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COMPLETENESS OF LOGIC OF PARTIAL TERMS

VINCENZO SALIPANTE

Abstract. In this paper we prove completeness for classical first order logic

of partial terms by making use of Deduction chains (see Schütte [5]). This

technique has some advantages, as it involves no embedding and hence, in the
course of the proof, the role played by partiality is clearly brought out.

ACM Subject Classification. F.4.1 (Mathematical Logic)

1. Introduction

Systems of Explicit Mathematics have been proposed for an axiomatic represen-
tation of mathematical practice in Bishop’s approach to constructive mathematics.
The logic of these systems is Beeson’s logic of partial terms, LPT, (see Beeson [1])
in which, as pointed out by Feferman, reasoning about partial functions can be
carried out directly (see Feferman [2]).

One of the possibilities, among several others, to prove completeness for LPT,
is given by translating it into classical first order predicate logic. We can achieve
this by constructing for each choice of theory T in LPT, a corresponding theory
T ∗ in the classical predicate calculus by choosing a n+1-ary relation letter Rf to
correspond to each n-ary function letter in LPT. In addition, the language of T ∗

contains the same constants and relation letters as T , but no function letters. We
construct for each term t of T a formula u ' t of T ∗, expressing “u is defined and
equal to t”, where we can think of Rf (x, y) as expressing that f(x) ' y. Hence we
interpret each formula A of T by a formula A∗ of T ∗ in such a way that T ` A if
and only if T ∗ ` A∗.

In the following we propose a direct technique (as no embedding is involved) in
which partiality itself is clearly brought out.

In section 2 we introduce the syntax and semantics of LPT. In section 3 we prove
the completeness of LPT by making use of Deduction chains.

2. The Logic of Partial Terms

2.1. The Syntax of LPT. In the countable first order language with equality L1

of LPT, all the primitive symbols are among the following:

(1) Logical symbols: ∼, ∨, ∧, ∀ and ∃.
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(2) Parentheses and commas: ( , ) , [ , ] , .

(3) Variables: x1, x2, x3, ...

(4) Constants: a1, a2, a3, ...

(5) Function letters:

• f1
1 , f1

2 , ... (of arity 1) ...

• f2
1 , f2

2 , ... (of arity 2) ...

• ...

(6) Relation letters:

• R1
1, R1

2, ... (of arity 1) ...

• R2
1, R2

2, ... (of arity 2) ...

• ...

(7) The unary symbol ↓ (definedness) and the binary symbol = (equality).

Our first order language L1 is determined by the set of primitive symbols (de-
scribed above) together with definitions of the notions of term and formula.

We will define, inductively, the notion of term of L1 as follows:

(1) Variables and constants are terms.

(2) If t1, ..., tn are terms and fn
i is a function letter, then fn

i (t1, ..., tn) is a term.

(3) The terms of L1 are only those things generated by clauses (1) and (2).

The positive atomic formulae of L1 are expressions of the form t↓, (t1 = t2) and
Rn

i (t1, ..., tn) where Rn
i is a relation letter and t1, ..., tn are terms.

The negative atomic formulae of L1 are expressions of the form ∼A, where A is
a positive atomic formula.

The formulae of L1 are inductively defined as follows:

(1) A positive atomic formula is a formula.

(2) A negative atomic formula is a formula.



COMPLETENESS OF LPT 3

(3) If A and B are formulae, then (A ∨B) is a formula.

(4) If A and B are formulae, then (A ∧B) is a formula.

(5) If A is a formula, then for any i, ∃xiA is a formula.

(6) If A is a formula, then for any i, ∀xiA is a formula.

(7) The formulae of L1 are only those things that are required to be so by
clauses (1) - (6).

We use “A”, “B”,... to range over formulae.

Let xi be a variable and suppose that ∃xiB, (∀xiB), is a formula which is a
part of a formula A. Then B is called the scope of the particular occurrence of the
quantifier ∃xi, (∀xi), in A. An occurrence of a variable xi in A is bound if it falls
within the scope of an occurrence of the quantifier ∃xi, (∀xi), or if it occurs inside
the quantifier ∃xi, (∀xi), itself; otherwise it is free. A sentence (or closed formula)
is a formula of L1 in which all the occurrences of variables are bound.

The negation∗ ¬A of a formula A of L1 is inductively defined, by making use of
De Morgan’s laws and the law of double negation, as follows:

(1) If A is a positive atomic formula then ¬A := ∼A.

