Using Dynamic Information for the Iterative Recovery of Collaborations and
Roles

Tamar Richner and Stéphane Ducasse
Software Composition Group, Institut fur Informatik (1AM
Universitat Bern, Neubriickstrasse 10, 3012 Berne, ®nénd
{richner,ducasge@iam.unibe.ch
http://www.iam.unibe.ch¢{richner,ducasse

Abstract ior which is defined not only in its class, but also in each of
its superclasses. This difficulty is further aggravatechim t
case of dynamically typed languages like Smalltalk where
no type definition is available at compile time and where
methods are never statically bound.

Modeling object-oriented applications using collabora-
tions and roles is well accepted. Collaboration-based or
role-based designs decompose an application into tasks
performed by a subset of the applications’ classes. Collab- i L
orations provide a larger unit of understanding and reuse 10 g€t a better understanding of the dynamic inter-
than classes, and are an important aid in the maintenance @ctions between instances, developers often turn to tools
and evolution of the software. The extraction of collabora- Which display the run-time information as interaction di-
tions is therefore an important issue in design recovery. In @drams. Designers of such tools are confronted with the
this paper we propose an iterative approach which uses dy-challenge of dealing with a huge amount of trace informa-
namic information to support the recovery and understand- fion and presenting it in an understandable form to the de-
ing of collaborations. We present the problems of extragtin VelOPer. Several visualization techniques, such as inferm

such information and describe a tool we have developed tolion Murals[9], program animation[21] and execution pat-
validate our approach. tern views[14] have been proposed to reduce the amount of

Keywords: collaboration-based design, design recovery, trace information presented and to facilitate its naviyati

program understanding, object-oriented reverse engineer N this paper we propose an approach to the recovery
ing, dynamic analysis. of interactions and collaborations which uses dynamic in-
formation, but does not rely heavily on visualization tech-

nigues. Whereas most visualization tools display an entire
trace and give the user a feel for the overall behavior of an

In contrast to procedural applications, where a specific application, our aPproaCh focuses on understanding much
functionality is often identified with a subsystem or mod- smaller chunks of interactions and the roles that classss pl

ule, the functionality in object-oriented systems comestr in these.
the cooperation of interacting objects and methods[22, 12] We have developed a tool prototype, t@ellaboration
In designing object-oriented applications, the imporeeoic ~ Browser to demonstrate the validity of our approach. We
modeling how objects cooperate to achieve a specific taskillustrate through examples how the Collaboration Browser
is well recognized [23, 1, 8, 15, 18, 3]. Collaboration-tzhse is used to query run-time information iteratively to answer
or role-based design decomposes an object-oriented appliconcrete questions about collaborations and interactions
cation into a set of collaborations between classes playingSmalltalk programs.
certain roles. Each collaboration encapsulates an aspect o0 The paper is structured as follows: in the next section
the application and describes how participants interact towe first illustrate the concepts of collaboration-based de-
achieve a specific task. sign then discuss the obstacles to recovering collabostio
The recovery of collaborations from the code is an from code. In Section 3 we introduce our approach and
important aid for understanding and maintaining object- present the tool we have developed to support the recovery
oriented applications [22]. However, detecting and deci- process. Section 4 walks the reader through an example
phering interactions of objects in the source code is notof program understanding using the tool. Implementation
easy: polymorphism makes it difficult to determine which issues are discussed next in Section 5. Section 6 reviews
method is actually executed at runtime, and inheritancerelated work and Section 7 concludes with a discussion and
means that each object in a running system exhibits behav-evaluation of the approach and directions for future work.

1. Introduction

2. Recovering Collaborations Clerk Manager _ Director

. . .] ggsinoﬁfsibili Predescessqr Predescessqr Successor
In this section we illustrate the concepts of collaboration ponsibilty
based design, discuss the challenges of recovering such de- Subi
X R . . Observer ubject Observer
sign artifacts and give an overview our approach.
2.1. Collaboration-based Design Composite Component | Composite

Below we present a small example to illustrate the con-
cepts of collaboration- based design. Consider a class Mediator Colleague | Mediator
model which describes a bureaucracy [17].

Employee Figure 2. Class-collaboration matrix for Bu-
arrangeBigMeeting reaucracy. Each row represents a collaboration and
arrangeSmallMeeting each cell describes the role the class plays in the col-
witeRepor laboration.

Clerk Manager how arole is actually modeled or specified is often left open
writeReport addSubordinates [18]. Some design techniques model roles using interfaces
;‘igﬂ‘é‘;ss‘rf;mzﬁ . [15], or as part of a behavioral contract between partidipan
writeReport [8]. Collaborations are usually modeled using UML inter-
completedReport action diagrams. These show how participants interact to
achieve a task: they are usually succinct and show only one
Director instance of each kind of participant.
arrangeBigMeeting In contrast to the design idea of separating concerns as
jvrr'ita:gzsgr‘f”“"eeﬂng distinct collaborations, at run-time things look much more

complex. Several design collaborations may be interleaved
Figure 1. Class Diagram for Bureaucracy. and instances of the same class often play different roles
in one call sequence. This makes it difficult to disentan-

This is a hierarchy of Director, Managers and Clerks gle concerns and to reconstruct collaborations as they were

which operates as described by the Bureaucracy pattericonceived at the design stage.

