
Using Dynamic Information for the Iterative Recovery of Collaborations and
Roles

Tamar Richner and Stéphane Ducasse
Software Composition Group, Institut für Informatik (IAM)

Universität Bern, Neubrückstrasse 10, 3012 Berne, Switzerland
frichner,ducasseg@iam.unibe.ch

http://www.iam.unibe.ch/�frichner,ducasseg

Abstract

Modeling object-oriented applications using collabora-
tions and roles is well accepted. Collaboration-based or
role-based designs decompose an application into tasks
performed by a subset of the applications’ classes. Collab-
orations provide a larger unit of understanding and reuse
than classes, and are an important aid in the maintenance
and evolution of the software. The extraction of collabora-
tions is therefore an important issue in design recovery. In
this paper we propose an iterative approach which uses dy-
namic information to support the recovery and understand-
ing of collaborations. We present the problems of extracting
such information and describe a tool we have developed to
validate our approach.
Keywords: collaboration-based design, design recovery,
program understanding, object-oriented reverse engineer-
ing, dynamic analysis.

1. Introduction

In contrast to procedural applications, where a specific
functionality is often identified with a subsystem or mod-
ule, the functionality in object-oriented systems comes from
the cooperation of interacting objects and methods[22, 12].
In designing object-oriented applications, the importance of
modeling how objects cooperate to achieve a specific task
is well recognized [23, 1, 8, 15, 18, 3]. Collaboration-based
or role-based design decomposes an object-oriented appli-
cation into a set of collaborations between classes playing
certain roles. Each collaboration encapsulates an aspect of
the application and describes how participants interact to
achieve a specific task.

The recovery of collaborations from the code is an
important aid for understanding and maintaining object-
oriented applications [22]. However, detecting and deci-
phering interactions of objects in the source code is not
easy: polymorphism makes it difficult to determine which
method is actually executed at runtime, and inheritance
means that each object in a running system exhibits behav-

ior which is defined not only in its class, but also in each of
its superclasses. This difficulty is further aggravated in the
case of dynamically typed languages like Smalltalk where
no type definition is available at compile time and where
methods are never statically bound.

To get a better understanding of the dynamic inter-
actions between instances, developers often turn to tools
which display the run-time information as interaction di-
agrams. Designers of such tools are confronted with the
challenge of dealing with a huge amount of trace informa-
tion and presenting it in an understandable form to the de-
veloper. Several visualization techniques, such as informa-
tion murals[9], program animation[21] and execution pat-
tern views[14] have been proposed to reduce the amount of
trace information presented and to facilitate its navigation.

In this paper we propose an approach to the recovery
of interactions and collaborations which uses dynamic in-
formation, but does not rely heavily on visualization tech-
niques. Whereas most visualization tools display an entire
trace and give the user a feel for the overall behavior of an
application, our approach focuses on understanding much
smaller chunks of interactions and the roles that classes play
in these.

We have developed a tool prototype, theCollaboration
Browser, to demonstrate the validity of our approach. We
illustrate through examples how the Collaboration Browser
is used to query run-time information iteratively to answer
concrete questions about collaborations and interactionsin
Smalltalk programs.

The paper is structured as follows: in the next section
we first illustrate the concepts of collaboration-based de-
sign then discuss the obstacles to recovering collaborations
from code. In Section 3 we introduce our approach and
present the tool we have developed to support the recovery
process. Section 4 walks the reader through an example
of program understanding using the tool. Implementation
issues are discussed next in Section 5. Section 6 reviews
related work and Section 7 concludes with a discussion and
evaluation of the approach and directions for future work.



2. Recovering Collaborations

In this section we illustrate the concepts of collaboration-
based design, discuss the challenges of recovering such de-
sign artifacts and give an overview our approach.

2.1. Collaboration-based Design

Below we present a small example to illustrate the con-
cepts of collaboration- based design. Consider a class
model which describes a bureaucracy [17].

Director
arrangeBigMeeting
arrangeSmallMeeting
writeReport

Manager
addSubordinates

writeReport
arrangeSmallMeeting
removeSubordinate

completedReport

Employee

Clerk

arrangeBigMeeting
arrangeSmallMeeting
writeReport

writeReport

Figure 1. Class Diagram for Bureaucracy.

This is a hierarchy of Director, Managers and Clerks
which operates as described by the Bureaucracy pattern
[17]. In effect, four of the GOF design patterns govern the
interaction of the objects. A Manager or Director who re-
ceives a request, delegates work to its subordinates, as in
the Composite pattern: the Clerk plays the role of Compo-
nent and the Manager the role of Composite. A Manager
or Clerk receiving a request it can not handle forwards the
request up the hierarchy, as in Chain of Responsibility: the
Manager and Clerks play the Predecessor role and the Di-
rector the Successor role. Clerks or Managers who want to
interact with each other first address their superior to coor-
dinate them, as in the Mediator pattern: at the same hier-
archy level the objects are Colleagues, whereas the supe-
rior acts as Mediator. Finally, when a subordinate changes
state, such as completing some work, or being absent, it re-
ports this change of state to its superior: thus the superior
acts as Observer of its subordinate Subjects, as in the Ob-
server pattern. Figure 2 summarizes this information in a
class/collaboration matrix [20]. It illustrates that an instance
of a class participates in several collaborations, playinga
distinct role in each.