(2) If A is a negative atomic formula of the form ∼B where B is a positive
atomic formula then ¬A := B.

(3) If A is of the form (B ∨ C) then ¬A := (¬B ∧ ¬C).

(4) If A is of the form (B ∧ C) then ¬A := (¬B ∨ ¬C).

(5) If A is of the form ∃xiB then ¬A := ∀xi¬B.

(6) If A is of the form ∀xiB then ¬A := ∃xi¬B.

(7) The negation ¬A of a formula A are only those things generated by clauses
(1) - (6).

We have described our official notation; however, we shall often use an unofficial
one. For example, we shall often use “x”, “y”, “z”, ... for variables, while officially
we should use x1, x2, x3, ... A similar remark applies to constants, relation and
function letters. We shall adopt the following abbreviations:

(A → B) := (¬A ∨B)

∗This formulation of negation has been chosen for our Tait-style deduction system, which will
be introduced in section 3.
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(A ↔ B) := ((A → B) ∧ (B → A))

(s ' t) := (s↓ ∨ t↓ → s = t)

(s 6= t) := s↓ ∧ t↓ ∧ ∼(s = t)

Let W be a finite set {i1, ..., in} and let Ai, for every i ∈ W , be a formula. We
shall adopt the following abbreviations:

∨
i∈W Ai := (Ai1 ∨ ... ∨Ain)

and

∧
i∈W Ai := (Ai1 ∧ ... ∧Ain

)

We also write A[x/t] to denote the result of substituting the term t for each
occurrence of the free variable x in the formula A. Similarly, A[~x/~t] is the result of
simultaneously substituting the terms ~t = t1, ..., tn for each occurrence of the free
variables ~x = x1, ..., xn respectively. For substitution of terms for each occurrence
of the free variables in terms we use the same notational conventions. Locally we
shall adopt the following convention. In an argument, once a formula has been
introduced as A[x], i.e., A with a designated free variable x, we write A(t) for
A[x/t], and similarly with more variables. We will use parentheses to avoid any
possible ambiguity.

We introduce the Hilbert-calculus as deduction system for LPT.

Propositional Tautologies and Propositional Rules

The same as some Hilbert-calculus for classical propositional logic.

Quantifier Axioms

• A[x/t] ∧ t↓→ ∃xA

• ∀xA ∧ t↓→ A[x/t]

(where t may be an arbitrary term).

Quantifier Rules

A → B
∃yA[x/y] → B

(∃)

(where x does not occur free in B, y ≡ x, or y does not occur free in A).

B → A
B → ∀yA[x/y]

(∀)
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(where x does not occur free in B, y ≡ x, or y does not occur free in A).

Definedness Axioms

• r↓, provided that r is a variable or constant.

• f(t1, ..., tn)↓→ t1↓ ∧... ∧ tn↓ for all n-ary function symbols f of L.

• (s = t) → s↓ ∧ t↓.

• R(t1, ..., tn) → t1↓ ∧... ∧ tn↓ for all n-ary relation symbols R of L.

Equality Axioms

• (r = r), provided that r is a variable or constant of L.

• (r = s) → (s = r).

• (s = t) ∧ (t = r) → (s = r).

• (s1 = t1) ∧ ... ∧ (sn = tn) → f(s1, ..., sn) ' f(t1, ..., tn).

• R(s1, ..., sn) ∧ (s1 = t1) ∧ ... ∧ (sn = tn) → R(t1, ..., tn).

We denote by Th a set of sentences of LPT. Since there are countably many
primitive symbols (possibly infinite), the set Th is also countable.

A (Th, LPT)-proof is a finite sequence A1, ..., An of L1-formulae where, for each
1 6 i 6 n, one of the following three conditions is satisfied:

(1) Ai is an axiom of LPT,

(2) Ai is an element of Th,

(3) Ai is the conclusion of an inference rule of LPT whose premises belong to
the sequence A1, ..., Ai−1.

A theorem A of Th, in symbols (Th, LPT) ` A, is the last formula of a (Th, LPT)-
proof A1, ..., An (i.e. An ≡ A). In this case we say that A has a proof of length n
from Th in LPT, and we denote this by (Th, LPT) `n A.