[17]. In effect, four of the GOF design patterns govern the)))

interaction of the objects. A Manager or Director who re- 2.2. Problems with Recovering Collaborations

ceives a request, delegates work to its subordinates, as in

the Composite pattern: the Clerk plays the role of Compo-

nent and the Manager the role of Composite. A Manager

To recover collaborations and roles from existing code
we need to discover the important tasks in which instances

o : collaborate, and break up the behavior of a class into roles,
or Clerk receiving a request it can not handle forwards the : . .
as shown schematically in Figure 2, where each role de-

request up the hierarchy, as in Chain of Responsibility: the _~ : o
Manager and Clerks play the Predecessor role and the Di_scrlbes the behavior of instances of this class in a specific

context - in a collaboration. Below we discuss the chal-

rector the Successor role. Clerks or Managers who want to,
. enges that must be tackled.
interact with each other first address their superior to-coor
dinate them, as in the Mediator pattern: at the same hier-Static Information is not enough. As argued in the intro-
archy level the objects are Colleagues, whereas the supeduction, static information does not provide us with the in-
rior acts as Mediator. Finally, when a subordinate changesformation necessary for identifying collaborations. Terid
state, such as completing some work, or being absent, it redify collaborations we need control flow information; thés i
ports this change of state to its superior: thus the superiordifficult to obtain purely from static analysis, due to poly-
acts as Observer of its subordinate Subjects, as in the Obmorphism, inheritance and dynamic binding.
server pattern. Figure 2 summarizes this information in a The notion of role is also hard to recover from static in-
class/collaboration matrix [20]. Itillustrates that astznce formation. Even when languages explicitly support an in-
of a class participates in several collaborations, plagng terface construct, such as present in JAVA, there is no se-
distinct role in each. mantics in terms of collaboration attached to this construc

Here we have described the collaborations and roles inThat is, to recover collaborations and roles we need to un-
terms of the design patterns they instantiate. Roles de-derstand the rules governing the run-time behavior of the
scribes the responsibilities of objects in a collaboratinrn instances. The interface construct is, however, a goot star

ing point for discovering important collaborations. this observation. We do not believe, therefore, in the auto-
The inheritance relationship is also not very reliable in matic extraction of collaborations and roles, but rathearin
deriving information about roles because a subclass doesterative process steered by the engineer. Typically, an en
not necessarily play the same roles that its superclass.play gineer approaching the code has a specific question in mind
This depends on how inheritance has been used, and in re- asking something like “How is this task achieved?” rather
verse engineering we often study at applications whose dethan “how does everything work in this application?” - and
sign may not follow accepted design guidelines. this question steers the recovery process.
The Collaboration Browser is a tool we have developed

Dynamic Information is too much. Recording informa- ; : .
. . which supports such an iterative recovery process by allow-
tion about message exchanges between instances as the pro-

. . : .~ 7Ing developers to query information related to collabora-
gram executes provides us with control flow information . . . , . .
: o . o : tions. In this section we first explain some of the underlying
required for deriving collaborations and with information

about the context in which methods of specific instancestermInOIOgy and concepts, then introduce the Collabomatio

: . . Browser.

are invoked. Program tracing, however, results in a great
volume of low-level information from which we must sift 3 1. Terminology and Concepts
the details relevant for our investigation [14, 9, 21]. Here
the problems of focus, granularity and scalability must be As discussed in Section 2, how collaborations and roles
addressed. are represented at the design stage and how a collaboration-

To be able to focus, it is necessary to break the programbased or role-based design is carried on to the implemen-
trace up into chunks representing collaborations. Also, wetation is left open most of the time. We reserve the term
are not interested in all collaborations, nor in all the ilgeta collaboration and role to talk about the high-level design
of a collaboration, so choosing the right collaborations to concepts. Our starting point is, however, an existing execu

look at and the right level of detail is important. tion trace from which we want to recover collaborations and
) roles approaching those used in design. In this context we
2.3. Overview of Our approach talk aboutcollaboration instancesnd collaboration pat-

. . _terns
The approach we propose for recovering collaborations

androles is: role collaboration high-level concepts
A

Based on dynamic information. To obtain exact control
flow information our approach uses dynamic infor-
mation recorded from program execution. For each

method invocation event we record the sender class, Me"acenpattern collaboration pattern | intermeciate abstractions
sender identity, receiver class, receiver identity, and e pattern maiching T
name of invoked method. interface collaboration instance | low-level artifacts

™

Uses pattern matching. We use pattern matching to find oxecution frace
similar execution sequences in the execution trace. (all method invocations)
This addresses the problem of scalability since it does
not confront a developer with the whole trace of exe-

cution information, but rather witbollaboration pat-)))))
terns Figure 3 above illustrates schematically the relationship

of the terms we use.

Figure 3. Relationships of terms.

