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Abstract

A feature based retrieval scheme for microscopic images of diatoms in an image database
is presented in this report. Diatoms are unicellular algae found in water and other places
wherever there is humidity and enough light for photo synthesis. Several methods for fea-
ture extraction are described and experimental results on real diatom images are presented.
The proposed feature based retrieval scheme is based on symmetry measures, geometric
properties, moment invariants, Fourier descriptors and simple textural features. Based on
this features the image database is divided into classes using a decision tree based clas-
sification approach. We have evaluated the discriminant power of the features and show
experimental results on a diatom image database.

CR Categories and Subject Descriptors:I.2.1 Artificial Intelligence]: Applications and Ex-
pert Systems; I.5.4 [Pattern Recognition]: Applications.
General Terms: Algorithms.
Additional Key Words: Content based image retrieval, Diatom image database, Feature selec-
tion, Decision tree induction
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Figure 1: Example images of diatoms: (a)Gomphonema augur, (b) Sellaphora pupula, (c)
Cyclotella bodanica, (d) Epithemia sorex

1 Introduction

Content based image retrieval (CBIR) is an emerging field in computer science. The aim of
an image database system is to assist a human user to retrieveimages. In systems which use
query by image content, the query itself is an image. The system computes the similarity
between the query and the stored images and returns those images which are “close” to the
query. This implies that the system’s measure of image similarity corresponds to the user’s
notion of similarity. The idea behind most of such systems isthat similarity of image content can
be characterized by combinations of low-level features such as color, texture or shape measures
[8], [19].
In this report we present a feature based retrieval scheme for microscopic images in an image
database. The work has been done in the framework of the ADIACproject which aims at the
automatic identification and classification of diatoms [1].Diatoms are unicellular algae found in
water and other places wherever there is humidity and enoughlight for photo synthesis. Diatom
identification and classification has a number of applications in areas such as environmental
monitoring, climate research and forensic medicine [20]. One of the great challenges in diatom
classification is the large number of classes involved. Experts estimate the number of diatom
species between 15000 and 20000, or even higher. Example images of diatoms are shown in
Figure 1. As can be seen, diatoms have various shapes and internal structures.
When biologists are going to identify these special kinds ofalgae, they follow a hierarchical
classification procedure, where symmetry is one of the key features [3]. Subsequently other



features, such as shape properties and textural features ofthe internal structure are used. Be-
cause microscopic images are mostly available as gray levelimages or color images with minor
color variations, the use of color features is not as useful in our application as, for example, in
flower retrieval systems [4]. Thus we have limited the feature set to shape based features like
moments, and global features of the internal structure of objects.
In the framework of automatic diatom identification, a CBIR system can be used to roughly
identify objects. A possible scenario could be as follows: Auser observes an unknown object
during the analysis of samples. With a digital camera attached to the microscope, an image of
the object is taken and transfered to the identification system. The system analyses the image
and returns a list of possible diatom species together with similar sample images and textual
descriptions as result. Based on this information, the usercan eventually decide about the
species of the unknown object.
The report is organized as follows. In Section 2 two methods to determine the symmetry of a
given object are described. One method is based on the objectcontour, while the other uses
the internal gray level distribution. In Section 3 methods for distinguishing between different
boundary shapes are introduced. Global texture measures for the internal structure are described
in Section 4. A classification approach based on decision tree induction is given in Section 5.
Finally, experimental results obtained for decision tree induction using different combinations
of features are given in Section 6, and conclusions are drawnin Section 7.

2 Symmetry

Diatoms can be grouped by their symmetry characteristics. There are species without symmetry
axis while other species have one, two or even more axes. The latter occurs, for example, for
circularly shaped diatoms.
Our terminology will be as follows. A straight line through the centroid of a two-dimensional
figure is called asymmetry axisif the figure remains identical after a reflection at this straight
line. A figureS is calledreflectionally symmetricalwith the degreem if it has m symmetry
axes.S is calledrotationally symmetricalwith the degreem > 1 if there arem different angles,
so thatS remains identical after a rotation around� = k � (360

o

=m); k = 1; 2; : : : .
Let us assume that the outline and the center of gravity of theobject under consideration are
known. An approach to finding the outlines of diatoms in microscopic images has been devel-
oped as part of the ADIAC project and is described in [5].
First, we describe a simple but very efficient way to determine reflectional symmetries of an
object based on a 1D representation of its boundary. Next, anapproach to symmetry detection
based on gray level distribution is presented.