Lemma 1. For all L terms r and s and all variables x of L we have

LPT ` r↓ and LPT ` s↓ ⇒ LPT ` r[x/s]↓.
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Proof. From LPT ` r↓ it follows LPT ` ∀x(r↓). And then

LPT ` ∀x(r↓)∧s↓→ r[x/s]↓

The statement is now proved by twice applying Modus Ponens. �

2.2. The Semantics of LPT. By a partial structure of the first order language L1

for LPT we mean a quadruple M = (|M|, I0, I1, I2) where |M| is called the universe
of M, and I0, I1, I2 are functions that assign appropriate objects to the constants,
function letters and relation letters of L1.

Specifically, a partial L1-structure is a quadruple

M = (|M|, I0, I1, I2)
such that

(M.1) The universe |M| of M is a non-empty set.

(M.2) I0 assigns to each constant c of L1 an element I0(c) of |M| which we denote
by cM.

(M.3) I1 assigns to each n-place function letter f of L1 (with n > 1) an n-place
partial function I1(f), which we denote by fM, from |M|n to |M|.

(M.4) I2 assigns to each n-place relation letter R of L1 an n-place relation I2(R),
which we denote by RM, on |M| (i.e. a subset of |M|n).

A valuation γ on |M| is a function which assigns to each variable x of L1 an
element γ(x) of |M|.

Let γ be a valuation on |M|, y a variable and j an element of |M|. We set, for
all variables v of L1

γ[y : j](v) =

{
j if v = y

γ(v) otherwise

In defining the value Mγ(t) of a term t of L1 in a partial structure M with
respect to a valuation γ, we have to consider the fact that the function letters can
be interpreted as partial functions. A way to achieve this, is as follows. Given the
universe |M|, we will now consider its extension |M|⊥

|M|⊥ := {⊥} ∪ |M|

where ⊥ is an arbitrary but fixed object (depending on |M|) which does not
belong to |M|.
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Let M be a partial L1-structure and γ a valuation on |M|. Then the value
Mγ(t) ∈ |M|⊥ of a term t of L1 is defined by induction as follows:

(1) If t is a variable, then Mγ(t) := γ(t).

(2) If t is a constant, then Mγ(t) := tM.

(3) Let t be a term of the form f(t1, ..., tn) for some n-place function letter
f with n > 1. If Mγ(ti) =⊥, for some 1 6 i 6 n, or if the tuple
(Mγ(t1), ...,Mγ(tn)) does not belong to the domain of fM, then Mγ(t) :=⊥;
otherwise we set

Mγ(t) := fM(Mγ(t1), ...,Mγ(tn)).

Let M be a partial L1-structure and γ a valuation on |M|. Then the value
Mγ(A) ∈ {f, t} of an L formula A is defined by induction as follows:

(1) If A is the formula t↓, then

Mγ(A) :=

{
t if Mγ(t) ∈ |M|
f if Mγ(t) =⊥

(2) If A is the formula (s = t), then

Mγ(A) :=

{
t if Mγ(s) ∈ |M|,Mγ(t) ∈ |M| and Mγ(s) = Mγ(t)
f otherwise

(3) If A is the formula R(t1, ..., tn) for some n-place relation letter R, then

Mγ(A) :=

{
t if Mγ(t1) ∈ |M|, ...,Mγ(tn) ∈ |M| and (Mγ(t1), ...,Mγ(tn)) ∈ RM

f otherwise

(4) If A is the negtive atomic formula ∼B where B is a positive atomic formula,
then

Mγ(A) :=

{
t if Mγ(B) = f
f if Mγ(B) = t

(5) If A is the formula (B ∨ C), then

Mγ(A) :=

{
t if Mγ(B) = t or Mγ(C) = t
f otherwise
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(6) If A is the formula (B ∧ C), then

Mγ(A) :=

{
t if Mγ(B) = t and Mγ(C) = t
f otherwise

(7) If A is the formula ∃xB, then

Mγ(A) :=

{
t if there exists an j ∈ |M| s. t. Mγ[x=j](B) = t
f otherwise

(8) If A is the formula ∀xB, then

Mγ(A) :=

{
t if Mγ[x=j](B) = t, for all j ∈ |M|
f otherwise

By (M, LPT) � A, we mean that A is LPT-valid in M (i.e. Mγ(A) = t for all
valuations γ on |M|).

M is called an LPT-model of the set Th of L1-sentences, (M, LPT) � Th, if all
sentences from Th are LPT-valid in M.

A is a logical consequence of Th, (Th, LPT) � A, if A is LPT-valid in all LPT
models of Th.

