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Abstract

A feature based retrieval scheme for microscopic imagemtfims in an image database
is presented in this report. Diatoms are unicellular algamd in water and other places
wherever there is humidity and enough light for photo sysitheSeveral methods for fea-
ture extraction are described and experimental resulteardiatom images are presented.
The proposed feature based retrieval scheme is based onetgymmeasures, geometric
properties, moment invariants, Fourier descriptors ampka textural features. Based on
this features the image database is divided into classeg asdecision tree based clas-
sification approach. We have evaluated the discriminantepa# the features and show
experimental results on a diatom image database.

CR Categories and Subject Descriptors:.2.1 Artificial Intelligence]: Applications and Ex-
pert Systems; 1.5.4 [Pattern Recognition]: Applications.

General Terms: Algorithms.

Additional Key Words: Content based image retrieval, Diatom image databaseajréesglec-
tion, Decision tree induction
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Figure 1: Example images of diatoms: @pmphonema augurb) Sellaphora pupula(c)
Cyclotella bodanica(d) Epithemia sorex

1 Introduction

Content based image retrieval (CBIR) is an emerging fieldomputer science. The aim of
an image database system is to assist a human user to rétn@ges. In systems which use
guery by image content, the query itself is an image. Theesystomputes the similarity
between the query and the stored images and returns thogesmeéich are “close” to the
qguery. This implies that the system’s measure of image aiityl corresponds to the user’s
notion of similarity. The idea behind most of such systentisas similarity of image content can
be characterized by combinations of low-level feature$ susccolor, texture or shape measures
[81, [19].

In this report we present a feature based retrieval schenmaitwoscopic images in an image
database. The work has been done in the framework of the Ail{&ct which aims at the
automatic identification and classification of diatoms [jatoms are unicellular algae found in
water and other places wherever there is humidity and enlogigtfor photo synthesis. Diatom
identification and classification has a number of applicetion areas such as environmental
monitoring, climate research and forensic medicine [20je Of the great challenges in diatom
classification is the large number of classes involved. Egpestimate the number of diatom
species between 15000 and 20000, or even higher. Exampigesdd diatoms are shown in
Figure 1. As can be seen, diatoms have various shapes anthirgguctures.

When biologists are going to identify these special kindalgae, they follow a hierarchical
classification procedure, where symmetry is one of the katufes [3]. Subsequently other



features, such as shape properties and textural featutbe aiternal structure are used. Be-
cause microscopic images are mostly available as grayileagles or color images with minor
color variations, the use of color features is not as usefour application as, for example, in
flower retrieval systems [4]. Thus we have limited the featset to shape based features like
moments, and global features of the internal structure jEfabé.

In the framework of automatic diatom identification, a CBN§&tem can be used to roughly
identify objects. A possible scenario could be as followsus&r observes an unknown object
during the analysis of samples. With a digital camera adddb the microscope, an image of
the object is taken and transfered to the identificationesystThe system analyses the image
and returns a list of possible diatom species together vintliiag sample images and textual
descriptions as result. Based on this information, the gaereventually decide about the
species of the unknown object.

The report is organized as follows. In Section 2 two methods$etermine the symmetry of a
given object are described. One method is based on the atgatiur, while the other uses
the internal gray level distribution. In Section 3 methodsdistinguishing between different
boundary shapes are introduced. Global texture measuréegfmternal structure are described
in Section 4. A classification approach based on decisi@itr@uction is given in Section 5.
Finally, experimental results obtained for decision treguiction using different combinations
of features are given in Section 6, and conclusions are dra8ection 7.

2 Symmetry

Diatoms can be grouped by their symmetry characteristiosréare species without symmetry
axis while other species have one, two or even more axes. aftee bccurs, for example, for
circularly shaped diatoms.

