible to X . If X is K-hard and X 2 K then X is alled

K-omplete.

2.2 The language of �rst order logi of proofs.

By prediate language L we mean the �rst order language without funtion

symbols and equality ontaining ountable set of prediate letters of any arity.

First order provability logi is formulated in the extension of the language L

by the modal operator 2 for provability; the modal formula 2F is interpreted

as a proposition about provability \there exists a proof of F". As we mentioned

before, the transition from Provability Logi to the Logi of Proofs, generally

speaking, onsists in eliminating the existential quanti�ers hidden in the modal-

ity of provability and replaing them by the onrete proofs. In the propositional

logi the formula F above represents a proposition without parameters. So the

proof of F needs not depend on the parameters, thus it an be represented by

proof variables ranging over odes of proofs, or natural numbers.

In order to de�ne an appropriate language of quanti�ed logi of proofs let us

look at the provability formula 2A(x), where a formula A under the modality

depends on a parameter x. It represents the proposition \for a given x the for-

mula A(x) is provable" whih ontains x as a parameter (see [5, 9℄). If we write

down the existential quanti�er on proofs hidden in the provability operator, then

we obtain the proposition \for a given x there exists y suh that y is a ode of

proof of A(x)" with two parameters x and y. Then the standard proedure

of skolemization (whih onsists, roughly, in replaing existential quanti�ers by

funtion symbols) provides us with a funtion f whih produes a proof of A(x)

being given a number x.

2A(x) [[f(x)℄℄A(x)

* *

intended intended

interpretation interpretation

+ +

\for a given x there exists

y whih is a proof of A(x)"

( skolemization )

\for a given x, f(x)

is a proof of A(x)"

The language L

f

desribed below aptures Skolem funtions of this sort. It is

the extension of the prediate language L by symbols for reursive funtions on

proofs and operational symbol [[�℄℄(�) for proof prediate.

De�nition 1. The language L

f

ontains:

individual variables x, y, z : : :

ountable set of prediate letters of any arity P , Q, R : : :

ountable set of proof funtional letters of any arity: f , g, h : : :

operational symbol [[�℄℄(�)
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boolean onnetives and quanti�ers.

Let L



denote the fragment of the language L

f

whih ontains only onstants

on proofs (i.e. proof funtional letters of arity 0).

Formulas of the language L

f

are de�ned in the standard way with the only

additional lause for formulas representing proof prediate. We denote the set

of formulas by Fm(L

f

). So:

� ? and P (x

1

; : : : ; x

n

) are atomi formulas, where P is a prediate letter

and x

i

are individual variables;

� the set of formulas is losed under the boolean onnetives and quanti�ers;

� if F is a formula, g

n

is a proof funtional letter of arity n and x

1

, . . . , x

n

are individual variables, then [[g

n

(x

1

; : : : ; x

n

)℄℄F is a formula.

The set of free variable of a formula F is denoted by FreeVar(F ), where

FreeVar([[g

n

(x

1

; : : : ; x

n

)℄℄F ) = FreeVar(F ) [ fx

1

; : : : ; x

n

g:

Remark 1. Note that proof funtional letters of the language L

f

are not fun-

tion symbols of a usual �rst order language in the standard meaning of the term.

They an appear in a formula only in the sope of [[�℄℄-part of the operational

symbol [[�℄℄(�).

2.3 Arithmetial interpretation.

Let us desribe the intended arithmetial semantis for L

f

. In what follows PA

denotes Peano Arithmeti , TA stands for "Truth Arithmeti", that is, the set of

arithmetial formulas whih are true in the standard model (natural numbers).

In order to represent reursive funtions we onsider Peano Arithmeti en-

rihed by reursive �{terms. For every formula '(x

1

; : : : ; x

n

; y) suh that

PA ` '(x

1

; : : : ; x

n

; y) ^ '(x

1

; : : : ; x

n

; z)! y = z

the expression �y:'(x

1

; : : : ; x

n

; y) is a �-term of arity n. It is supposed to rep-

resent a (partial) funtion f(x

1

; : : : ; x

n

) whih assigns to x

1

; : : : ; x

n

the unique

y suh that '(x

1

; : : : ; x

n

; y). We use the expression  (�y:'(~x; y)) to abbreviate

the formula 9y( (y) ^ '(~x; y)).