3. Completeness of LPT

In order to prove LPT-completeness, we need to carry out some preliminary
work. We introduce an additional deduction system for LPT (other than the so-
called Hilbert calculus), which we denote by PSC0 (see Tait [5], [6])†. Rather than
deriving single formulae we shall derive finite sequences of them Φ := A1, A2, ...,
An meaning “A1 or A2 or ... or An”. The PSC0-deduction system has the De Mor-
gan symmetries of classical logic built in and our previous treatment of negation is
suitable for it.

The logical axioms of PSC0 are

Φ0,¬A,Φ1, A, Φ2

All the inference rules are among the following:

Φ, A, Ψ Φ, B,Ψ
Φ, A ∧B,Ψ

(∧)

†The subscript 0 denotes the new version of the (∃)-inference rule.
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Φ, A, B, Ψ
Φ, A ∨B,Ψ

(∨)

∃xA, Φ, A[x/t],Ψ ∃xA,Φ, t↓, Ψ
Φ,∃xA, Ψ

(∃)

Φ, A[x/y],Ψ
Φ,∀xA,Ψ

(∀)

where in ∀, y is not free in the conclusion. Provided that t is a constant or variable
and is therefore defined, we are allowed to remove the second premise in ∃.

We write 
n Φ to mean there is a PSC0-proof of Φ from logical axioms with
depth smaller than or equal to n.

Lemma 2. For every sequence Φ and for every n


n Φ ⇒ LPT `
∨

Φ

Proof. The proof is immediate by an easy inductive argument on n.
�

Remark 3.
In the proof of Lemma 2 we only make one use of the Equality and Definedness

axioms of LPT, that is

r↓, provided that r is a variable or a constant,

which is required for the treatment of the ∃-inference rule.

We say that a sequence is reducible if it contains a formula which is not atomic.
By the distinguished formula of a sequence Φ we mean the non-atomic formula of
Φ which occurs furthest to the right.

We denote the enumeration of all terms of LPT by

(ti)i∈N = t0, ..., ti, ...

Let Th be a set of sentences. We denote the universal closure of equality and
definedness axioms by (Def + Eq). The following

(Fi)i∈N = F0, ..., Fi, ...

is an enumeration of all and only sentences from Th ∪ (Def + Eq).

A Deduction chain, with respect to Th ∪ (Def + Eq), for a sequence Φ is a (pos-
sibly infinite) sequence of finite sequences
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Φ0,Φ1,Φ2, ...

constructed as follows:

(1) The initial sequence Φ0 of the D-chain is the sequence ¬F0,Φ.

(2) If a sequence Φn of the D-chain is an axiom of PSC0, then it is the last
sequence of the D-chain. We say that the D-chain has length n.

(3) If a sequence Φn of the D-chain is not an axiom of PSC0 and is not re-
ducible, then the D-chain has as immediate successor Φn+1 of Φn, the
sequence ¬Fn+1,Φn.

(4) If a sequence Φn of the D-chain is not an axiom of PSC0 and it is reducible,
in such a way that Φn has the form

Ψn, A, B1, ..., Bn

where A is a non-atomic formula and B1, ..., Bn are atomic formulae (A
is the distinguished formula of Φn) then, the D-chain has as immediate
successor Φn+1 of Φn, the sequence which is determined by Φ0, ...,Φn as
follows:

(a) If A is the formula C0 ∨ C1, then Φn+1 is the sequence

¬Fn+1,Ψn, C0, C1, B1, ..., Bn

(b) If A is the formula C0 ∧C1, then Φn+1 is given by one of the following
two sequences

¬Fn+1,Ψn, C0, B1, ..., Bn

or

¬Fn+1,Ψn, C1, B1, ..., Bn

(c) If A is the formula ∃xC, then let ti be the first term in the enumeration
of all LPT-terms

(ti)i∈N = t0, ..., ti, ...

such that neither C(ti) nor ti↓ belongs to Φ0,Φ1, ...Φn.

We will distinguish the following two cases:

(i) If ti is a variable or a constant, then the immediate successor
Φn+1 is uniquely determined by the sequence with the following
configuration

¬Fn+1,∃xC, Ψn, C(ti), B1, ..., Bn
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(ii) otherwise, Φn+1 is given by one of the following two sequences

¬Fn+1,∃xC, Ψn, ti↓, B1, ..., Bn

or

¬Fn+1,∃xC, Ψn, C(ti), B1, ..., Bn

(d) If A is the formula ∀xC. Then Φn+1 is the sequence

¬Fn+1,Ψn, C(ui), B1, ..., Bn

where ui is any new variable which does not belong to Φn.