Supports iterative recovery through querying. To ad-
dress the problem of focus and granularity we presentCollaboration instance. A collaboration instance is the se-

a tool which lets the developer query the dynamic quence of message sends between objects, ordered as
information in terms of classes and interactions of a call tree, which results from a method invocation (all
interest. The querying allows a developer to refine the message sends up to the return).

investigation to focus on collaborations of interest.
There are as many collaboration instances as method
3. Supporting Iterative Recovery invocations in the trace. But in an execution trace there
are many collaboration instances which are variations on
It has been observed that without guidance from a userthe same prototype (design) collaboration. We use pattern
the process of design recovery gives poor results [13]. Ourmatching to group collaboration instances ictalabora-
own experience with reverse engineering tools corrobsrate tion patterns

Collaboration pattern. A collaboration pattern is an equiv-
alence class of several collaboration instances.

The pattern matching criteria is flexible and can be mod-
ulated along three independent axes:

Method invocation information. Each of the items: ob-
ject identity (for sender and receiver), class identity
(for sender and receiver), and name of invoked method
can be either taken into account or ignored in the
matching scheme. The matching scheme also allows
the developer to make use of other static information
related to these items.

Depth of invocation. The depth of the method invocation
is specified so that method invocations at a greater
depth are ignored in the matching criteria.

Structure of the collaboration instance. A collaboration

Query about the interface of a class.These queries are

of the form

Q1: what methods of class A are invoked by class B?
Selecting sender and receiver classes, the user re-
quests a list of the methods displayed in panel
Example: in Figure 4 a sender clasBrawing-
Controller and a receiver clasgpol, have been
chosen. Pand lists the methods of claskol
which are invoked by an instance@fawingCon-
troller.

Q2: which classes are senders and receivers of the fol-
lowing methods?
Conversely, selecting a set of methods in panel
c, the developer can request the list of senders
and receivers to be updated to the senders and
receivers of the selected methods.

instance has a tree structure of method invocations.Query about a collaboration. By selecting sender and re-

However, similar collaboration instances may differ in
structure and still have the same 'meaning’. Therefore,
in the matching scheme it is also possible to treat col-
laboration instances as sets of method invocations, thus
ignoring all ordering relations between method invoca-
tions and treating collaboration instances as identical if
they have the same method invocations in their set.

In Section 5 we discuss how this pattern matching is im-
plemented.

3.2. The Collaboration Browser

The Collaboration Browser presents the dynamic infor-
mation to the user through four basic elements of informa-
tion: sender classes, receiver classes, invoked methalds an
collaboration patterns. Each of these four elements is dis-

played on the screen in a separate panel as seen in Figure 4.

Panels, b andc list the sender classes, the receiver classes
and the invoked methods respectively. Padedsde both

list collaboration patterns. The distinction between ¢hes
two collaboration pattern lists is explained further belaw

is the function of the two button panelandg.

In this section we explain the functionality of the Collab-
oration Browser, giving some small examples. The screen
shots which provide the examples are from an analysis of
the HotDraw application, which will be presented in greater
detail in Section 4.

The Collaboration Browser supports three basic kinds of
operations: querying the current base of dynamic informa-
tion, editing the base of dynamic information through fil-
tering out information or loading a collaboration instance
and displaying interaction diagrams. In the presentaten b
low we have numbered the queries (Q1,02,Q3,Q4 and Q5),
editing (E1, E2, E3, E4) and displaying functions (D1, D2,
D3) in order to refer to them later on in Section 4.

ceiver classes, and methods of interest (pasmedsand
c respectively) the following queries can be answered:

Q3: what collaboration patterns result from this
method invocation?Paneld lists the collabora-
tion patterns resulting from an invocation of one
of the selected methods on an instance of one the
selected receivers by an instance of one of the se-
lected senders.

Q4: what are the shortest collaboration patterns in
which all the following methods are invoked?
Panek lists the shortest collaboration patterns in
which all the methods selected come into play,
for the selected receiver and sender.

Example:in Figure 4 three methods have been
selected in panet: controller:, cursor and se-
lected. Panele lists the collaboration patterns
in which all these three methods of clagsl
come into play. The list shows five collaboration
patterns, each with the nandeawingController-
changedTool, but each with a different identity
number (hidden in the screen shot). These are
five different patterns which result from the invo-
cation ofchangedTool on an instance dbrawing-
Controller.

Query about a role. These queries are of the form:

Q5: given a collaboration pattern and a set of meth-
ods what are all the senders and receivers that
participate in this collaboration pattern? By
selecting a set of methods (pargland a col-
laboration pattern in which this set of methods
comes into play (pand) the developer can re-
quest a list of receivers which play this role in the

a Collaboration Browser X
Sender Class Update formethods | poceiver Class Update for collaboration |
ArhitraryComponentSpec A |ButtonDeseription A
BoundedWrapper CompositeFigure
ButtonDescription Drawing
CompositeFigure DrawingContraller
Ciraing DrawingEditor
DraisingController EllipseFigure
BrawingEditor EndToolState
EllipseFigure FigureAttributes
EndToolState FigureTransitionTable
EventDispatcher Handle
FigureTransitionTable PositionCaonstraint b
Handle a RectangleFigure
KeyboardProcessor SimpleTransitionTable
WouseMovedEvent Tool
PositionConstraint - [ToolbarController
FectangleFigure Toolbarview
RedButtanPressedEvent ToolState
RedButtonReleasedEvent TrackHandle
ScrolWrapper