De�nition 2. A �{term �y:'(~x; y) is alled reursive if the formula ' is provably

�

1

in PA. If PA ` 8~x 9y '(~x; y), then the orresponding �{term is alled provably

total (the orresponding funtion represented by provably total �-term is also

alled provably total).

The following lemma says that all reursive funtions an be represented as

reursive �-terms; it is a reformulation of the theorem on arithmetial represen-

tation of reursive funtions.
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Lemma 1. The following holds

1. Every reursive �{term represents a reursive funtion. And vie versa,

every reursive funtion an be represented by a reursive �{term.

2. Every primitive reursive funtion an be represented by a provably total

reursive �{term.

Example 1. By d'( _y

1

; : : : ; _y

n

)e we denote provably total reursive �{term for

primitive reursive funtion �k

1

; : : : ; k

n

:d'(k

1

; : : : ; k

n

)e that being given any

k

1

; : : : ; k

n

alulates the G�odel number of a formula '(k

1

; : : : ; k

n

).

De�nition 3. Let T be a reursively enumerable arithmetial theory, PA �

T � TA. A proof prediate for a theory T is a provably �

1

{formula Prf (x; y)

whih enumerates theorems of T in PA, that is for any arithmetial sentene '

T ` ' () PA ` Prf (n; d'e) for some n;

where d'e stands for the G�odel number of a formula '.

Example 2. Here are some examples of proof prediates. The standard G�odel

proof prediate for T is an arithmetial formula

Proof

T

(x; y)

*

)

\x is a G�odel number of a derivation in T and y is the

G�odel number of the last formula in it"

One an onsider the multi-onlusion version of this prediate:

PROOF

T

(x; y)

*

)

\x is a G�odel number of a derivation in T and y is

the G�odel number of some formula in it"

Here is another version of multi-onlusion proof prediate for T :

Prf

T

(x; y)

*

)

\x is a G�odel number of a �nite set of derivations in T

and y is the G�odel number of the last formulas in one

of them"

Now we are ready to de�ne an arithmetial interpretation of the language

L

f

.

De�nition 4. An arithmetial interpretation � = (Prf ; ") of the language L

f

has the following parameters

� a proof prediate Prf for a reursively enumerable theory PA � T � TA;

� an evaluation ", whih assigns to proof funtional letters provably reur-

sive arithmetial �-terms of the same arity, and maps atomi formulas to

arithmetial formulas with the same free variables. We assume that "

ommutes with renaming of free variables.
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Given an arithmetial interpretation � one ould translate all formulas of the

language L

f

by arithmetial formulas in the following anonial way. For atomi

formulas Q

�

*

)

"Q, � ommutes with boolean onnetives and quanti�ers, and

([[g(~x)℄℄A(~y))

�

*

)

Prf ("g(~x); dA

�

(

_

~y)e):

2.4 First order logis of proofs

Let us give the de�nition of �rst order logi of proofs. In what follows U stands

for an arithmetial theory suh that PA � U � TA.

De�nition 5. Suppose that Prf is a proof prediate for a reursively enumer-

able theory T , where PA � T � TA. We de�ne two versions of the logi of proofs

for the prediate Prf :

QLP

f

Prf

(U)

*

)

fA 2 Fm(L

f

) j for any interpretation � = (Prf ; �) U ` A

�

g;

QLP



Prf

(U)

*

)

fA 2 Fm(L



) j for any interpretation � = (Prf ; �) U ` A

�

g:

For a given lass of proof prediates K we de�ne the orresponding logis of

proofs by

QLP

f

K

(U)

*

)

T

Prf2K

QLP

f

Prf

(U);

QLP



K

(U)

*

)

T

Prf2K

QLP



Prf

(U):

The logis QLP

f

K

(U) and QLP



K

(U) desribe all universal properties of the

prediates Prf 2 K that an be proved in U . We shall be interested mostly in

the ases U = PA and U = TA.

Remark 2. Propositional logis of proofs for PA and TA oinide (sf. [1℄).