Our terminology will be as follows. A straight line througdtet centroid of a two-dimensional
figure is called aymmetry axi#f the figure remains identical after a reflection at thisigtna
line. A figure S is calledreflectionally symmetricalith the degreen if it has m symmetry
axes.S is calledrotationally symmetricalvith the degreen > 1 if there arem different angles,
so thatS remains identical after a rotation around-= % - (360°/m),k =1,2,....

Let us assume that the outline and the center of gravity obtject under consideration are
known. An approach to finding the outlines of diatoms in mscapic images has been devel-
oped as part of the ADIAC project and is described in [5].

First, we describe a simple but very efficient way to deteemiflectional symmetries of an
object based on a 1D representation of its boundary. Nexdparoach to symmetry detection
based on gray level distribution is presented.

2.1 Symmetry Detection Using Distance List

The 2D shape of an object can be represented by a 1D functiog tie distances between
the center of gravity and selected boundary points [14]. Gtwndary points are determined
by sampling the contour in a clockwise manner with constagteeA« as shown in Figure 2.
For Ao = 1° degree, for example, the distance list= (dy, . . ., d3s9) has an entry for each
angle0, ..., 359°. For each angle the distance to the boundary is measurea. rier-convex



Figure 2. Contour sampling with constant angle

object, there can be more than one distance for the same. dngdhes case the distance to the
nearest boundary point is taken. To gain independence dfitieeof the object the entries in
the distance list are normalized according to the largesttdce. Using such a distance list,
reflectional and rotational symmetry can be detected easilyis shown in the following.

2.1.1 Reflectional Symmetry

The distance list allows the exact localization of all synmypexes of a shape. Each enirin
the distance list defines a straight line with an anglé\« through the center of the shape. If
the straight line is a symmetry axis, then opposite distainoast be equal. Thus the asymmetry
of a shape with respect to a straight linean be expressed as:

(n/2)—1
a(i) = Z ‘d(i—l—j)mOdn - d(i—j)mOdn

Jj=0

with n being the number of entries in the distance list.

To decide whether a straight line is a symmetry axis or ndtrestold!” is used, and for each
symmetry axis the conditiom(i) < 7" has to be fulfilled. Since(i) is very small for a straight
line with a small offset to the real symmetry axis, a minimungle between two different
symmetry axes is defined.

2.1.2 Rotational Symmetry

For a rotational symmetry of degr@e and an even number of entries in the distance list,
distances!; andd,; ., »ymod, are compared, and asymmetry is measured as follows:

n—1

=3

1=0

di — d(i+n/2)m0dn .
Similarly to reflectional symmetry, a shape is rotationayynmetric if the conditiom < 7' is
fulfilled. If the degree of rotational symmetry is higher than 2, a section-wise comparison is
necessary. In this case the distance list is dividedin&ectionsA,, . . ., A4,, ; with

Ai = (dinyms -+ (it 1ynjm—1)-



Figure 3: Example image [12] for dissimilar symmetries @jerlaid with axes of internal
symmetry (b)

Each distancé; is contained in exactly one section, and in all other sestibhas exactly one
corresponding distance. Thus the asymmetry between twossel; and A, is calculated by

(n/m)—1

a(AZ,A]) = Z

k=0

di*n/m-i—k - dj*n/m—l—k ‘

and the asymmetry of the entire shape by

m

—1
a= min > a(A;A).
=0

1€[0,...,m—1]

The minimum is taken in order to increase the robustnessrudistertions.

2.2 Gray level Gradient Based Symmetry

Sometimes the symmetry of the contour of an object does raattiyxcoincide with the sym-
metry of its internal structure. This may happen due to norsgcclusion of the boundary. But
there are some species of diatoms where exactly this phermmmeaturally occurs. A micro-
scopic image of such a diatom is shown in Figure 3(a). As caseba there is a slight offset
between the location of the symmetry axes of the shape asé thfdhe internal structure.
The direction of reflectional symmetry axes can be computdguthe gradient orientation
distribution of an gray level image [21]. The gradient otaion distribution is build based on
the orientation of the gray level gradient vector and stameal direction histogram. In Figure
4(a) the gradient vector direction histogram for the graglénage of Figure 3(a) is shown.
Apparently for a symmetric object the computed directiostdgram is also symmetric. To
determine the location of the symmetry axes the convolutiohthe direction histogram is