D-chains are therefore formed inversely to the basic inference-rules of PSC0.

Principal Syntactic Lemma 4. If every D-chain of Φ is finite, then there are
finitely many elements B1,...,Bn of Th ∪ (Def + Eq) such that


 ¬B1,...,¬Bn,Φ

Principal Semantic Lemma 5. Let Φ the sequence A1,...,An. If there is an infi-
nite D-chain of Φ, then there is a partial-structure U and an valuation β on |U| with

(1) (U, LPT) � Th ∪ (Def + Eq)

(2) Uβ(A1∨...∨An) = f

Note that Def + Eq are valid in any model.

Since we are considering the case in which Φ is not derivable, this procedure
must fail to produce a derivation, and out of the failure we can construct an inter-
pretation in which Φ is false. From these two lemmata we obtain

Completeness theorem 6. Let Φ be the sequence A1,...,An.
If (Th, LPT) � (A1∨...∨An), then there are finitely many elements B1,...,Bn of

Th ∪ (Def + Eq) such that


 ¬B1,...,¬Bn,Φ

Proof. Let (Th, LPT) � (A1∨...∨An). By Principal Semantic Lemma, every D-chain
of Φ is finite. The conclusion follows from Principal Syntactic Lemma


 ¬B1,...,¬Bn,Φ

�

Adequacy 7. We have for all sets Th of L1-sentences and all L1-formulae A that
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(Th, LPT) |= A ⇔ (Th, LPT) ` A

Proof. The proof that our system is sound (i.e. the direction from right to left) is
fairly easy by induction on the length of a proof of any given theorem. Simply note
that the axioms are valid and each of the rules preserves validity.
For the converse, let (Th, LPT) |= A. Then there are finitely many elements Th ∪
(Def + Eq) such that


 ¬B1,...,¬Bn,A

From Lemma 2, we obtain

(Th, LPT) `
∧n

i=1 Bi → A

For all 1 6 i 6 n, Bi is an element of Th ∪ (Def + Eq) and so

(Th, LPT) ` Bi

for every 1 6 i 6 n. Adequacy for LPT is obtained by applying Modus Ponens
n-many times. �

Since LPT is complete, it is not difficult to see that Compactness and Löwenheim-
Skolem theorems can be also proved for it.

3.0.1. Cut-Elimination for Theories. Generally, if we want to make PSC0-derivations
from certain additional non-logical axioms NLAX, for example the basic theory of
operations and numbers, BON, then


 ¬NLAX, A

Although this latter derivation has a cut-free proof in PSC0, we need Cut in order
to derive the formula A itself from NLAX as follows

NLAX NLAX → A
A

Thus in the presence of non-logical axioms, we cannot expect to have (full) Cut-
Elimination.
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3.1. Proof of the Principal Syntactic Lemma.

Proof. In order to prove the Principal Syntactic Lemma we need the following ver-
sion of König’s Lemma,

Lemma 8. If a sequence Φ has infinitely many D-chains, then one of these chains
is infinite.

Proof. see Schütte [5]. �

Let Φ be a sequence such that every D-chain of Φ is finite. It follows from
König’s Lemma that there are only finitely many D-chains of Φ. Let m be the
maximal length of such a D-chain. We prove the following claim by induction on
k 6 m.

If the sequence Ψ occurs in the (m− k)-th place of a D-chain of Φ, then

• 
 Ψ, if k = 0

• 
 ¬Fm,Ψ, if k = 1

• 
 ¬Fm, ...,¬Fm−(k−1),Ψ, if k > 2

We consider the following cases:

(1) if Ψ is the last member of a D-chain of Φ, then Ψ is an axiom of PSC0, and
hence the above three conditions hold.

(2) if Ψ is not the last member of a D-chain of Φ, then it is k > 1, and it
is either the conclusion of a disjunction, conjunction or quantifier rule of
PSC0 of the form

Ψi(i=1,2 or i=1)

Ψ
(S)

where, for every i = 1, 2 or i = 1, the sequence ¬Fm−(k−1),Ψi is the imme-
diate successor of Ψ in the D-chain of Φ.