‘ i
Invoked Methods _____Updatetorclasses | -Choose Collaboration
controller- % | for one of methods from shortest with all =
cursor Toolcontrolier#302 5 [DrawingControllerchangedTool#: [~
handleEvent: Toolcursor# 1876 DrawingControllerchangedTool#:
initialize Toolselected# 112 CrawingControllerchangedTool#«
selected Toolselected# 1664 DrawingControllerchangedT ool
startState: DrawingControllerchangedTool#”
c d £
~Set CurrentEvents Set Display
f g
All Display Filter | SelfSendg| Collab| Current

Figure 4. Collaboration Browser window. Panelsa b andc list the sender classes, the receiver classes and the
invoked methods respectively. Panelande both list collaboration patterns.

selected senders, receivers and methods,
remove method invocation events which are self-sends,

same collaboration pattern, and the correspond-
ing senders. E2:
Editing the dynamic information. To focus the investi- g
gation on the events of interest the developer can filter out
method invocation events which are not relevant by speci- — ,.
fying sender classes, receiver classes and methods to be fil-
tered out. This reduces the amount of dynamic information Displaying an instance of a collaboration pattern. The

to be analyzed and presented. Another option for focusinginteraction diagram window can be set to display (using the
on events of interest is to load an instance of one collabora-buttons in paned) either an instance of a selected collabora-
tion pattern as the current base of information. This allows tion pattern, or the whole of the current trace. The call tree
the developer to focus on analyzing one collaboration pat- of a collaboration pattern can be displayed (using buttons
tern. on the interaction diagram window, see Figure 5) as:

The browser queries operate on a current execution trace.
When the tool starts up, the current trace corresponds toP1:
original execution trace obtained through instrumentimya .
executing the application. In the course of the iterative pr
cess this trace can be edited by the user (using the buttons
in panelf) to: Da3:
E1l: remove method invocation events from the trace for

3: setthe current trace to an instance of a selected collab-
oration pattern, or
reset the current trace to the original execution trace.

All: the whole call tree

Abbreviated: an abbreviated call tree (calls up to depth
of 2)

Context: the context of the call tree (an abbreviated
view from one level up the call tree).

Example: In Figure 4 a collaboration pattern of HotDraw. We are interested in particular in the imple-
called DrawingcontrollerchangedTool#3426 has been se- mentation of tools. Tools are used to manipulate the draw-
lected. Figure 5 below shows an instance of this collabora-ing: create new figures or manipulate the existing figures.
tion pattern displayed as an interaction diagram. It showsOn the drawing editor tools are represented by icons on the

how four objects, instances d@rawingController, Draw- top panel (see Figure 6). In a previous version tool responsi
ing,Tool andToolState, interact when the methathanged- bilities were handled by the classesader, Command and
Tool is invoked on eDrawingController. Tool, whereas in the current version different tools are im-
g — plemented through states.
— S ——— , - In order to understand how tools are implemented in this
 DrawingCantrler @ oraviny Tootstate(sectin [version of HotDraw we formulate several questions:

changecTool
selection

e how are user events handled (e.g. selecting a tool and
pressing a mouse button) ?

clear Selections:

e with which classes does the class tool collaborate?

Collecting Dynamic Information. We instrument all
methods in the HotDraw classes, then run a short scenario
on the sample HotDraw editor in which we make use of dif-
ferenttools from the editor’'s upper panel : create a redéang
and color it, create an ellipse and color it, move the rectan-
gle from back of the ellipse to the front, move the ellipse
from back to front, group the two figures, move the two fig-
ures, ungroup the figures, move the ellipse. This generates
/ 53,735 method invocation events.

. . . . I:II Drawing Editor |X|
Figure 5. Interaction Diagram window. The LT oBD» ¢-/9000c:T
interaction diagram corresponds to the collaboration 3

pattern selected in Figure 4.

4. Investigating Collaborations in HotDraw

In this section we demonstrate how our approach sup-
ports the understanding and recovery of collaborations by
applying it on the HotDraw framework [2][4].

4.1. HotDraw "

HotDraw is a framework for semantic graphic editors
which allows for the creation of graphical editors which
associate the picture with a data structure. The Hot-
Draw framework consists of 114 Smalltalk classes and
comes with several sample editors.From the documenta-
tion we learn that HotDraw is based on the Model-View- Figure 6. HotDraw sample editor
Controller triad: these roles are played by the classes-
ing, DrawingEditor andDrawingController respectively. Fur-
thermore, it has a few other basic elemettsisare used to
manipulate the drawing which consistsf@furesaccessed
throughhandles Constraintsare used to ensure that certain In this section we refer to queries and functions of the
invariants are met, for example, that two figures connectedCollaboration Browser as they are numbered (Q for queries,
with a line remain connected if one of the figures is moved. E for edit, D for display) in Section 3.2.