However, this property does not hold in the prediate ase even for the lan-

guage with proof onstants. In order to show that QLP



(PA) 6= QLP



(TA) we

onsider weak reexivity priniple [[t℄℄P (x) ! P (x). Obviously it is arithmeti-

ally valid and thus belongs to QLP



(TA). But this priniple an not be proven

in PA under the interpretation � = (Prf ; �), where �P

*

)

:Proof

PA

(x; d?e),

�t = 1 and proof prediate Prf (z; y) is de�ned by the formula

Proof

PA

(z; y) _ (z = 1 ^ 9x < y (y = d:Proof

PA

( _x; d?e)e)):

Atually, from the de�nition of Prf we immediately onlude that

PA ` Prf (1; dP

�

( _x)e):

G�odel's seond inompleteness theorem provides that PA 6` P

�

(x), a ontradi-

tion.
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3 Lower omplexity bounds for QLP

f

K

(U).

In this setion we show that the logi QLP

f

K

(TA) is nonarithmetial and that

QLP

f

K

(PA) is �

2

-hard for any lass of proof prediates K. We obtain these

fats as a orollary of a more general theorem whih gives the lower omplexity

bounds for all the logis QLP

f

K

(U).

3.1 Preliminaries.

De�nition 6. Arithmetial formula '(x) is deidable in a theory U if for any

natural number n 2 ! either U ` '(n) or U ` :'(n). If ' is deidable in U ,

then the set of form fn j U ` '(n)g is alled deidable in U . A set belongs to

the lass �

n

in U (�

n

in U) if it is of omplexity �

n

(�

n

) with respet to a set

deidable in U .

Lemma 2. ([9, 11℄) Let the set P be �

2

in U . Then there exists a formula

Q(y; z) deidable in U suh that

n 2 P () 8x 9y > x U ` Q(y; n):

We also need the following lemma whih is a strengthened version of the

well-known Tennenbaum theorem. The theorem says that any model of Peano

Arithmeti in whih addition and multipliation are reursive funtions is iso-

morphi to the standard model. The lemma says that the same fat holds for a

�nite fragment of Peano Arithmeti.

Lemma 3. ([5℄) There exists a �nite set Ten of theorems of Peano Arithmeti

suh that every model of Ten with the domain ! in whih + (addition) and �

(multipliation) are reursive funtions is isomorphi to the standard model.

3.2 The main theorem.

Theorem 1. Suppose that U is any arithmetially orret theory and K is an

arbitrary nonempty lass of proof prediates. Then any set, whih is �

2

in U ,

is m-reduible to QLP

f

K

(U).

The proof of this theorem goes on lines of proofs of similar fats for prediate

provability logis (sf. [5, 9, 10℄).

Proof. Let P be �

2

in U . Lemma 2 provides us with a formula Q(y; z)

deidable in U suh that for any n

n 2 P () 8x 9y > x U ` Q(y; n):

Let us desribe an algorithm that performs the redution of P to QLP

f

K

(U).
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Desription of the redution algorithm. Consider the prediate language

EAM onsisting of a binary prediate symbol E and two ternary prediate sym-

bols A and M . We apply the standard proedure of replaing funtion symbols

by prediate symbols to arithmetial language, where E, A and M stand for

equality, addition and multipliation prediates respetively. Let f'g denote

the result of the desribed translation of an arithmetial formula ' into the

language EAM.

Let T denote the onjuntion of all formulas f'g (' 2 Ten) and standard

axioms in the language EAM expressing basi properties of equality for the

prediate E and funtionality of the prediates A and M . Put

Eq

*

)

8x; y [ E(x; y)! (W (x)$ W (y)) ℄:

Suppose that W (x) is a unary prediate symbol and p(x; y; z), q(x; y; z),

r(x; y), t(x) are proof funtional letters of the indiated arity. We de�ne a

formula that expresses deidability of E, A, M and W in the following way:

D

*

)

8x; y; z [ (A(x; y; z)$ [[p(x; y; z)℄℄A(x; y; z))

^(M(x; y; z)$ [[q(x; y; z)℄℄M(x; y; z))

^(E(x; y) $ [[r(x; y)℄℄E(x; y))

^(W (x) $ [[t(x)℄℄W (x)) ℄:

Let S(x; y) be a natural arithmetial �

1

-formula expressing the relation

\Turing mahine having number x terminates on input y". Now we an de-

sribe the desired algorithm. For any n 2 ! it produes the formula

�

n

*

)

T ^D ^ Eq !