Here we have described the collaborations and roles in
terms of the design patterns they instantiate. Roles de-
scribes the responsibilities of objects in a collaboration, but

Responsibility
Chain of

Mediator

Composite

Observer

Clerk Manager Director

Subject

Predescessor Predescessor Successor

Observer

CompositeComponent

Colleague Mediator

Figure 2. Class-collaboration matrix for Bu-
reaucracy. Each row represents a collaboration and
each cell describes the role the class plays in the col-
laboration.

how a role is actually modeled or specified is often left open
[18]. Some design techniques model roles using interfaces
[15], or as part of a behavioral contract between participants
[8]. Collaborations are usually modeled using UML inter-
action diagrams. These show how participants interact to
achieve a task: they are usually succinct and show only one
instance of each kind of participant.

In contrast to the design idea of separating concerns as
distinct collaborations, at run-time things look much more
complex. Several design collaborations may be interleaved
and instances of the same class often play different roles
in one call sequence. This makes it difficult to disentan-
gle concerns and to reconstruct collaborations as they were
conceived at the design stage.

2.2. Problems with Recovering Collaborations

To recover collaborations and roles from existing code
we need to discover the important tasks in which instances
collaborate, and break up the behavior of a class into roles,
as shown schematically in Figure 2, where each role de-
scribes the behavior of instances of this class in a specific
context - in a collaboration. Below we discuss the chal-
lenges that must be tackled.

Static Information is not enough. As argued in the intro-
duction, static information does not provide us with the in-
formation necessary for identifying collaborations. To iden-
tify collaborations we need control flow information; this is
difficult to obtain purely from static analysis, due to poly-
morphism, inheritance and dynamic binding.

The notion of role is also hard to recover from static in-
formation. Even when languages explicitly support an in-
terface construct, such as present in JAVA, there is no se-
mantics in terms of collaboration attached to this construct.
That is, to recover collaborations and roles we need to un-
derstand the rules governing the run-time behavior of the
instances. The interface construct is, however, a good start-

2



ing point for discovering important collaborations.
The inheritance relationship is also not very reliable in

deriving information about roles because a subclass does
not necessarily play the same roles that its superclass plays.
This depends on how inheritance has been used, and in re-
verse engineering we often study at applications whose de-
sign may not follow accepted design guidelines.

Dynamic Information is too much. Recording informa-
tion about message exchanges between instances as the pro-
gram executes provides us with control flow information
required for deriving collaborations and with information
about the context in which methods of specific instances
are invoked. Program tracing, however, results in a great
volume of low-level information from which we must sift
the details relevant for our investigation [14, 9, 21]. Here,
the problems of focus, granularity and scalability must be
addressed.

To be able to focus, it is necessary to break the program
trace up into chunks representing collaborations. Also, we
are not interested in all collaborations, nor in all the details
of a collaboration, so choosing the right collaborations to
look at and the right level of detail is important.

2.3. Overview of Our approach

The approach we propose for recovering collaborations
and roles is:

Based on dynamic information. To obtain exact control
flow information our approach uses dynamic infor-
mation recorded from program execution. For each
method invocation event we record the sender class,
sender identity, receiver class, receiver identity, and
name of invoked method.

Uses pattern matching.We use pattern matching to find
similar execution sequences in the execution trace.
This addresses the problem of scalability since it does
not confront a developer with the whole trace of exe-
cution information, but rather withcollaboration pat-
terns.

Supports iterative recovery through querying. To ad-
dress the problem of focus and granularity we present
a tool which lets the developer query the dynamic
information in terms of classes and interactions of
interest. The querying allows a developer to refine the
investigation to focus on collaborations of interest.

3. Supporting Iterative Recovery

It has been observed that without guidance from a user
the process of design recovery gives poor results [13]. Our
own experience with reverse engineering tools corroborates

this observation. We do not believe, therefore, in the auto-
matic extraction of collaborations and roles, but rather inan
iterative process steered by the engineer. Typically, an en-
gineer approaching the code has a specific question in mind
- asking something like “How is this task achieved?” rather
than “how does everything work in this application?” - and
this question steers the recovery process.

The Collaboration Browser is a tool we have developed
which supports such an iterative recovery process by allow-
ing developers to query information related to collabora-
tions. In this section we first explain some of the underlying
terminology and concepts, then introduce the Collaboration
Browser.