2.1 Symmetry Detection Using Distance List

The 2D shape of an object can be represented by a 1D function using the distances between
the center of gravity and selected boundary points [14]. Theboundary points are determined
by sampling the contour in a clockwise manner with constant angle�� as shown in Figure 2.
For �� = 1

o degree, for example, the distance listd = (d

0

; : : : ; d

359

) has an entry for each
angle0o; : : : ; 359o. For each angle the distance to the boundary is measured. Fora non-convex
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Figure 2: Contour sampling with constant angle��

object, there can be more than one distance for the same angle. In this case the distance to the
nearest boundary point is taken. To gain independence of thesize of the object the entries in
the distance list are normalized according to the largest distance. Using such a distance list,
reflectional and rotational symmetry can be detected easilyas it is shown in the following.

2.1.1 Reflectional Symmetry

The distance list allows the exact localization of all symmetry axes of a shape. Each entryi in
the distance list defines a straight line with an anglei ��� through the center of the shape. If
the straight line is a symmetry axis, then opposite distances must be equal. Thus the asymmetry
of a shape with respect to a straight linei can be expressed as:

a(i) =

(n=2)�1

X

j=0

�

�

�d

(i+j)modn � d

(i�j)modn

�

�

�

with n being the number of entries in the distance list.
To decide whether a straight line is a symmetry axis or not, a thresholdT is used, and for each
symmetry axis the conditiona(i) < T has to be fulfilled. Sincea(i) is very small for a straight
line with a small offset to the real symmetry axis, a minimum angle between two different
symmetry axes is defined.

2.1.2 Rotational Symmetry

For a rotational symmetry of degree2, and an even numbern of entries in the distance list,
distancesd

i

andd
(i+n=2)modn

are compared, and asymmetry is measured as follows:
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Similarly to reflectional symmetry, a shape is rotationallysymmetric if the conditiona < T is
fulfilled. If the degree of rotational symmetrym is higher than 2, a section-wise comparison is
necessary. In this case the distance list is divided intom sectionsA

0

; : : : ; A

m�1

with

A

i

= (d

i�n=m

; : : : ; d

(i+1)�n=m�1

):
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Figure 3: Example image [12] for dissimilar symmetries (a),overlaid with axes of internal
symmetry (b)

Each distanced
i

is contained in exactly one section, and in all other sections it has exactly one
corresponding distance. Thus the asymmetry between two sectionsA

i

andA
j

is calculated by

a(A

i

; A

j
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and the asymmetry of the entire shape by

a = min

i�[0;:::;m�1℄

m�1

X

j=0

a(A

i

; A

j

):

The minimum is taken in order to increase the robustness under distortions.

2.2 Gray level Gradient Based Symmetry

Sometimes the symmetry of the contour of an object does not exactly coincide with the sym-
metry of its internal structure. This may happen due to noiseor occlusion of the boundary. But
there are some species of diatoms where exactly this phenomenon naturally occurs. A micro-
scopic image of such a diatom is shown in Figure 3(a). As can beseen there is a slight offset
between the location of the symmetry axes of the shape and those of the internal structure.
The direction of reflectional symmetry axes can be computed using the gradient orientation
distribution of an gray level image [21]. The gradient orientation distribution is build based on
the orientation of the gray level gradient vector and storedin a direction histogram. In Figure
4(a) the gradient vector direction histogram for the gray level image of Figure 3(a) is shown.
Apparently for a symmetric object the computed direction histogram is also symmetric. To
determine the location of the symmetry axes the convolution of the direction histogramh is



computed

(x) =

n�1

X

m=0

h(m)h(x�m) (1)

for x = 0; : : : ; n. The quantitiesx andm denote positions in the histogram andn is the total
number of entries. In the convoluted direction histogram, maxima occur at the positions of the
symmetry axes. As can be seen in Figure 4(b) maxima are found at angle positions7o; 96o; 187o

and276o degree. In Figure 3(b) the gray level image is overlaid with the two symmetry axes
corresponding to these maxima.
It is important to emphasize that the histogram property is anecessary but not sufficient con-
dition for symmetry. This means that in particular non-symmetrical objects may exhibit re-
flectional symmetry in their orientation histogram. Thus ifthe orientation histogram shows
reflectional symmetry, a further step is carried out to checkwhether the object is rotationally
symmetrical or not. In our approach, this is done using the edge map. Based on the position
and orientation of each potential symmetry axis, the percentage of edge elements with a coun-
terpart one the other side of the symmetry axis is measured. If the percentage is below a certain
threshold the symmetry axis is rejected. Edge elements are found by means of a standard edge
detector.