! 9x 9y (xf<gy ^ fQg(y; n) ^ 8z(W (z)$ fSg(x; z)):

(1)

Let us show that a (reursive) funtion n 7! �

n

performs the redution of

P to QLP

f

K

(U). It suÆes to establish that

8x 9y > x U ` Q(y; n) () 8Prf 2 K 8� = (Prf ; ") U ` �

�

n

: (2)

Proof of (=)). Suppose 8x 9y > x U ` Q(y; n). Let Prf be an arbitrary

proof prediate from K and " an arbitrary evaluation. Consider the interpreta-

tion � = (Prf ; "). Let us prove that U ` �

�

n

.

Step 1. Sine Prf is provably deidable and sine arithmetial terms assigned

to funtional variables are provably total, we onlude that for any evaluation "

PA ` D

�

! \"E, "A, "M and "W are deidable": (3)

For example, the deision algorithm for "A for given x, y and z alulates the

value of "p(x; y; z) and then heks whether Prf ("p(x; y; z); d"A( _x; _y; _z)e) holds.

The formula D

�

guarantees that "A(x; y; z) is true if the answer is positive and

false otherwise. Deision algorithms for the remaining prediates work similarly.
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Step 2. Arithmetial formula R(x; y) de�ned below expresses the relation \y

represents a number x in the model de�ned by the arithmetial interpretation �"

R(x; y)

*

)

\there exists a �nite sequene s of length x+ 1,

suh that (s)

0

= 0

�

; (s)

x

= y and 8z < x A

�

(1

�

; (s)

z

; (s)

z+1

)";

where onstants 0

�

and 1

�

are de�ned in terms of A

�

and M

�

in the standard

manner:

(x = 0

�

)

*

)

A

�

(x; x; x); (x = 1

�

)

*

)

M

�

(x; x; x) ^ :A

�

(x; x; x):

The following properties of R(x; y) are established in [9, 11℄.

(R1) U ` T

�

^ R(z; z

1

) ^R(z; z

2

)! E

�

(z

1

; z

2

);

(R2) U ` T

�

! 8a9bR(a; b);

(R3) (formalized Tennenbaum theorem)

U ` T

�

^ \"E, "A and "M are deidable"! 8y9xR(x; y):

Step 3. We an show by indution on formula '(~x) that

U ` T

�

^ 8b9aR(a; b) ^ R(~x; ~y)! ('(~x)$ f'g

�

(~y));

where ~x = (x

1

; : : : ; x

m

) denotes the set of all free variables of a formula ' and

R(~x; ~y) is an abbreviation for

V

m

i=1

R(x

i

; y

i

). Hene from (3) and (R3) it follows

that

U ` T

�

^D

�

^R(~x; ~y)! ('(~x)$ f'g

�

(~y)): (4)

Step 4. There exists a natural number k suh that

U ` D

�

! [9z (R(v; z) ^W

�

(z))$ S(k; v)℄ (5)

Atually, aording to (3) from D

�

it follows that the relations A

�

, M

�

and

E

�

are deidable. In view of the de�nition, R(v; z) is reursively enumerable.

Sine relation W

�

(z) is reursive by (3), the set fv j 9z (R(v; z) ^W

�

(z))g is

enumerable too. This provides us with the desired k.

Step 5. Let us show that

U ` T

�

^D

�

^Eq

�

^ R(v; z)! (W

�

(z)$ S(k; v)): (6)

We reason in U . In view of T

�

^ D

�

^ Eq

�

and (5), from W

�

(z) we imme-

diately obtain S(k; v). For the onverse assume that S(k; v). From (5) we get

9z

1

(R(v; z

1

)^W

�

(z

1

)). Aording to (R1), R(v; z) and R(v; z

1

) imply E

�

(z; z

1

).