3.1. Terminology and Concepts

As discussed in Section 2, how collaborations and roles
are represented at the design stage and how a collaboration-
based or role-based design is carried on to the implemen-
tation is left open most of the time. We reserve the term
collaboration and role to talk about the high-level design
concepts. Our starting point is, however, an existing execu-
tion trace from which we want to recover collaborations and
roles approaching those used in design. In this context we
talk aboutcollaboration instancesand collaboration pat-
terns.

querying

interface

execution trace
(all method invocations)

collaboration instance

pattern matching

collaboration pattern

collaborationrole high-level concepts

intermediate abstractions

low-level artifacts

interface in pattern

Figure 3. Relationships of terms.

Figure 3 above illustrates schematically the relationship
of the terms we use.

Collaboration instance. A collaboration instance is the se-
quence of message sends between objects, ordered as
a call tree, which results from a method invocation (all
message sends up to the return).

There are as many collaboration instances as method
invocations in the trace. But in an execution trace there
are many collaboration instances which are variations on
the same prototype (design) collaboration. We use pattern
matching to group collaboration instances intocollabora-
tion patterns.

3



Collaboration pattern. A collaboration pattern is an equiv-
alence class of several collaboration instances.

The pattern matching criteria is flexible and can be mod-
ulated along three independent axes:

Method invocation information. Each of the items: ob-
ject identity (for sender and receiver), class identity
(for sender and receiver), and name of invoked method
can be either taken into account or ignored in the
matching scheme. The matching scheme also allows
the developer to make use of other static information
related to these items.

Depth of invocation. The depth of the method invocation
is specified so that method invocations at a greater
depth are ignored in the matching criteria.

Structure of the collaboration instance. A collaboration
instance has a tree structure of method invocations.
However, similar collaboration instances may differ in
structure and still have the same ’meaning’. Therefore,
in the matching scheme it is also possible to treat col-
laboration instances as sets of method invocations, thus
ignoring all ordering relations between method invoca-
tions and treating collaboration instances as identical if
they have the same method invocations in their set.

In Section 5 we discuss how this pattern matching is im-
plemented.

3.2. The Collaboration Browser

The Collaboration Browser presents the dynamic infor-
mation to the user through four basic elements of informa-
tion: sender classes, receiver classes, invoked methods and
collaboration patterns. Each of these four elements is dis-
played on the screen in a separate panel as seen in Figure 4.
Panelsa, b andc list the sender classes, the receiver classes
and the invoked methods respectively. Panelsd ande both
list collaboration patterns. The distinction between these
two collaboration pattern lists is explained further below, as
is the function of the two button panelsf andg.

In this section we explain the functionality of the Collab-
oration Browser, giving some small examples. The screen
shots which provide the examples are from an analysis of
the HotDraw application, which will be presented in greater
detail in Section 4.

The Collaboration Browser supports three basic kinds of
operations: querying the current base of dynamic informa-
tion, editing the base of dynamic information through fil-
tering out information or loading a collaboration instance,
and displaying interaction diagrams. In the presentation be-
low we have numbered the queries (Q1,Q2,Q3,Q4 and Q5),
editing (E1, E2, E3, E4) and displaying functions (D1, D2,
D3) in order to refer to them later on in Section 4.

Query about the interface of a class.These queries are
of the form

Q1: what methods of class A are invoked by class B?
Selecting sender and receiver classes, the user re-
quests a list of the methods displayed in panelc.

Example: in Figure 4 a sender class,Drawing-
Controller and a receiver class,Tool, have been
chosen. Panelc lists the methods of classTool
which are invoked by an instance ofDrawingCon-
troller.

Q2: which classes are senders and receivers of the fol-
lowing methods?

Conversely, selecting a set of methods in panel
c, the developer can request the list of senders
and receivers to be updated to the senders and
receivers of the selected methods.

Query about a collaboration. By selecting sender and re-
ceiver classes, and methods of interest (panelsa, b and
c respectively) the following queries can be answered:

Q3: what collaboration patterns result from this
method invocation?Paneld lists the collabora-
tion patterns resulting from an invocation of one
of the selected methods on an instance of one the
selected receivers by an instance of one of the se-
lected senders.

Q4: what are the shortest collaboration patterns in
which all the following methods are invoked?
Panele lists the shortest collaboration patterns in
which all the methods selected come into play,
for the selected receiver and sender.

Example: in Figure 4 three methods have been
selected in panelc: controller:, cursor and se-
lected. Panele lists the collaboration patterns
in which all these three methods of classTool
come into play. The list shows five collaboration
patterns, each with the nameDrawingController-
changedTool, but each with a different identity
number (hidden in the screen shot). These are
five different patterns which result from the invo-
cation ofchangedTool on an instance ofDrawing-
Controller.