computed

n—1
c(z) =Y h(m)h(z —m) (1)
m=0
forx = 0,...,n. The quantities:r andm denote positions in the histogram ands the total

number of entries. In the convoluted direction histograraxima occur at the positions of the
symmetry axes. As can be seen in Figure 4(b) maxima are fduarhée positiong?, 96°, 187°
and276° degree. In Figure 3(b) the gray level image is overlaid wit two symmetry axes
corresponding to these maxima.

It is important to emphasize that the histogram propertynge@essary but not sufficient con-
dition for symmetry. This means that in particular non-syatmcal objects may exhibit re-
flectional symmetry in their orientation histogram. Thughé orientation histogram shows
reflectional symmetry, a further step is carried out to chebkther the object is rotationally
symmetrical or not. In our approach, this is done using thgeadap. Based on the position
and orientation of each potential symmetry axis, the peaggnof edge elements with a coun-
terpart one the other side of the symmetry axis is measuirtite percentage is below a certain
threshold the symmetry axis is rejected. Edge elementarelfoy means of a standard edge
detector.

3 Shape features

Besides simple shape-features such as length, width adeatio, which represent geometric
properties of objects, there are additional region andirmutbased shape measures [15]. In
our approach we use moment invariants and Fourier desigipgregion and outline based
features, respectively. These methods will be describdueaiollowing sections.

3.1 Geometric properties

Features that can directly be retrieved from the boundagnadbject are length, width, size,
and length-width ratio. Using such features in additionyimmietry information, the search
space in the diatom identification process can significdrlyestricted. Most diatoms have a
known range of length, width, and length-width ratio. Theaties are listed, together with
descriptions of other important features, for many diatpecges in atlantes, e.g. [7], [13].

To calculate these geometric values the major axis of arcbigeomputed. Based on this axis
the length of the object is taken as the largest distancedsstimtersections of the boundary and
the axis. The width is calculated in the same way for an axipgredicular to the major axis.
If the contour of the object is polygonal approximated widrticespy, . .., p, andp,+1 = po
then the area enclosed by the contour can be derived frornGitheorem as:

n—1

Z DPr X D+ -
k=0

If the resolution of the original image is known the values ba converted intgm and com-
pared with those found in atlantes.

1
area = —

5 @
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Figure 4: (a) Direction histogram of the image shown in Feg8(a), (b) convoluted direction
histogram

3.2 Moment Invariants

Moment invariants first introduced by Hu [11] are widely usegattern recognition and have
shown good results in various image recognition tasks, [6]g{10]. As shape measure they
have the property of being invariant under translationleschange and rotation. For our im-
age retrieval application we have used the seven momerniamnwa reported in [11] which are
computed over all pixels including the boundary and its eisged interior part.

Given the intensity function of an imag#z, y), regular momentsn,, of the orderp + ¢
(p,q=0,1,2,...) are defined as:

7npq e /OO /Oo xpyqf(x,y>dx dy (3)
Based on the regular moments, central momgpisire defined as:
Upg = Km Kw(x—f)p(y—y)qf(x,y)dxdy (4)

whereT = myy/mgo andy = mg; /mgo denote the centroid of the image. The central moments
are invariant under translation of the image. To get invargaunder rotation the following



moment invariants are defined:

I = poo + fio2, )
L = (pe0 — po2)” + 4pf,
(130 — 3p12)% + (3pta1 — ptos)?,
I = (pso+ p12)? + (g1 + p103)?,
= (uso0 — 3pt12) (k30 + pi12)
[(pz0 + p12)* = 3(po1 + 1103)°]
+(3p21 — pos) (f21 + fto3)
- [3(ps0 + p112)” = (p121 + p103)°];
Is = (pa0 — po2)[ (130 + p12)® — (pa1 + f103)?]
+4 4011 (p30 + pa2) (21 + f1o3),
Ir = (3par — o) (130 + f112)
(30 + p12)* = 3(po1 + 1103)°]
— (30 — 3pt12) (p21 + fhos)
[3(k30 + 1112)” — (ko1 + 1103)°).