In view of Eq

�

, we onlude that W

�

(z

1

)$W

�

(z), whene W

�

(z).

10



Step 6. Aording to our original assumption (see (2)), there exists a number l

suh that k < l and U ` Q(l; n). Then U ` k < l ^Q(l; n). Using (4) we derive

U ` T

�

^D

�

^ R(k; x) ^ R(l; y)! xf<gy ^ fQg

�

(y; n): (7)

Step 7. Reason in U . From (6) and (4) it follows that

T

�

^D

�

^ Eq

�

^R(k; x) ^ R(v; z)! (W

�

(z)$ fSg

�

(x; z)):

Applying (R3), (7), (R2) and doing standard manipulations in prediate alulus

we onlude the desired

T

�

^D

�

^ Eq

�

! 9x9y [xf<gy ^ fQg

�

(y; n) ^ 8z(W

�

(z)$ fSg

�

(x; z))℄:

Proof of ((=). Suppose that U ` �

�

n

under every arithmetial interpretation

� = (Prf ; "), where Prf 2 K. Let us show that 8m9l > m U ` Q(m;n).

Step 1. Let � denote the standard arithmetial evaluation of the language EAM

whih assigns to the prediate letters E, A and M the equality, addition and

multipliation prediates respetively:

"E

*

)

(x = y);

"A

*

)

(x+ y = z);

"M

*

)

(xy = z):

(8)

Step 2. We �x a proof prediate Prf 2 K and an arbitrarym 2 ! and onsider

the evaluations "

k

(k = 1; : : : ;m) whih are extensions of " de�ned as follows:

"

k

W

*

)

(z = k);

"

k

r

*

)

�w:Prf (w; d _x = _ye) ^ (x = y);

"

k

p

*

)

�w:Prf (w; d _x + _y = _ze) ^ (x+ y = z);

"

k

q

*

)

�w:Prf (w; d _x _y = _ze) ^ (xy = z);

"

k

t

*

)

�w:Prf (w; dk = ke) ^ (z = k):

(9)

For any k = 0; : : : ;m onsider the interpretation �

k

= (Prf ; "

k

).

Step 3. It an be easily seen that U ` T

�

k

^D

�

k

^Eq

�

k

: Sine U ` �

�

k

n

for all

k = 0; : : : ;m, we have

U ` 9x 9y [x < y ^Q(y; n) ^ 8z((z = k)$ S(x; z))℄:

Therefore

U ` 9x 9y [x < y ^Q(y; n) ^

m

^

i=0

((i = k)$ S(x; i))℄: (10)

11



Step 4. For any k = 0; : : : ;m onsider the number x

k

satisfying (10). Let us

show that x

k

> m for some k. Suppose that x

k

< m for all k = 0; : : : ;m.

Applying the pigeonhole priniple, we obtain x

k

1

= x

k

2

for some k

1

6= k

2

. For

interpretations �

k

1

and �

k

2

onsider the onjunt orresponding to i = k

1

in

formula (10). We obtain respetively that

U ` (k

1

= k

1

)! S(x

k

1

; k

1

)

and

(k

1

= k

2

)$ S(x

k

2

; k

1

) is true:

From U ` k

1

= k

1

it follows that U ` S(x

k

1

; k

1

). Sine x

k

1

= x

k

2

we an derive

U ` S(x

k

2

; k

1

). Therefore formula k

1

= k

2

with k

1

6= k

2

is true in the standard

model.

The ontradition obtained shows that x

k

� m for some k = 0; : : : ;m. In

aordane with (10), there exists a natural number l > x

k

suh that Q(l; n)

holds. Sine Q is deidable in U we onlude that U ` Q(l; n). Then we have

l > m and U ` Q(l; n) Q.E.D.

3.3 Corollaries.

Corollary 1. Suppose that Prf is a proof prediate. Then any set that is �

2

in U is m-reduible to QLP

f

Prf

(U).

Corollary 2. For every proof prediate Prf the set QLP

f

Prf

(TA) is not arith-

metial.

Proof. Note that all arithmetial sets are deidable in TA. Aording to

theorem 1, all these sets an be redued to QLP

f

Prf

(TA). Thus QLP

f

Prf

(TA) is

nonarithmetial.