Query about a role. These queries are of the form:

Q5: given a collaboration pattern and a set of meth-
ods what are all the senders and receivers that
participate in this collaboration pattern? By
selecting a set of methods (panelc) and a col-
laboration pattern in which this set of methods
comes into play (panele) the developer can re-
quest a list of receivers which play this role in the

4



a b

c d e

f g

Figure 4. Collaboration Browser window. Panelsa b andc list the sender classes, the receiver classes and the
invoked methods respectively. Panelsd ande both list collaboration patterns.

same collaboration pattern, and the correspond-
ing senders.

Editing the dynamic information. To focus the investi-
gation on the events of interest the developer can filter out
method invocation events which are not relevant by speci-
fying sender classes, receiver classes and methods to be fil-
tered out. This reduces the amount of dynamic information
to be analyzed and presented. Another option for focusing
on events of interest is to load an instance of one collabora-
tion pattern as the current base of information. This allows
the developer to focus on analyzing one collaboration pat-
tern.

The browser queries operate on a current execution trace.
When the tool starts up, the current trace corresponds to
original execution trace obtained through instrumenting and
executing the application. In the course of the iterative pro-
cess this trace can be edited by the user (using the buttons
in panelf) to:
E1: remove method invocation events from the trace for

selected senders, receivers and methods,

E2: remove method invocation events which are self-sends,

E3: set the current trace to an instance of a selected collab-
oration pattern, or

E4: reset the current trace to the original execution trace.

Displaying an instance of a collaboration pattern. The
interaction diagram window can be set to display (using the
buttons in panelg) either an instance of a selected collabora-
tion pattern, or the whole of the current trace. The call tree
of a collaboration pattern can be displayed (using buttons
on the interaction diagram window, see Figure 5) as:

D1: All: the whole call tree

D2: Abbreviated: an abbreviated call tree (calls up to depth
of 2)

D3: Context: the context of the call tree (an abbreviated
view from one level up the call tree).

5



Example: In Figure 4 a collaboration pattern
called DrawingcontrollerchangedTool#3426 has been se-
lected. Figure 5 below shows an instance of this collabora-
tion pattern displayed as an interaction diagram. It shows
how four objects, instances ofDrawingController, Draw-
ing,Tool andToolState, interact when the methodchanged-
Tool is invoked on aDrawingController.

Figure 5. Interaction Diagram window. The
interaction diagram corresponds to the collaboration
pattern selected in Figure 4.

4. Investigating Collaborations in HotDraw

In this section we demonstrate how our approach sup-
ports the understanding and recovery of collaborations by
applying it on the HotDraw framework [2][4].

4.1. HotDraw

HotDraw is a framework for semantic graphic editors
which allows for the creation of graphical editors which
associate the picture with a data structure. The Hot-
Draw framework consists of 114 Smalltalk classes and
comes with several sample editors.From the documenta-
tion we learn that HotDraw is based on the Model-View-
Controller triad: these roles are played by the classesDraw-
ing, DrawingEditor andDrawingController respectively. Fur-
thermore, it has a few other basic elements:toolsare used to
manipulate the drawing which consists offiguresaccessed
throughhandles. Constraintsare used to ensure that certain
invariants are met, for example, that two figures connected
with a line remain connected if one of the figures is moved.

Formulating questions. From browsing the code we see
that the documentation available describes an earlier version

of HotDraw. We are interested in particular in the imple-
mentation of tools. Tools are used to manipulate the draw-
ing: create new figures or manipulate the existing figures.
On the drawing editor tools are represented by icons on the
top panel (see Figure 6). In a previous version tool responsi-
bilities were handled by the classesReader, Command and
Tool, whereas in the current version different tools are im-
plemented through states.

In order to understand how tools are implemented in this
version of HotDraw we formulate several questions:

� how are user events handled (e.g. selecting a tool and
pressing a mouse button) ?

� with which classes does the class tool collaborate?

Collecting Dynamic Information. We instrument all
methods in the HotDraw classes, then run a short scenario
on the sample HotDraw editor in which we make use of dif-
ferent tools from the editor’s upper panel : create a rectangle
and color it, create an ellipse and color it, move the rectan-
gle from back of the ellipse to the front, move the ellipse
from back to front, group the two figures, move the two fig-
ures, ungroup the figures, move the ellipse. This generates
53,735 method invocation events.

Figure 6. HotDraw sample editor

4.2. Using the Collaboration Browser for Under-
standing Tools in HotDraw.

In this section we refer to queries and functions of the
Collaboration Browser as they are numbered (Q for queries,
E for edit, D for display ) in Section 3.2.

Querying about interfaces. We start by querying about
the interface that classTool presents to other classes in Hot-

6



Draw. The results of these Q1 queries are given in the Table
1 below.