These values present much of the information given by thendaty of the object in a com-
pressed form and are therefor good candidates for an inglegimeme.

3.3 Fourier Descriptors

Fourier descriptors are used for the representation of dh@dary of two-dimensional shapes.
The basic idea is to represent a closed curve by a periodatifumof a continuous parameter,
or alternatively, by a set of Fourier coefficients of thisdtian [2].

Starting with an arbitrary point, coordinate pait&. vo), (z1,%1),- - -, (Tn, y,) are recorded
while traversing the boundary in clockwise direction. Thobdary can be represented as a
sequence of complex numbets:) = x, + i - yi, k£ = 0,1, ..., n. Applying the discrete Fourier
transform to the sequeneék) leads to complex coefficients

n

]_ —i2nuk
a(u) = 525(@6 T u=0,..,n (6)
k=0

the so-called Fourier descriptors.

Fourier descriptors are information preserving and allesvdriginal boundary to be restored. If
only low-frequency components are used for the reconstrucsharp features such as corners
are lost, but the global shape of the object is still captuteadur approach a set @b Fourier
descriptors is used from a total ©28 coefficients. This is enough to distinguish between the
different boundary shapes. To gain independence undeslation and rotation the center of
gravity and the major axis of the object are computed and dhedbary point on the major axis
with the largest distance from the center of gravity is delé@s starting point.



4 Texture

An important characteristic of diatoms is their internaittee. The identification of texture has
been extensively studied in the computer vision commudi#}.[ There are statistical methods
that measure variance, entropy or energy, and percepthalitpies identifying the underlying
direction, orientation and regularity. The simplest tegtdescriptors are based on the intensity
histogram of an image. To achieve invariance under intgsianges that might arise due to
the image capturing environment and its configuration, ieutaie textural features on an edge
direction histogram. Such a method takes the internal stre®f objects into account and is
largely invariant under changes of lighting conditions eThrection histogram has entries for
each angle betwed)t and359° degrees and counts the number of occurrences of each specific
orientation of the gradient vector computed on the grayl ievage (see also Section 2.2).
Texture features considered in our approach include thedus central moments correspond-
ing to mean, variance, skewness and kurtosis [17].

The mean valug of the normalized direction histogralnwith entrieshy, . .., h,_; IS given by
n—1
=0

and the variance? by

n—1

o’=> (i— 1) hy. (8)

=0
The skewnesg; of the direction histogram is defined as

1
5

i )
=0

and the kurtosis as

1 e

= Z “hi—3 (10)
=0

wheren is the number of angles used in the histogram.
The mean valug: gives an estimate of the average orientation of the edgésnwhe object
and the variance? is an indication of the dispersion. The histogram skewnessmeasure of
the histogram’s symmetry. Kurtosis is a measure of the phadss of the histogram. The main
advantage of all these texture measures is their compogtsimplicity compared with other
methods based on gray value co-occurrence matrix or spésdtares.

5 Classification

There are many different classification methods from thasaoé neural networks and statistical
decision theory [16]. For the problem considered in thi®rewe adopted a decision tree based
approach. The reason is that decision trees resemble thaumagn experts identify a diatom.
Moreover, because of the huge number of classes involvedSgetion 1), a one level decision
procedure, as performed by a neural network or a statistlaakifier, seems infeasible. An



Number of symmetry axes

Length Width

< 0,56 >=0.56 <0.23 >=0.23

(Closs§ (Ciasst

Figure 5: Example decision tree for diatom identification

additional problem with the application of a statisticalsdifier or a neural network is the lack
of enough training data.