By I.H., it follows, for all i = 1, 2 or i = 1,

(1) 
 ¬Fm,Ψi, if k = 1

(2) 
 ¬Fm, ...,¬Fm−(k−1),Ψi, if k > 2

By applying (S), we get
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(3) 
 ¬Fm,Ψ, if k = 1

(4) 
 ¬Fm, ...,¬Fm−(k−1),Ψ, if k > 2

It follows, by taking m = k, that Ψ is the initial sequence of a D-chain of Φ (i.e.
the sequence ¬F0,Φ). Hence


 ¬Fm, ...,¬F0,Φ

where Fm, ..., F0 are elements of Th ∪ (Def + Eq). �

3.2. Proof of the Principal Semantic Lemma.

Proof. Let Φ0,Φ1,Φ2,... be an infinite D-chain of Φ (which does not contain PSC0-
axioms). We define

K:=
⋃

i∈NSet(Φi)

where Set(Φi) is the set of all formulae belonging to Φi, with i ∈ N.

We consider the following properties of this chain:

(1) If an atomic formula occurs in a sequence Φn, then it occurs in every se-
quence Φk, with k > n.

(2) If a non-atomic formula B occurs in a sequence Φn, then there is a sequence
Φk, with k > n, which has B as distinguished formula.

(3) If ∃xB is an element of K, then, for all terms ti,

(3.1) either B(ti) or ti↓ is an element of K,

(3.2) in the case in which ti is a variable or constant then B(ti) is an element
of K.

(4) There is no atomic formula B, such that both B and ∼B belong to K.

Lemma 9. Let t be a variable or constant, then ∼t↓ belongs to K.

Proof. By definiton of D-chain, ¬∀y(y↓) ∈ K and by definition of ¬, ∃y(∼y↓) ∈ K.
From property (3.2), it follows

∼t↓ ∈ K.

�

From K we construct a preliminary partial counter-model
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P = (|P|, I0, I1, I2)

such that

(P.1) The universe |P| of P is the set {ti|∼ti↓ ∈ K, (i ∈ N)}.

(P.2) I0 assigns to each constant c of L1 the constant itself, cP := c.

(P.3) I1 assigns to each n-place function letter f of L1 (with n > 1) an n-place
partial function fP from |P|n to |P| and, for all tuples (t1, ..., tn)∈ |P|n, it
is defined as

fP(t1, ..., tn) :=

{
f(t1, ..., tn) if ∼f(t1, ..., tn)↓ ∈ K

↑ otherwise

(P.4) For each n-place relation letter R of L1, I2 is a function from |P|n to {f, t},
and, for all tuples (t1, ..., tn)∈ |P|n, it is defined as

RP(t1, ..., tn) :=

{
t if ∼R(t1, ..., tn) ∈ K

f if ∼R(t1, ..., tn) /∈ K

By preliminary partial counter-model we mean that the definition (P.4) also
comprises the case in which RP(t1, t2) is of the form t1 = t2.

The valuation α on |P| is a function which assigns to each variable x the variable
itself, α(x) := x.

Lemma 10. Let t1, ..., tn, be arbitrary terms. Then, for all n-place function letter
f (with n > 1) and all n-place relation letter R, we have

(i) f(t1, ..., tn)↓ ∈ K or ∼t1↓ ∨ ... ∨ ∼tn↓ ∈ K

(ii) R(t1, ..., tn) ∈ K or ∼t1↓ ∨ ... ∨ ∼tn↓ ∈ K

Proof.

(i) By definition of D-chain, it follows ¬(f(t1, ..., tn)↓→ t1↓ ∧... ∧ tn↓) ∈
K. Then, by definition of ¬, f(t1, ..., tn)↓∧¬(t1↓ ∧... ∧ tn↓) ∈ K and
(f(t1, ..., tn)↓ ∧ (∼t1↓ ∨ ... ∨ ∼tn↓)) ∈ K. By considering the premises of
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the (∧)-inference rule, we obtain f(t1, ..., tn)↓ ∈ K or ∼t1↓∨...∨∼tn↓ ∈ K.‡

(ii) The proof goes analogously as in (i).
�

Corollary 11. Let t1, ..., tn be arbitrary terms. Then, for all n-place function letter
f (with n > 1) and all n-place relation letter R, we have

∼f(t1, ..., tn)↓ ∈ K ⇒ ∼t1↓ ∨ ... ∨ ∼tn↓ ∈ K

and

∼R(t1, ..., tn) ∈ K ⇒ ∼t1↓ ∨ ... ∨ ∼tn↓ ∈ K

Lemma 12. Let t be an arbitrary term. If t belongs to |P| then

(i) Pα(t) is defined (i.e. Pα(t) ∈ |P|)

(ii) Pα(t) = t

Proof. We use induction on the complexity of the term t. Assume that t is in |P|,
we have

(a) t is a variable,

Pα(t) = α(t), α(t) is in |P| (by Lemma 9) and α(t) = t.