Senders Tool method
Drawing passInputDown

DrawingController

controller:
cursor
handleEvent:
initialize
selected
startState

DrawingEditor
initialize
passInputDown:
startState:

FigureTransitionTable figureAtEvent:

EndToolState

controller
cursorPointFor:
figureAtEvent:
drawing
sensor
valueAt:

ToolState

cursor:
cursorPointFor:
drawing
valueAt:
valueAt:put:

Table 1. Tool interface matrix. It shows the meth-
ods of classTool which are invoked by other HotDraw
classes.

From Table 1 we notice that there is overlap in the ta-
ble cells. That is, some methods ofTool are invoked by in-
stances of two different classes. For example, bothEndTool-
State andToolState invokecursorPointFor:, drawing andval-
ueAt:, bothFigureTransitionTable andEndToolState invoke
figureAtEvent: and bothDrawingController andDrawingEdi-
tor invokeinitialize.

Understanding the context of method invocations.Using
the Collaboration Browser we look at the collaboration pat-
terns which result from the invocation of these methods us-
ing Q3 queries. In the case offigureAtEvent: we see that the
collaboration patterns for this method occur in two differ-
ent contexts, as illustrated in Figure 7 and Figure 8 showing
two D3 displays. In the first context the methodnextState-
ForTool:event: is invoked on an instance ofFigureTransi-
tionTable, which in turn invokes thefigureAtEvent: method
on an instance ofTool. In the second context the method
evaluateIn:event: is invoked on an instance ofEndToolState,
which in turn invokes three methods on an instance ofTool:
controller, cursorPointFor: andfigureAtEvent:, and then the

methodprocessMenuAt:local:for: on an instance ofDrawing.

Figure 7. First context. The context in which
a FigureTarnsitionTable invokesfigureAtEvent: on a
Tool

We repeat a new sequence of Q3 queries and D3 displays
to compare the different contexts for theinitialize method.
WhenDrawingController is created it initializes aTool, sets
its start state and sets the controller for that tool.DrawingEd-
itor, on the other hand, invokes theinitialize method onTool
when it builds the button description for the tool and as-
sociates it to an icon. This is a collaboration pattern re-
sulting from the invocation ofbuildButtonDescriptionFor-
Tool:andIcon: on DrawingEditor.

SinceToolState is a subclass ofEndToolState, the over-
lap in the interfaceTool presents to these is expected. Us-
ing similar queries and displays (Q3 and D3) we discover
that the collaboration patterns in which these classes in-
voke methods onTool result from an invocation ofevalu-
ateIn:Event: on an instance ofToolState or EndToolState -
but this method invocation gives rise to several collabora-
tion patterns, depending on the kind of tool in question.

Looking at the collaborations of the classTool. From
browsing the code and using the Collaboration Browser we
understand that tools are implemented using state diagrams.
We first look more systematically at the collaboration pat-
terns in whichTool methods are invoked, so as to choose the
collaborations which are likely to be the key to understand-
ing how tools handle user events.

As discussed in Section 3, each method invocation
recorded in the trace is a collaboration instance. Thus many
collaboration patterns are not of great interest because they
correspond to a trivial interaction of just one method invo-
cation. In general, then, to arrive at more interesting collab-
oration patterns, we identify patterns in which a subset of
the methods of a class are involved.

7



Figure 8. Second context. The context in which
anEndToolState invokesfigureAtEvent: on aTool

Using the Collaboration Browser we group, for example,
methods in the interfaceTool presents toDrawingController
and look at the shortest collaboration patterns in which these
groups of methods occur. We do this by interactively se-
lecting several methods and posing queries of the form Q4:
“what are the shortest collaboration patterns in which an
instance ofDrawingController invokes the following meth-
ods on an instance of classTool?” These queries and the
corresponding response are shown schematically in Table 2
below. The collaboration pattern is named after the method
of a class which is the root of call tree.

Remark: How this is done using the Collaboration
Browser is shown in Figure 4. This screen window shows
the sender and receiver classes and the methods that have
been selected. Panele lists the shortest collaborations in
which these methods are involved. Notice that there are
several collaboration patterns with the same name (but dif-
ferent sequence number, hidden on screenshot): these are
separate collaboration patterns which result from the invo-
cation of the methodchangedTool on an instance ofDraw-
ingController. The difference between these collaboration
patterns are due to variations in the participants of the col-
laborations; these differences may or may not be important
for the understanding of an application - this depends on the
questions which must be answered. The accommodations
of variations on a pattern is adjusted to some degree using
different pattern matching modes (presented in Section 3.1).