Remark 3. It is immediate from the de�nition that the logi QLP

f

Prf

(TA)

belongs to the omplexity lass �

0

1

(TA). Aording to orollary 2, this logi

is nonarithmetial. This result an be strengthened using a method from [10℄.

Namely, it an be shown that QLP

f

Prf

(TA) is �

0

1

(TA){omplete.

Corollary 3. For eah proof prediate Prf the setQLP

f

Prf

(PA) is �

2

-omplete.

Proof. From the de�nitions, one an easily see that QLP

f

Prf

(PA) belongs to

�

2

. From the other side, all reursive relations are deidable in PA, whene, by

theorem 1, any �

2

-set an be redued to QLP

f

Prf

(PA).

12



4 First order logis with onstants on proofs.

In this setion we �nd lower omplexity bounds for �rst order logis of proofs

formulated in the language with onstants on proofs L



. We onsider two ases:

1. the lass of all proof prediates and the lass of all proof prediates for a

given reursively enumerable theory PA � T � TA;

2. any lass onsisting of normal multi-onlusion proof prediates, that is,

proof prediates whih imitate real proof proesses (for the exat de�nition

see page 14);

4.1 Logi of all proof prediates.

The logi of all proof prediates formulated in the language L



is denoted by

QLP



(U). Let T be any reursively enumerable arithmetial theory, PA � T �

TA. The logi of all proof prediates for T is denoted by QLP



T

(U).

Theorem 2. For every arithmetial theory U suh that PA � U � TA

1) any set whih is �

2

in U is m-reduible to QLP



(U).

2) any set whih is �

2

in U is m-reduible to QLP



T

(U).

Proof. The proof of both 1) and 2) is a slight modi�ation of the proof of

theorem 1. We desribe hanges needed for 2). Let P be any set whih is �

2

in

U . The algorithm performing a redution of P to QLP



T

(U) to every natural

number n 2 ! assigns the following formula �

n

de�ned similarly to (1)

�

n

*

)

T ^D ^ Eq !

! 9x 9y (xf<gy ^ fQg(y; n) ^ 8z(W (z)$ fSg(x; z))

with the only di�erene in formula D in whih we have to replae proof fun-

tional symbols by proof onstants. Now D is de�ned as follows

D

*

)

8x; y; z[ (A(x; y; z)$ [[p℄℄A(x; y; z))

^(M(x; y; z)$ [[q℄℄M(x; y; z))

^(E(x; y) $ [[r℄℄E(x; y))

^(W (x) $ [[t℄℄W (x)) ℄;

where p, q, r and t are proof onstants.

It remains to show that reursive funtion n 7! �

n

performs a redution of

P to QLP



T

(U), that is

8x 9y > x U ` Q(y; n) () 8� = (Prf

T

; ") U ` �

�

n

: (11)

A detailed analysis of the proof of theorem 1 shows that the proof of the

left-to-right impliation does not hange. To establish the onverse, in the proof

13



of theorem 1 we onsidered an interpretation of a speial form (see (8) and (9)).

Here we do the same thing, but we need to de�ne a spei� proof prediate

on whih this interpretation is based. An appropriate proof prediate an be

de�ned by the formula

Prf

T

(x; y)

*

)

Proof

T

(x; y)

_ x = 1 ^ 9a; b;  < y (a+ b =  ^ y = d _a+

_

b = _e)

_ x = 2 ^ 9a; b;  < y (a� b =  ^ y = d _a�

_

b = _e)

_ x = 3 ^ 9a; b < y (a = b ^ y = d _a =

_

be)

(12)

where Proof

T

(x; y) denotes the standard G�odel proof prediate for T . Consider

evaluations "

k

(k = 1; : : : ;m) extending the standard evaluation " from (8) as

follows:

"

k

W

*

)

(z = k);

"

k

r

*

)

1;

"

k

p

*

)

2;

"

k

q

*

)

3;

"

k

t

*

)

�w:Prf

T

(w; dk = ke) ^ (z = k):

The remaining part of the proof does not hange.