(b) t is a constant,

Pα(t) = tP, tP is in |P| (by Lemma 9) and tP = t.

(c) t is of the form f(t1, ..., tn), for a n-place function letter f (with n > 1) and
for ti arbitrary terms (with 1 6 i 6 n). Since f(t1, ..., tn) is in |P| then, it
follows from Corollary 11

∼f(t1, ..., tn)↓ ∈ K ⇒ ∼t1↓ ∨ ... ∨ ∼tn↓ ∈ K

Hence all terms ti, (with 1 6 i 6 n), are in |P|. This means, by I.H., that
Pα(ti) is in |P|, Pα(ti) = ti (for all 1 6 i 6 n), the tuple (Pα(t1), ...,Pα(tn))
belongs to the domain of fP and the value Pα(f(t1, ..., tn)) of t in P with
respect to the valuation α belongs to |P|. Then,

Pα(f(t1, ..., tn)) = f(t1, ..., tn)

‡More formally, we should consider the universal closure of definedness axioms and use variables

or constants (since they are always defined) to witness the occurrence of the existential quantifier.
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�

Lemma 13. For all positive atomic formulae of the form R(t1, ..., tn), if ∼R(t1, ..., tn)
is in K, then the tuple (Pα(t1), ...,Pα(tn)) belongs to the domain of RP.

Proof. Let R(t1, ..., tn) be a positve atomic formula for an n-place relation letter R
and for ti arbitrary terms (with 1 6 i 6 n). If ∼R(t1, ..., tn) is in K, then it follows
from Corollary 11, that all terms ti, (with 1 6 i 6 n), are in |P| (or, equivalently,
∼ti↓ is in K, for i = 1, ..., n). Then, for all 1 6 i 6 n, Pα(ti) is in |P| and the tuple
(Pα(t1), ...,Pα(tn)) belongs to the domain of RP. �

We will show that under this partial counter-interpretation P and the valuation
α to each variable, every formula B occurring in K is false. So, if B is any formula,
then

¬B ∈ K ⇒ Pα(B) = t

Due to the definition of D-chains, we can prove the following lemma, by in-
duction on the structure of the formula B occurring in K, noticing that as the
sequence Φ0,Φ1,Φ2,... is developed, every non-atomic formula in K will eventually
“come under attention” as the first non-atomic formula at some stage.

Lemma 14. For every formula B, we have

B ∈ K ⇒ Pα(B) = f

Proof. Assume B ∈ K. The proof proceeds by induction on the complexity of B.

• B ≡ R(t1, ..., tn) (a positive atomic formula). Then, by property (4),
R(t1, ..., tn) ∈ K and ∼R(t1, ..., tn) /∈ K. We consider the following two
cases:

– if one of the terms t1, ..., tn, is undefined, then Pα(R(t1, ..., tn)) = f,

– if t1, ..., tn, are defined, then Pα(ti) ∈ |P|, for all 1 6 i 6 n, and
Pα(ti) = ti. Hence, by definition of RP, Pα(R(t1, ..., tn)) = f.

• B ≡ ∼R(t1, ..., tn) (a negative atomic formula). Then ∼R(t1, ..., tn) ∈ K
and R(t1, ..., tn) /∈ K. By Corollary 11, ∼t1↓ ∨ ... ∨ ∼tn↓ ∈ K. And then,
by Lemma 13, the tuple (Pα(t1), ...,Pα(tn)) belongs to the domain of RP.
Hence Pα(∼R(t1, ..., tn)) = f and Pα(R(t1, ..., tn)) = t.
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• B ≡ C0 ∧ C1. B ∈ K, then there exists a k such that B ∈ Φk and B is
the rightmost non-atomic formula in Φk or, equivalently, the distinguished
formula in Φk. Hence, by (4.b), either C0 ∈ Φk+1 or C1 ∈ Φk+1 and then,
by definition of K, either C0 ∈ K or C1 ∈ K.

By I.H. Pα(C0) = f or Pα(C1) = f and then
Pα(C0 ∧ C1) = f.

• B ≡ C0 ∨ C1. B ∈ K, then there is a k such that B ∈ Φk and B is the
distinguished formula in Φk. Hence, by (4.a), both C0 and C1 ∈ Φk+1 and
then, by definition of K, both C0 and C1 ∈ K.