Investigating a particular collaboration. We choose to
concentrate on the collaboration patternsTool handleEvent:,
to learn about how tools handle user events. Though there

Tool Interface Collaboration Pattern Name
controller:
cursor
handleEvent:

initialize
selected
startState

Tool
handleEvent:

controller:
cursor

handleEvent:
initialize
selected

startState

DrawingController
changedTool

controller:
cursor
handleEvent:
initialize

selected
startState

DrawingController
initialize

Table 2. Collaborations involving the
DrawingController-Tool interface. For each
group of shaded method names, it gives the col-
laboration pattern in which all these methods are
invoked.

are many collaboration patterns resulting from the invoca-
tion of this method on an instance ofTool, their abbreviated
form is similar (D3 display). Looking more closely at an
instance of one of these patterns (D1 display) we see that
DrawingController invokeshandleEvent on Tool. Tool then
invokesnextStateForEvent:tool: on an instance ofToolState
and this object then consultsSimpleTransitionTable to obtain
the next statenextStateForTool:event:. It then asks the next
state to take over by invokingevaluateIn:event:. It is this
state object which handles the rest by, in this case, creat-
ing a rectangle and adding it to the drawing. By comparing
a few of these collaboration patterns (D1 displays) we see
that the many variations are due to variations in the call trees
resulting from the invocation ofevaluateIn:event: on aTool-
State object. The variations in the call trees which result
from this invocation are due to the different kinds of user
event (tool chosen and mouse button activity).

Characterizing a collaboration. By loading an instance
of this pattern as the current base of dynamic information
(E3 function) and querying about interfaces (Q1 queries)
we can arrive at a characterization of thehandleEvent col-
laboration which describes the predictable participants,as
seen in Table 3. We have left a wild card cell (rightmost
cell) in this table to represent the participants of theevalu-

8



Tool ToolState EndToolState TransitionTable *
handleEvent:
cursorPointFor:
drawing
valueAt:
valueAtPut:

evaluateIn:event:
isEndState
nextStateForEvent:tool:

evaluateIn:event:
isEndState

nextStateForTool:event:
depend on
event
evaluateIn:
event:

Table 3. Class-Collaboration description for collaborati on Tool handleEvent: Gives the role of each class in
the collaboration. The wildcard cell represents variations on the collaboration.

ateIn:event: collaboration. In Table 3 we represent the role
of the classes in the collaboration simply by the interface
they present in the collaboration.

Recovering other collaborations. We continue in the
vein of the investigation described above to discover other
collaboration patterns in which instances ofTool partici-
pate. In this way, we extracted eight main collaborations
in which Tool participates from this HotDraw scenario. Us-
ing the Collaboration Browser we identified the participants
in these collaborations and the methods which are invoked
for those classes. Each collaboration recovered represents
an important task in whichTool interacts with other classes,
and is represented as a row in the form of Table 3. As in
Table 3 some rows have an empty wild card cell represent-
ing a variation on the collaboration which is not critical for
understanding the its basic structure. These variations can
be specified in greater detail, i.e. which are the candidate
participants. In this way we arrive at a class-collaboration
matrix as discussed in Section 2.1: and shown in Figure 2.

4.3. Discussion and Evaluation

We have shown how the Collaboration Browser is used
to investigate interactions in HotDraw, and to recover some
important collaborations.

The iterative process. Extrapolating from this example
we sketch the process in which we use the Collaboration
Browser. Below we describe the steps we take in recov-
ering collaborations. The iteration in the process comes at
step 5, where we then repeat steps 1-5 with more focus. We
also iterate by formulating and launching new queries as we
learn more about the application.

1. Querying about interfaces:we start by querying about
interfaces (Q1) to understand which classes communi-
cate.

2. Looking for a role:we break up the interface of a class
into groups of methods which could represent roles.
This was done in the HotDraw example first as in Ta-
ble 1: breaking up the interface by sender class using
Q1 queries.

3. Looking for a collaboration for a role:we then con-
tinue to form groups of methods to discover which col-
laboration patterns they occur in (Q4).

4. Understanding a collaboration:the context display
(D3) and the abbreviated display (D2) aid us in
comparing collaboration patterns which are similar,
whereas the full display (D1) directs us further in the
inquiry by giving more details on a collaboration pat-
tern.

5. Deeper understanding of a collaboration:once we
have found a collaboration pattern that we want to un-
derstand in more depth, we load an instance of this pat-
tern as the current base of dynamic information (E3).
The process can then begin again at step 1., this time
working with a smaller base of dynamic information.

Our HotDraw example did not demonstrate the filtering
functions (E1, E2) nor the query about roles (Q5). In our
investigation we found filtering out self-sends useful as it
eliminates some ’noise’ from the interaction of instances.
The filtering of senders, receivers and methods is useful
when we already know what we can ignore. More useful
is the E3 function of loading an instance of a collaboration
pattern as the current trace.

Experience with the Collaboration Browser. Identifying
the eight major collaborations in whichTool takes part re-
quired about thirty interactive queries. We have also used
the Collaboration Browser on our own MOOSE tool[7].
The number of queries required to narrow down the infor-
mation of interest depends very much on the familiarity we
already have with the application. The kind of scenario that
we exercise on the system is also important for the kind of
information base we have to analyze.