Corollary 4. The logis QLP



T

(TA), QLP



(TA) are nonarithmetial. (In fat,

the last one is �

0

1

(TA){omplete). The logis QLP



T

(PA), QLP



(PA) are �

2

{

omplete.

Remark 4. In the proof of theorem 2 the essential point was to onstrut a

proof prediate suh that all true formulas of the form x + y = z, xy = z and

x = y had a ommon proof. Therefore, this theorem remains true for all lasses

of proof prediates K whih ontain at least one proof prediate of this sort. In

ase K ontains only proof prediates that imitate real omputation proesses

and does not inlude prediates of the sort (12) we an prove somewhat weaker

results (below) whih however suÆe to rule out reursive axiomatizability of

those logis.

4.2 First order logi of normal proof prediates.

De�nition 7. A proof prediate Prf is alled normal if for every n 2 ! the set

Th(n) = fx j Prf (n; x)g is �nite and the funtion

\n 7! the G�odel number of Th(n)"

is reursive provably total.

A proof prediate Prf

T

for T is normal multi-onlusion if any �nite set M

of theorems of T has a ommon proof, namely, there exists n suh that for every

' 2M we have Prf

T

(n; d'e).

14



Remark 5. If a proof prediate Prf (x; y) is normal, then PA ` "k proves a

�nite set of theorems" for every k 2 !, that is, there exists n 2 ! suh that

PA ` 8y(Prf (k; y)! y < n):

We show that for every lass N of normal multi-onlusion proof prediates

the orresponding logi QLP



N

(U) is �

1

-hard.

Let L

�n

denote the prediate logi of �nite models, that is, the set of pred-

iate formulas that are true in all �nite models. It is well-known that L

�n

is

�

1

-omplete. We redue L

�n

to QLP



N

(U). First we have to prove a kind of

arithmetial ompleteness result for L

�n

, namely, that L

�n

is omplete with

respet to the lass of arithmetial interpretations of the prediate language by

formulas that de�ne provably �nite or o�nite relations.

De�nition 8. Let '(x

1

; : : : ; x

n

) be an arbitrary arithmetial formula with all

free variables shown. We de�ne the following formulas:

Fin

'

(y)

*

)

8x

1

: : : x

n

('(x

1

; : : : ; x

n

)!

V

n

i=1

x

i

� y)

St

'

(y)

*

)

Fin

'

(y) _ Fin

:'

(y):

Formula ' is alled provably �nite (provably stable) if ' is a �

1

-formula and

PA ` Fin

'

(k) (PA ` St

'

(k) resp.) for some k 2 !.

Let Fin and Stab denote the lasses of all interpretations of the pure prediate

language by provably �nite and provably stable formulas respetively.

Theorem 3. Let U be any arithmetial theory, PA � U � TA. Then for every

prediate formula F

F 2 L

�n

() 8� 2 Fin U ` �F () 8� 2 Stab U ` �F:

Proof. To prove this theorem it suÆes to show that

1. if F 62 L

�n

, then 9� 2 Fin TA 6` �F ;

2. if F 2 L

�n

, then 8� 2 Stab PA ` �F .

The �rst proposition is obvious. Let us prove the seond one.

Step 1. For every formula ' the following formulas are provable in PA:

1. St

'

(y) ^ y < z ! St

'

(z)

2. St

'

(y) ^ St

 

(y)! St

'^ 

(y) ^ St

'_ 

(y) ^ St

:'

(y)

3. St

'

(y)! St

9z'

(y)

4. St

'

(y)! (9z'$ 9z � (y + 1) ')
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Items 1, 2 and 3 are trivial, 4 follows immediately from 3.

Step 2. For every prediate formula F and interpretation � 2 Stab

1. there exists k 2 ! suh that PA ` St

�F

(k);

2. �F 2 �

1

.

We prove both fats by joint indution on formula F . Indution base when F

is an atomi formula holds by the de�nition of a stable interpretation.

Indution step. Suppose that F = F

1

^ F

2

. Item 2 holds sine the lass

of �

1

-formulas is losed under boolean onnetives. Let us prove 1. By the

indution hypothesis, there exist k

1

; k

2

, suh that PA ` St

�F

i

(k

i

) for i = 1; 2.