A decision tree based classification method is a supervisaohihg technique that builds a
decision tree from a set of training samples. The result efl#arning procedure is a tree
in which each leaf carries a class name, and each interiar spelcifies a test on a particular
feature, with one branch corresponding to each possiblealrange of that feature. In Figure
5 a simple tree using the proposed features is shown. Inxhragle in the first step the number
of symmetry axes is chosen to distinguish between diffekemds of diatoms. Subsequently
length and width are used until classésB, E and( are reached.

Such a kind of a tree can easily be translated into a set of,ratef-then-else clauses, which are
human readable. Hence, the classifier inferred from a seaioirhg samples can be interpreted
by a human expert. For example the rule for Class B in Figuse 5 i

| F Nunber of symmetry axes = 1 AND
Length >= 0. 56
THEN cl ass = Class B

This property, which distinguishes decision tree baseskdiaation from neural networks and
statistical approaches, is very important for taxonomentidication tasks, such as the one
considered in this report. It will allow a human expert torga or extend a tree obtained from
the decision tree induction procedure. Such a modificatiap be necessary to obtain a robust
system in case of many classes, particularly if training@aé sparse.

In the decision tree induction process, a tree is grown tmprdn the following way. Starting
with the whole training set represented by the root node,atufe-based search is done to
recursively construct the subsequent layers of the tree.bakic idea is to split the training set
into subsets in such a way that finally each subset holds anhpkes belonging to exactly one
class. In our system we have employed the well-known C4 &rigtgm [18]. In this algorithm
subsets are build based on an information theoretic gaieriam. At each node in the decision
tree, the training set is split into subsets choosing theufeahat maximizes the information
gain.



Class of symmetry(. . . 4)

Moment invariants(...7)

Fourier descriptors3()

Geometric (length, width, ratio, size)
Texture (mean, variance, skewness, kurtosis)

Table 1: Proposed features for the retrieval of diatoms

For samples of the training sét the probability that the samples belongs to classan be
estimated as follows:

number of samples i belonging taC;

P(C)) = 11
() number of samples iff (11)

The entropyl of the training sef’ is the sum over all classés, ..., C.
Z P(C;) logy, P(Cy). (12)

If a feature is selected and the training set is split intoesstdbaccording to all possible values
of that feature, the entropy for the split can be expressabeaweighted sum over all subsets
Ty,...,T, as

7
S 9

In Equation (13),4 indicates the selected feature amds the number of possible values of
featureA. The entropy is small if and only if the subsé&tshold samples from only a single or
a few classes. Based on this criterion, for each featutiege information gained by splitting
according to the possible outcomes is measured by

G(T,A) = I(T) — B(T, A). (14)

Consequently, when dividing the training set that featsredlected at each node of the tree
which maximizes the information gain according to Equaiib#). The set of samples asso-
ciated with the node is divided into subsets according tatfierent values of featurel, and
each subset represents a child node. The test is recursmelynued for all child nodes until
the associated subsets hold only samples belonging to ke slags.

In the next section experimental results for the use of d&tisee induction to categorize our
test image database based on the features described iarSeZtio 4 are shown.

6 Experimental Results

The proposed methods were tested using a database of 46&gehymages of diatoms. In
the near future a significantly extended version of thishtzda will be available on the ADIAC
web page [1].



Feature | Errors| Size
Test with single groups of features

Class of symmetry 380 6

Moment invariants 16 535
Fourier descriptors 7 391
Geometric features 26 431
Textural features 24 627

Fourier descriptors and

Class of symmetry 0 427

Moment invariants 1 373

Geometric features 0 383

Textural features 0 389
Fourier descriptors, moment invariants and

Class of symmetry 1 408

Geometric features 1 355

Textural features 0 373
Fourier descriptors, moment invariants, geometric
features and

Class of symmetry 0 386
Textural features 0 359
All features 0 381

Table 2: Number of errors occurring during tree inductiod aize of the constructed tree using
the C4.5 algorithm for different combinations of features

For each of the images in the database the tlakthe diatom is known. At the moment the
database holds images®f different genus which is further divided ini®1 different species.
In most cases there are one to three images available paespés this is not sufficient for
decision tree learning and testing, we decided to distsighetwees?2 classes with an average
of 5 samples per class. The classes considered in our expesiarenpartly on genus level and
partly on species level.