L]
X

4.2. Using the Collaboration Browser for Under-
standing Tools in HotDraw.

Formulating questions. From browsing the code we see Querying about interfaces. We start by querying about
that the documentation available describes an earlieiorers the interface that clas®ol presents to other classes in Hot-

Draw. The results of these Q1 queries are given in the TablemethodorocessMenuAt:local:for: on an instance dbrawing.

1 below.

Tool method
passinputDown
controller:
cursor
handleEvent:
initialize
selected
startState
initialize
passinputDown:
startState:
figureAtEvent:
controller
cursorPointFor:
figureAtEvent:
drawing
sensor
valueAt:
cursor;
cursorPointFor:
drawing
valueAt:
valueAt:put:

Senders
Drawing

DrawingController

DrawingEditor

FigureTransitionTable

EndToolState

ToolState

Table 1. Tool interface matrix. It shows the meth-
ods of clasgool which are invoked by other HotDraw
classes.

From Table 1 we notice that there is overlap in the ta-
ble cells. That is, some methodsTafl are invoked by in-
stances of two different classes. For example, EatiTool-
State andToolState invokecursorPointFor:, drawing andval-
ueAt:, both FigureTransitionTable and EndToolState invoke
figureAtEvent: and bothDrawingController andDrawingEdi-
tor invokeinitialize.

Understanding the context of method invocationsUsing
the Collaboration Browser we look at the collaboration pat-

terns which result from the invocation of these methods us-

ing Q3 queries. In the case fifureAtEvent: we see that the
collaboration patterns for this method occur in two differ-

B enctoosgem
All In COHtEﬁﬂ \bbreviatel Insgect I I

a FigureTransitionTable 2

a Tool

next State For Toal.event

Figure 7. First context. The context in which
a FigureTarnsitionTable invokesfigureAtEvent: on a
Tool

We repeat a new sequence of Q3 queries and D3 displays
to compare the different contexts for thtialize method.
WhenDrawingController is created it initializes dool, sets
its start state and sets the controller for that t@ehwingEd-
itor, on the other hand, invokes tirétialize method oriTool
when it builds the button description for the tool and as-
sociates it to an icon. This is a collaboration pattern re-
sulting from the invocation obuildButtonDescriptionFor-
Tool:andlcon: on DrawingEditor.

SinceToolState is a subclass dEndToolState, the over-
lap in the interfac&ool presents to these is expected. Us-
ing similar queries and displays (Q3 and D3) we discover
that the collaboration patterns in which these classes in-
voke methods offool result from an invocation oévalu-
ateln:Event: on an instance ofoolState or EndToolState -
but this method invocation gives rise to several collabora-
tion patterns, depending on the kind of tool in question.

Looking at the collaborations of the classTool. From
browsing the code and using the Collaboration Browser we
understand that tools are implemented using state diagrams
We first look more systematically at the collaboration pat-
terns in whichTool methods are invoked, so as to choose the
collaborations which are likely to be the key to understand-

ent contexts, as illustrated in Figure 7 and Figure 8 showinging how tools handle user events.

two D3 displays. In the first context the methosktState-
ForTool:event: is invoked on an instance dfigureTransi-
tionTable, which in turn invokes théigureAtEvent: method
on an instance ofool. In the second context the method
evaluateln:event: is invoked on an instance &hdToolState,
which in turn invokes three methods on an instanceoof:
controller, cursorPointFor: andfigureAtEvent:, and then the

As discussed in Section 3, each method invocation
recorded in the trace is a collaboration instance. Thus many
collaboration patterns are not of great interest becawse th
correspond to a trivial interaction of just one method invo-
cation. In general, then, to arrive at more interestingadnl|
oration patterns, we identify patterns in which a subset of
the methods of a class are involved.

;
& 3 Tool Interface | Collaboration Pattern Namge
All In Contex| bbreviate| |Inspect] | | -
EndTool State(Menu) a Tool a Drawing Contr = ContrO”er

cursor

handleEvent: Tool
initialize handleEvent:
selected
startState

controller:
cursor
handleEvent: DrawingController
initialize changedTool
selected
startState
controller:
cursor
handleEvent: DrawingController
= ' = initialize initialize

. _ . selected
Figure 8. Secor_1d conte_xt. The context in which startState
anEndToolState invokesfigureAtEvent: on aTool

prosesshenustioc

Table 2. Collaborations involving the
DrawingController-Tool interface. For each
group of shaded method names, it gives the col-
laboration pattern in which all these methods are
invoked.