Put k = max(k

1

; k

2

). From lemma 1, (1) and (2), we onsequently obtain

PA ` St

�F

1

(k) ^ St

�F

2

(k) and PA ` St

�(F

1

^F

2

)

(k). The remaining boolean

onnetives are treated in a similar way.

Suppose that F = 9zG(z; ~x). From the indution hypothesis it follows that

�G 2 �

1

and there exists k 2 ! suh that PA ` St

�G

(k). Lemma 1 (3)

yields assertion 1. From lemma 1 (4) we obtain that PA ` 9z �G(z; ~x) $

9z � (k + 1) �G(z; ~x). Sine the lass of �

1

-formulas is losed under bounded

quanti�ers, we onlude that �F 2 �

1

.

Step 3. Suppose that F 2 L

�n

and � 2 Stab. From the de�nition it immedi-

ately follows that TA ` �F . By lemma 2, �F 2 �

1

. Therefore PA ` �F .

Theorem 4. Let N be any lass of normal multi-onlusion proof prediates.

Then both logis QLP



N

(PA) and QLP



N

(TA) are �

1

-hard and �

1

-hard.

Proof. Both logis QLP



N

(PA) and QLP



N

(TA) are �

1

-hard sine they are

onservative over the prediate alulus PC whih is known to be �

1

-omplete.

To establish �

1

-hardness we redue the logi of �nite models L

�n

(whih is �

1

-

omplete) to both systems. Consider the interpretation red of the prediate

language in the language L



de�ned in the following way. For every prediate

symbol P

i

put

red P

i

(~x)

*

)

[[q

i

℄℄P

i

(~x):

We prove that funtion red performs the redution of L

�n

to QLP



N

(PA)

and QLP



N

(TA), that is

F 2 L

�n

() red F 2 QLP



N

(PA) () red F 2 QLP



N

(TA): (13)

Step 1. Suppose that F 2 L

�n

and � = (Prf ; ") is an arbitrary arithmetial

interpretation of the language L



with Prf 2 N . We de�ne interpretation � of

the pure prediate language suh that for every prediate symbol P

i

�P

i

(~x)

*

)

(red P

i

(~x))

�

:
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Then �F = (red F )

�

for any prediate formula F . Sine the prediate Prf is

normal, the interpretation � is provably stable. Thus by theorem 3 we have

that PA ` �F , whene PA ` (red F )

�

.

Step 2. Suppose that F 62 L

�n

. Then there exists an interpretation of the pure

prediate language � 2 Fin suh that �F 62 TA. We onstrut an interpretation

� of the language L



suh that red F

�

62 TA.

Let us �x a proof prediate Prf

T

2 N . Let P

1

, . . .P

n

be the list of all

prediate symbols ourring in F . LetM

i

be a set onsisting of all true formulas

of the form �P

i

(

~

k). Sine �P

i

is a provably �nite �

1

-formula, there exists a

number n

i

suh that Prf

T

(n

i

; ') holds for every ' 2M

i

. It is also lear that

PA ` �P

i

(~x)$ Prf

T

(n

i

; d�P

i

(

_

~x)e): (14)

Consider the interpretation � = (Prf

T

; "), where " oinides with � on pred-

iate letters and "(q

i

) = n

i

. In view of (14), by indution on formula D we an

show that PA ` �D $ (red D)

�

. Sine �F 62 TA, we onlude (red F )

�

62 TA.

5 Disussion

Though �nding a omplete axiom system to the �rst order logi of proofs turned

out to be impossible, a more modest goal of �nding an exat expliit ompanion

of major �rst order modal logis, e.g. S4 looks attrative. There are several

possible motivations to this problem. In partiular, the expliit version of the

�rst order S4 is a step toward �nding the BHK semantis for the �rst order

intuitionisti logi, sine the G�odel orrespondene between intuitioinisti and

modal logis an be extended to the �rst order systems (f. [8, 19℄).

Another natural problem here might be to �nd an axiomatization of the frag-

ment of the logi of proofs with one individual variable only. The orresponding

fragment of the �rst order provability logi has been shown deidable in [7℄.
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