We also experimented with different pattern matching
modes. The mode which treats a collaboration instance as
a sets of events rather than as a tree of events results as ex-
pected in more matches, without any ’false’ matches. For
the method invocation information, using the method name
and name of class defining the method as labels is in most

9



cases sufficient for identifying matches. Over-restricted
matching results in too many collaboration patterns.

Characterizing roles. In our characterization of collabora-
tions we represent the role of a class in a collaboration be
set of all the methods invoked on instances of that class in
the collaboration. That is, in a single collaboration, we do
not consider that different instances of the same class play
different roles, or that a single instance could switch roles.
A finer analysis of a particular collaboration pattern could
yield a more refined partitioning of different roles.

5. Implementation

The Collaboration Browser is implemented in Smalltalk
and currently handles single-thread Smalltalk applications.
We instrument the application to be investigated using
Method Wrappers[5]. This allows selective instrumenta-
tion at the method level.The visualization of collaboration
instances as sequence diagrams is based on the Interaction
Diagram tool[5].

Pattern matching is implemented using hashing. As dis-
cussed in Section 3.1, we treat the structure of a collabo-
ration instance in two ways: as a tree of method invoca-
tions, or as a set of method invocations. In the call tree of
events of a collaboration instance, each node corresponds
to a method invocation and contains five items of informa-
tion: sender class, sender instance, receiver class, receiver
instance and invoked method selector. This information is
used to compute a hash value for each node in the call tree
such that the hash value of a parent node is a function of the
hash values of its children. Each of the five items of infor-
mation can be taken into account, or ignored, in computing
the hash value. In the case that the collaboration instances
are treated as sets of events each is assigned a hash value as
a function of the members of the set.

6. Related Work

Most of the work on understanding interactions in
object-oriented applications has focused on visualization,
where the challenge is to develop techniques for visualiz-
ing the large amount of information generated by program
tracing.

There are several tools which display interaction dia-
grams from program executions [5, 10]. Program Explorer
[11] offers class and object based displays of dynamic in-
formation. Sefika et al.[19] can display the dynamic inter-
actions of architectural units such as subsystems, but their
approach requires an instrumentation specific to the appli-
cation. Walker et al.[21] use program animation techniques
to display the number of objects involved in the execu-
tion, and the interaction between them through user-defined
high-level models.

The work of DePauw et al. [14] experiments with a range
of displays which allow an engineer to visually recognize
patterns in the interactions of classes and objects. ISViS [9]
is a visualization tool which displays interaction diagrams
using a mural technique and also offers pattern matching
capabilities.

Our work is most similar to the work described in [9] and
[14], both of which identify recurring patterns in a trace as
an aid to recognizing important design concepts. In con-
trast to these, however, our work is not oriented primarily
towards program visualization. We use only a simple se-
quence diagram visualization to display the collaboration
pattern chosen. Our main focus is on querying the dynamic
information to help in the recovery of collaborations and the
understanding of the roles different classes play in these.
We see our work as complementary to the visualizations
proposed in [9] and [14]: whereas these tools display an en-
tire trace and give the user a feel for the overall behavior
of an application, our tool focuses on the roles of classes in
much smaller chunks of interaction.

We know of only one other approach which explicitly
tries to reverse engineer collaborations[6]. The approach
uses static information and is an incremental one, in which
a Classification Browseris used first to classify a set of
classes of the application as participants of interest and
then to edit their interface, so as to arrive at a description
of participant-roles in a collaboration. The classification
browser approach relies heavily on the input of a user who
must select the initial participants and their roles in the col-
laboration and in determining appropriate acquaintances to
include in the collaboration.

Finally, this work is related to reverse engineering and
design recovery techniques in general. Our work on recov-
ering collaborations in intended as a part of an environment
for iterative understanding of object-oriented applications.
For a more extensive survey of related reverse engineering
approaches, the reader is referred to [16].

7. Discussion and Conclusions

The approach we have presented in this paper begins
with an execution trace and condenses this information by
representing program behavior in terms of collaboration
patterns. It presents this information to developers in terms
of sender classes, receiver classes, invoked methods and
collaboration patterns and allows developers to query each
of these items in terms of the others. In this way it lets a
developer focus on the aspect of the application of interest
without wading through a lot of trace information.

We have shown through an example how the Collabora-
tion Browser is be used to discover important collaborations
in an application and to understand the roles that classes
play in these collaborations. Our initial experience with the
Collaboration Browser on two case studies showed that the

10



approach is promising, but it also demonstrated the limits
of automatic recovery of design artifacts. To be successful
the use of the tool must be embedded in an iterative recov-
ery process steered by a particular question or hypothesis.
We plan to conduct a more extensive case study in order
to make a more thorough evaluation of the approach and to
refine the iterative process described in the paper.