Using the Collaboration Browser we group, for example,
methods in the interfaceol presents t@rawingController
and look at the shortest collaboration patterns in whick¢he
groups of methods occur. We do this by interactively se-
lecting several methods and posing queries of the form Q4:
“what are the shortest collaboration patterns in which an
instance ofbrawingController invokes the following meth- are many collaboration patterns resulting from the invoca-
ods on an instance of clagsol?” These queries and the tion of this method on an instance Tfol, their abbreviated
corresponding response are shown schematically in Table Zorm is similar (D3 display). Looking more closely at an
below. The collaboration pattern is named after the methodinstance of one of these patterns (D1 display) we see that
of a class which is the root of call tree. DrawingController invokeshandleEvent on Tool. Tool then

Remark: How this is done using the Collaboration invokesnextStateForEvent:tool: on an instance ofoolState
Browser is shown in Figure 4. This screen window shows and this object then consulémpleTransitionTable to obtain
the sender and receiver classes and the methods that hawbe next stateextStateForTool:event:. It then asks the next
been selected. Panellists the shortest collaborations in state to take over by invokinevaluateln:event:. It is this
which these methods are involved. Notice that there arestate object which handles the rest by, in this case, creat-
several collaboration patterns with the same name (but dif-ing a rectangle and adding it to the drawing. By comparing
ferent sequence number, hidden on screenshot): these ar@ few of these collaboration patterns (D1 displays) we see
separate collaboration patterns which result from the-invo that the many variations are due to variations in the cadsre
cation of the methodhangedTool on an instance dbraw- resulting from the invocation afvaluateln:event: on aTool-
ingController. The difference between these collaboration State object. The variations in the call trees which result
patterns are due to variations in the participants of the col from this invocation are due to the different kinds of user
laborations; these differences may or may not be importantevent (tool chosen and mouse button activity).

for the under i ication - thi - . . :
orthe understanding of an application - this depends OntheCharacterlzmg a collaboration. By loading an instance

guestions which must be answered. The accommodations,
L . . - of this pattern as the current base of dynamic information
of variations on a pattern is adjusted to some degree usin

different pattern matching modes (presented in Sectign 3 1g(E3 function) and querying about interfaces (Q1 queries)
“7'7 we can arrive at a characterization of thendleEvent col-

Investigating a particular collaboration. We choose to laboration which describes the predictable participaass,
concentrate on the collaboration pattefasl handleEvent:, seen in Table 3. We have left a wild card cell (rightmost
to learn about how tools handle user events. Though therecell) in this table to represent the participants of ¢helu-

Tool ToolState EndToolState TransitionTable *
handleEvent:
cursorPointFor: evaluateln:event: evaluateln-event: depend on
drawing iSEndState iSEn dStaté "| nextStateForTool:event:| event
valueAt: nextStateForEvent:tool: evaluateln:
valueAtPut: event:
Table 3. Class-Collaboration description for collaborati on Tool handleEvent: Gives the role of each class in

the collaboration. The wildcard cell represents variation the collaboration.

ateln:event: collaboration. In Table 3 we represent the role 3. Looking for a collaboration for a role:we then con-
of the classes in the collaboration simply by the interface tinue to form groups of methods to discover which col-
they present in the collaboration. laboration patterns they occur in (Q4).

Recovering other collaborations. We continue in the
vein of the investigation described above to discover other
collaboration patterns in which instances Tl partici-
pate. In this way, we extracted eight main collaborations
in which Tool participates from this HotDraw scenario. Us-
ing the Collaboration Browser we identified the particigant
in these collaborations and the methods which are invoked
for those classes. Each collaboration recovered represent
an important task in whicfiool interacts with other classes,
and is represented as a row in the form of Table 3. As in
Table 3 some rows have an empty wild card cell represent-
ing a variation on the collaboration which is not criticat fo
understanding the its basic structure. These variations ca
be specified in greater detail, i.e. which are the candidate

parti(_:ipants_. In this way we arrive at a class-cqllabomtio Our HotDraw example did not demonstrate the filtering
matrix as discussed in Section 2.1: and shown in Figure 2. functions (E1, E2) nor the query about roles (Q5). In our
4.3. Discussion and Evaluation inye_stigation we four_1d filtering out self—sgnds u_seful as it
. . eliminates some ’'noise’ from the interaction of instances.
We have shown how the Collaboration Browser is used The filtering of senders, receivers and methods is useful
to investigate interactions in HotDraw, and to recover some ywhen we already know what we can ignore. More useful
important collaborations. is the E3 function of loading an instance of a collaboration

The iterative process. Extrapolating from this example ~Pattern as the current trace.

we sketch the process in which we use the Collaborationgyperience with the Collaboration Browser. Identifying
Browser. Below we describe the steps we take in recov-ipe eight major collaborations in whictvol takes part re-
ering collaborations. The iteration in the process comes atquired about thirty interactive queries. We have also used
step 5, where we then repeat steps 1-5 with more focus. Wehe Collaboration Browser on our own MOOSE tool[7].
also iterate by formulatinglanq launching new queries as WeThe number of queries required to narrow down the infor-
learn more about the application. mation of interest depends very much on the familiarity we
already have with the application. The kind of scenario that
_we exercise on the system is also important for the kind of
information base we have to analyze.
We also experimented with different pattern matching
2. Looking for a role:we break up the interface of a class modes. The mode which treats a collaboration instance as
into groups of methods which could represent roles. a sets of events rather than as a tree of events results as ex-
This was done in the HotDraw example first as in Ta- pected in more matches, without any 'false’ matches. For
ble 1: breaking up the interface by sender class usingthe method invocation information, using the method name
Q1 queries. and name of class defining the method as labels is in most

4. Understanding a collaboration:ithe context display
(D3) and the abbreviated display (D2) aid us in
comparing collaboration patterns which are similar,
whereas the full display (D1) directs us further in the
inquiry by giving more details on a collaboration pat-
tern.