First we evaluated the discriminatory power of the difféfeatures. In Table 1 all features are
listed. The classes of symmetry correspond to the numbeyrofnetry axes, where number
4 stands for all cases with 4 or more symmetry axes. Some dettares listed in Table 1
are expected very important for classification, while ashreay be less important. To evaluate
the usefulness of each feature we started to build the deciste with just a single group of
features, and subsequently combined the most powerfulresat For this test the number of
errors obtained during tree induction was considered altgjn@easure.

In Table 2 the experimental results are given. In the firatizwl the employed features are listed
while the second column gives the number of errors. The nuwiberrors corresponds to the
number of samples in the training set which were assignedamag class. An error occurs

lin terms of biologist diatoms are classifiedjenus speciessubspecieand so forth, but here we use the term
classin the pattern recognition sense



if no combination of features can be found to distinguisiwiaein two diatoms that belong to
two different classes. In column 3 of Table 2, the size of tee tvhich reflects the complexity
of the decision procedure dependent on the chosen feasigg®wn. All numbers reported
in Table 2 are based on the full training set468 images. It can be observed that no single
group of features is strong enough to allow an error freeitréection. The minimum number
of errors resulted from the Fourier descriptors. Combirkingrier descriptors with any of the
other features except for moment invariants gives an ereerdecision tree already. In general
there are various combinations of features that lead toran feee decision tree. The size of all
possible error free decision trees varies frasa to 427.

The results shown in Table 2 indicate that it is easy to cansa decision tree that can classify
the given training set without any error. However, for pieatapplications itis more interesting
to know how well the induced tree is able to generalize thaitrg set, i.e., how well it classifies
unknown samples from a test set that were not used for decisée construction. In order
to test this ability, the error rate was measured undell@hee-one-outnethod. Using the
combination of all features, all but one image from the tragrset were used to build the tree,
and the single image not involved in the decision tree indagirocess was used as test sample.
This procedure was repeated using each sample in the gaatrexactly once for testing. This
leads to a recognition rate of approximatalo. The low recognition rate is due to classes
with only a small number of samples included in the trainiegy 9f only samples of classes
with at least: samples are considered, the recognition rate continudusigases with.

This behaviour can be seen in Figure 6(a.). The maximum retiog rate 0f69% was achieved

if only classes with at least) samples were considered. It has to be taken into accourthihat
number of images involved in the test decreases with the prufimages per class as shown
in Figure 6(b.). At present there are not more tharexamples per class available. But in the
near future the database will be significantly enlarged. sTédurther increase in recognition
performance can be expected as more samples per class bacaitable.

7 Conclusions

In this report, we first have proposed several features ferimsa system for content based
image retrieval. The proposed features include two diffeneethods for symmetry detection,
moment invariants, Fourier descriptors, and texture mreasbased on the central moments
of the direction histogram. We have tested the discrimnyapower of these features for the
purpose of content based retrieval of microscopic images &in image database using decision
trees. While no individual group of the low-level featuresstthe strength to allow an error
free tree induction, it can be concluded that the combinatideatures has this potential. The
performance of the decision tree classifier was tested tseltieave-one-out” technique. It has
been shown that the recognition rate continuously risels thie number of available samples
per class. The methods described in this report are verylutefthe retrieval of diatoms
in the image database developed in the context of the ADIAfjept. It has to be pointed
out, however, that none of the methods described in thisrtepcdudes any assumptions or
knowledge specific to the domain of diatoms. Therefore timesthods are potentially useful
for other content based image retrieval tasks as well. Ewtark will include the identification
of not only one candidate from the database, but the retrad\the » most similar classes.
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