By I.H. Pα(C0) = f and Pα(C1) = f and then
Pα(C0 ∨ C1) = f.

• B ≡ ∃xC. B ∈ K, then by property (3), for all terms ti either C(ti) or ti↓
∈ K.

By I.H. Pα(C(ti)) = f or Pα(ti↓) = f and then
Pα(∃xC) = f.

(Observe that if ti ∈ |P|, then Pα(ti↓) = t).

• B ≡ ∀xC. B ∈ K, then there exists a k such that B ∈ Φk and B is the
distinguished formula in Φk. By (4.d), C(ui) ∈ Φk+1 and then, by defini-
tion of K, C(ui) ∈ K.

By I.H. Pα(C(ui)) = f and then
Pα(∀xC) = f.

(Observe that ui ∈ |P|).
�

Since {A1, ..., An} = Set(Φ) ⊂ K, it follows that Pα(Ai) = f, for all 1 ≤ i ≤ n.
This implies

Pα(A1∨...∨An) = f .

Let Fi ∈ Th ∪ (Def + Eq), (i ∈ N), then, by definition of D-chain, ¬Fi ∈ K. Hence

Pα(¬Fi) = f and Pα(Fi) = t

(Note that Th ∪ (Def + Eq) is a set of sentences. Every Fi in Th ∪ (Def + Eq) is
a closed formula and does not contain free variables. Hence the value of Fi in P
does not depend on the valuation α).
For all 1 ≤ i ≤ n, Fi is an element of Th ∪ (Def + Eq), and then (P, LPT) � Fi, for
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every 1 ≤ i ≤ n. Hence

(P, LPT) � Th ∪ (Def + Eq)

Although equality axioms are LPT-valid in P, it is not still guaranteed that
equality symbol = can be interpreted in P as identity on the elements of P.
A way to deal with an adequate interpretation of it is as follows. For all terms s, t
in |P|, let .= be a new symbol defined as

s
.= t :⇔ Pα(s = t) = t

note also that,

s
.= t :⇔ ∼(s = t) ∈ K

Since Equality axioms are LPT-valid in P, it is easily shown that .= is an equiv-
alence relation on |P| .

We now consider the equivalence class [t] of t modulo .=, such that, for all terms
t in |P|,

[t] = {s ∈ |P| : s
.= t}

Based on this equivalence relation we finally define our partial counter-model U
as follows:

U = (|U|, E0, E1, E2)

(U.1) The universe |U| of U is the set {[t] : t ∈ |P|}.

(U.2) E0 assigns to each constant c of L1 the equivalence class of c, cU := [c].

(U.3) E1 assigns to each n-place function letter f of L1 (with n > 1) an n-place
partial function fU from |U|n to |U| and, for all tuples (t1, ..., tn) of |P|n, it
is defined as

fU([t1], ..., [tn]) :=

{
[f(t1, ..., tn)] if f(t1, ..., tn) ∈ |P|
↑ otherwise

(U.4) For each n-place relation letter R of L1, E2 is a function from |U|n to {f, t},
and, for all tuples (t1, ..., tn) of |P|n, it is defined as

RU([t1], ..., [tn]) := RP(t1, ..., tn)
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The valuation β on U is a function which assigns to each variable x the equiva-
lence class of x, β(x) := [x].

We have, for all terms t

t ∈ |P| ⇒ Uβ(t) ∈ |U|.

We must show that fU and RU (the right-hand sides of our previous definitions)
are well-defined; i.e. these definitions do not depend on the particular choice of
members of the equivalence classes used.
For this, suppose that [ti] = [wi], for i = 1, ..., n. Then (P, LPT) � ti = wi. So, by
equality axioms,

(P, LPT) � f(t1, ..., tn) ' f(w1, ..., wn)

and

(P, LPT) � R(t1, ..., tn) ↔ R(w1, ..., wn).

Hence, by assuming that f(t1, ..., tn) ∈ |P|,

[f(t1, ..., tn)] = [f(w1, ..., wn)]

and

RP(t1, ..., tn) iff RP(w1, ..., wn).

This is just what we wanted to prove.

Finally,

Uβ(B) = t ⇔ Pα(B) = t

Proof. By induction on the complexity of the formula B. �

Hence we have, for all terms a, b in |U|,

Uβ(a = b) = t ⇔ a = b

This means that the equality symbol = is now interpreted in U as identity on the
elements of U. �
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