5. Deeper understanding of a collaboratioronce we
have found a collaboration pattern that we want to un-
derstand in more depth, we load an instance of this pat-
tern as the current base of dynamic information (E3).
The process can then begin again at step 1., this time
working with a smaller base of dynamic information.

1. Querying about interfacesve start by querying about
interfaces (Q1) to understand which classes communi
cate.

cases sufficient for identifying matches. Over-restricted The work of DePauw et al. [14] experiments with a range
matching results in too many collaboration patterns. of displays which allow an engineer to visually recognize
patterns in the interactions of classes and objects. |SHiS [
is a visualization tool which displays interaction diageam
using a mural technique and also offers pattern matching

Characterizing roles. In our characterization of collabora-

tions we represent the role of a class in a collaboration be

set of all the methods invoked on instances of that class in biliti

the collaboration. That is, in a single collaboration, we do capa ||t|es.. o . .

not consider that.different, instances of the same cI1ass la Our workis most similar to the work described in [9] and
) . . . P y[14], both of which identify recurring patterns in a trace as

different roles, or that a single instance could switchsole

) ! . . an aid to recognizing important design concepts. In con-
A finer analysis of a particular collaboration pattern could . . S
. ! o : trast to these, however, our work is not oriented primarily
yield a more refined partitioning of different roles.

towards program visualization. We use only a simple se-
guence diagram visualization to display the collaboration
pattern chosen. Our main focus is on querying the dynamic
information to help in the recovery of collaborations anel th

understanding of the roles different classes play in these.
We see our work as complementary to the visualizations

Method Wrappers[5]. This allows selective instrumenta- proposed in [9] and [14]: whereas these tools display an en-
: tire trace and give the user a feel for the overall behavior

tion at the method level.The visualization of collaboratio oo :
of an application, our tool focuses on the roles of classes in

instances as sequence diagrams is based on the Interaction : .
. much smaller chunks of interaction.
Diagram tool[5].

Pat tching is imol ted using hashina. As di We know of only one other approach which explicitly
attern matching Is implementea using hashing. AS Cis- e 14 reverse engineer collaborations[6]. The approach
cussed in Section 3.1, we treat the structure of a collabo

ration instance in two wavs: as a tree of method invoca-uses static information and is an incremental one, in which
yS: a Classification Browseis used first to classify a set of

t'enﬁi or fas a slftbofrrr:iets?g |tn\;ocat|onsr.1 Inn :jhe carI: tree r?(]; classes of the application as participants of interest and
events ot a coflaboration instance, €ach node CoIresponay, ., v, eit their interface, so as to arrive at a description

to a method invocation and contains five items of informa- of participant-roles in a collaboration. The classificatio

_t|or:: sende:jc_lasslé s;ndethdstar}cei rec_?;:/_er_ c]!assmiecel_ browser approach relies heavily on the input of a user who
Instance and invoked method selector. ThiS INTOIMation IS ., o4 sejact the initial participants and their roles in thke ¢

used to compute a hash value for each nqde n th(? call tre‘?aboration and in determining appropriate acquaintanzes t
such that the hash value of a parent node is a function of thelnclude in the collaboration
hash values of its children. Each of the five items of infor- Finally, this work is relaied o reverse engineering and
mation can be taken into account, or ignored, in computing design re’covery techniques in general. Our work on recov-
the hash value. In the case that the collaboration instanceseri

.) ng collaborations in intended as a part of an environment
are treated as sets of events each is assigned a hash value & iterative understanding of object-oriented applicasi
a function of the members of the set. X

For a more extensive survey of related reverse engineering
approaches, the reader is referred to [16].

5. Implementation

The Collaboration Browser is implemented in Smalltalk
and currently handles single-thread Smalltalk applicetio
We instrument the application to be investigated using

6. Related Work

o _ 7. Discussion and Conclusions
Most of the work on understanding interactions in

object-oriented applications has focused on visualinatio The approach we have presented in this paper begins
where the challenge is to develop techniques for visualiz- with an execution trace and condenses this information by
ing the large amount of information generated by program representing program behavior in terms of collaboration
tracing. patterns. It presents this information to developers imger
There are several tools which display interaction dia- of sender classes, receiver classes, invoked methods and
grams from program executions [5, 10]. Program Explorer collaboration patterns and allows developers to query each
[11] offers class and object based displays of dynamic in- of these items in terms of the others. In this way it lets a
formation. Sefika et al.[19] can display the dynamic inter- developer focus on the aspect of the application of interest
actions of architectural units such as subsystems, but thei without wading through a lot of trace information.
approach requires an instrumentation specific to the appli- We have shown through an example how the Collabora-
cation. Walker et al.[21] use program animation techniquestion Browser is be used to discover important collaboration
to display the number of objects involved in the execu- in an application and to understand the roles that classes
tion, and the interaction between them through user-definedplay in these collaborations. Our initial experience with t
high-level models. Collaboration Browser on two case studies showed that the

10

approach is promising, but it also demonstrated the limits [12] S. Lauesen. Real life object-oriented systeriSEE Soft-

of automatic recovery of design artifacts. To be successful
the use of the tool must be embedded in an iterative recov-[13]
ery process steered by a particular question or hypothesis.
We plan to conduct a more extensive case study in order[14]
to make a more thorough evaluation of the approach and to

refine the iterative process described in the paper.