An important issue raised by this work is the character-
ization of collaborations. The notation currently used to
model object-oriented collaborations are UML interaction
diagrams. Since these are at the design level it is hard to
tie them to collaborations occurring in the code. It would
be interesting to experiment with other ways of modeling
collaborations which can express similarity of collaboration
instances found in a trace.

Acknowledgments.Thanks to Matthias Rieger for his help
and for his comments on the manuscript. We also thank Os-
car Nierstrasz and Franz Achermann for their helpful com-
ments.

References

[1] K. Beck and W. Cunningham. A laboratory for teaching
object-oriented thinking. InProceedings OOPSLA ’89, vol-
ume 24 ofACM SIGPLAN Notices, pages 1–6, 1989.

[2] K. Beck and R. Johnson. Patterns generate architectures.
In Proceedings ECOOP’94, LNCS 821, pages 139–149.
Springer-Verlag, July 1994.

[3] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Mod-
eling Language User Guide. Addison-Wesley, 1999.

[4] J. Brant. Hotdraw. Master’s thesis, University of Illinois at
Urbana-Chanpaign, 1995.

[5] J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers to
the Rescue. InProceedings ECOOP’98, LNCS 1445, pages
396–417. Springer-Verlag, 1998.

[6] K. DeHondt.A Novel Approach to Architectural Recovery in
Evolving Object-Oriented Systems. PhD thesis, Vrije Uni-
versiteit Brussel, 1998.

[7] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an exten-
sible language-independent environment for reengineering
object-oriented systems. InProceedings of the Second Inter-
national Symposium on Constructing Software Engineering
Tools (CoSET 2000), June 2000.

[8] R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts:
Specifying behavioural compositions in object-oriented sys-
tems. In Proceedings OOPSLA/ECOOP’90, volume 25,
pages 169–180, Oct. 1990.

[9] D. Jerding and S. Rugaber. Using Visualization for Archi-
tectural Localization and Extraction. InProceedings WCRE,
pages 56 – 65. IEEE, 1997.

[10] C. Laffra and A. Malhotra. Hotwire – A visual debugger
for C++. In Proceedings of USENIX C++ Technical Con-
ference, pages 109–122, 1994.

[11] D. B. Lange and Y. Nakamura. Interactive visualizationof
design patterns can help in framework understanding. In
Proceedings of OOPSLA’95, pages 342–357. ACM Press,
1995.

[12] S. Lauesen. Real life object-oriented systems.IEEE Soft-
ware, pages 76–83, March 1998.

[13] G. C. Murphy and D. Notkin. Reengineering with reflexion
models: A case study.IEEE Computer, 8:29–36, 1997.

[14] W. D. Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Exe-
cution patterns in object-oriented visualization. InProceed-
ings Conference on Object-Oriented Technologies and Sys-
tems (COOTS ’98), pages 219–234. USENIX, 1998.

[15] T. Reenskaug.Working with Objects: The OORAM Software
Engineering Method. Manning, 1996.

[16] T. Richner and S. Ducasse. Recovering high-level views
of object-oriented applications from static and dynamic in-
formation. In H. Yang and L. White, editors,Proceed-
ings ICSM’99 (International Conference on Software Main-
tenance), pages 13–22. IEEE, Sept. 1999.

[17] D. Riehle. Bureaucracy. In R. Martin, D. Riehle, and
F. Buschmann, editors,Pattern Languages of Program De-
sign 3, pages 163–185. Addison-Wesley, 1998.

[18] D. Riehle and T. Gross. Role model based framework design
and integration. InProceedings OOPSLA ’98 ACM SIG-
PLAN Notices, pages 117–133, Oct. 1998.

[19] M. Sefika, A. Sane, and R. H. Campbell. Monitoring com-
plicance of a software system with its high-level design
models. InProceedings ICSE-18, pages 387–396, Mar.
1996.

[20] M. VanHilst and D. Notkin. Using Role Components to
Implement Collaboration-Based Designs. InProceedings
OOPSLA’96, pages 359–369. ACM Press, 1996.

[21] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright,
D. Swanson, and J. Isaak. Visualizing dynamic software sys-
tem information through high-level models. InProc. OOP-
SLA’98, pages 271–283, 1998.

[22] N. Wilde, P. Matthews, and R. Hutt. Maintaining object-
oriented software.IEEE Software (Special Issue on ”Mak-
ing O-O Work”), 10(1):75–80, Jan. 1993.

[23] R. Wirfs-Brock and B. Wilkerson. Object-oriented design:
A responsibility-driven approach. InProceedings OOPSLA
’89, pages 71–76, Oct. 1989. ACM SIGPLAN Notices, vol-
ume 24, number 10.

11