An important issue raised by this work is the character- [15)

ization of collaborations. The notation currently used to

model object-oriented collaborations are UML interaction [16]
diagrams. Since these are at the design level it is hard to

tie them to collaborations occurring in the code. It would
be interesting to experiment with other ways of modeling
collaborations which can express similarity of collabamat
instances found in a trace.

Acknowledgments.Thanks to Matthias Rieger for his help

and for his comments on the manuscript. We also thank Os- [18]

car Nierstrasz and Franz Achermann for their helpful com-
ments.

References

(1]

(2]

(3]
(4]
(5]

(6]

[7] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an exten-

(8]

9]

(10]

(11]

K. Beck and W. Cunningham. A laboratory for teaching
object-oriented thinking. IProceedings OOPSLA '890l-
ume 24 ofACM SIGPLAN Noticepages 1-6, 1989.

K. Beck and R. Johnson. Patterns generate architectures
In Proceedings ECOOP’94LNCS 821, pages 139-149.
Springer-Verlag, July 1994.

G. Booch, J. Rumbaugh, and I. Jacobs®he Unified Mod-
eling Language User Guidedddison-Wesley, 1999.

J. Brant. Hotdraw. Master’s thesis, University of Iltiis at
Urbana-Chanpaign, 1995.

J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers t
the Rescue. IProceedings ECOOP’98 NCS 1445, pages
396-417. Springer-Verlag, 1998.

K. DeHondt. A Novel Approach to Architectural Recovery in
Evolving Object-Oriented SystemPhD thesis, Vrije Uni-
versiteit Brussel, 1998.

sible language-independent environment for reengingerin
object-oriented systems. Rroceedings of the Second Inter-
national Symposium on Constructing Software Engineering
Tools (CoSET 2000yune 2000.

R. Helm, I. M. Holland, and D. Gangopadhyay. Contracts:
Specifying behavioural compositions in object-orientgsts
tems. InProceedings OOPSLA/ECOOP’'980lume 25,
pages 169-180, Oct. 1990.

D. Jerding and S. Rugaber. Using Visualization for Archi
tectural Localization and Extraction. Rroceedings WCRE
pages 56 — 65. IEEE, 1997.

C. Laffra and A. Malhotra. Hotwire — A visual debugger
for C++. InProceedings of USENIX C++ Technical Con-
ference pages 109-122, 1994.

D. B. Lange and Y. Nakamura. Interactive visualizatain
design patterns can help in framework understanding. In
Proceedings of OOPSLA'9pages 342-357. ACM Press,
1995.

11

ware, pages 76—83, March 1998.
G. C. Murphy and D. Notkin. Reengineering with reflexion
models: A case studyEEE Computer8:29-36, 1997.

4] W. D. Pauw, D. Lorenz, J. Vlissides, and M. Wegman. Exe-

cution patterns in object-oriented visualization.Froceed-
ings Conference on Object-Oriented Technologies and Sys-
tems (COOTS '98)pages 219-234. USENIX, 1998.

T. Reenskaugworking with Objects: The OORAM Software
Engineering MethodManning, 1996.

T. Richner and S. Ducasse. Recovering high-level views
of object-oriented applications from static and dynamic in
formation. In H. Yang and L. White, editor®roceed-
ings ICSM'99 (International Conference on Software Main-
tenance)pages 13-22. IEEE, Sept. 1999.

D. Riehle. Bureaucracy. In R. Martin, D. Riehle, and
F. Buschmann, editor®attern Languages of Program De-
sign 3 pages 163-185. Addison-Wesley, 1998.

D. Riehle and T. Gross. Role model based framework desig
and integration. IrProceedings OOPSLA '98 ACM SIG-
PLAN Noticespages 117-133, Oct. 1998.

M. Sefika, A. Sane, and R. H. Campbell. Monitoring com-
plicance of a software system with its high-level design
models. InProceedings ICSE-18pages 387-396, Mar.
1996.

M. VanHilst and D. Notkin. Using Role Components to
Implement Collaboration-Based Designs. Rmoceedings
OOPSLA'96 pages 359-369. ACM Press, 1996.

R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wrjght
D. Swanson, and J. Isaak. Visualizing dynamic software sys-
tem information through high-level models. Broc. OOP-
SLA'98 pages 271-283, 1998.

N. Wilde, P. Matthews, and R. Hutt. Maintaining object-
oriented softwarelEEE Software (Special Issue on "Mak-
ing O-O Work”), 10(1):75-80, Jan. 1993.

R. Wirfs-Brock and B. Wilkerson. Object-oriented o

A responsibility-driven approach. Rroceedings OOPSLA
'89, pages 71-76, Oct. 1989. ACM SIGPLAN Notices, vol-
ume 24, number 10.