3 Shape features

Besides simple shape-features such as length, width, size,and ratio, which represent geometric
properties of objects, there are additional region and outline based shape measures [15]. In
our approach we use moment invariants and Fourier descriptors as region and outline based
features, respectively. These methods will be described inthe following sections.

3.1 Geometric properties

Features that can directly be retrieved from the boundary ofan object are length, width, size,
and length-width ratio. Using such features in addition to symmetry information, the search
space in the diatom identification process can significantlybe restricted. Most diatoms have a
known range of length, width, and length-width ratio. Thesevalues are listed, together with
descriptions of other important features, for many diatom species in atlantes, e.g. [7], [13].
To calculate these geometric values the major axis of an object is computed. Based on this axis
the length of the object is taken as the largest distance between intersections of the boundary and
the axis. The width is calculated in the same way for an axis perpendicular to the major axis.
If the contour of the object is polygonal approximated with verticesp

0

; : : : ; p

n

andp
n+1

= p

0

then the area enclosed by the contour can be derived from Green’s theorem as:

area =

1

2

�

�

�

�

�

n�1

X

k=0

p

k

� p
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�

�

�

�

�

: (2)

If the resolution of the original image is known the values can be converted into�m and com-
pared with those found in atlantes.
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Figure 4: (a) Direction histogram of the image shown in Figure 3(a), (b) convoluted direction
histogram

3.2 Moment Invariants

Moment invariants first introduced by Hu [11] are widely usedin pattern recognition and have
shown good results in various image recognition tasks, e.g.[6], [10]. As shape measure they
have the property of being invariant under translation, scale change and rotation. For our im-
age retrieval application we have used the seven moment invariants reported in [11] which are
computed over all pixels including the boundary and its associated interior part.
Given the intensity function of an imagef(x; y), regular momentsm

pq

of the orderp + q

(p; q = 0; 1; 2; : : :) are defined as:

m

pq

=

Z

1

�1

Z

1

�1

x

p

y

q

f(x; y)dx dy: (3)

Based on the regular moments, central moments�

pq

are defined as:

�

pq

=

Z

1

�1

Z

1

�1

(x� x)

p

(y � y)

q

f(x; y)dx dy (4)

wherex = m

10

=m

00

andy = m

01

=m

00

denote the centroid of the image. The central moments
are invariant under translation of the image. To get invariance under rotation the following



moment invariants are defined:
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These values present much of the information given by the boundary of the object in a com-
pressed form and are therefor good candidates for an indexing scheme.

3.3 Fourier Descriptors

Fourier descriptors are used for the representation of the boundary of two-dimensional shapes.
The basic idea is to represent a closed curve by a periodic function of a continuous parameter,
or alternatively, by a set of Fourier coefficients of this function [2].
Starting with an arbitrary point, coordinate pairs(x

0

; y

0

); (x

1

; y

1

); : : : ; (x

n

; y

n

) are recorded
while traversing the boundary in clockwise direction. The boundary can be represented as a
sequence of complex numberss(k) = x

k

+ i � y

k

, k = 0; 1; :::; n. Applying the discrete Fourier
transform to the sequences(k) leads to complex coefficients

a(u) =

1

n

n

X

k=0

s(k)e

�i2�uk

n

; u = 0; :::; n (6)

the so-called Fourier descriptors.
Fourier descriptors are information preserving and allow the original boundary to be restored. If
only low-frequency components are used for the reconstruction, sharp features such as corners
are lost, but the global shape of the object is still captured. In our approach a set of30 Fourier
descriptors is used from a total of128 coefficients. This is enough to distinguish between the
different boundary shapes. To gain independence under translation and rotation the center of
gravity and the major axis of the object are computed and the boundary point on the major axis
with the largest distance from the center of gravity is selected as starting point.



4 Texture

An important characteristic of diatoms is their internal texture. The identification of texture has
been extensively studied in the computer vision community [17]. There are statistical methods
that measure variance, entropy or energy, and perceptual techniques identifying the underlying
direction, orientation and regularity. The simplest texture descriptors are based on the intensity
histogram of an image. To achieve invariance under intensity changes that might arise due to
the image capturing environment and its configuration, we calculate textural features on an edge
direction histogram. Such a method takes the internal structure of objects into account and is
largely invariant under changes of lighting conditions. The direction histogram has entries for
each angle between0o and359o degrees and counts the number of occurrences of each specific
orientation of the gradient vector computed on the gray level image (see also Section 2.2).
Texture features considered in our approach include the first four central moments correspond-
ing to mean, variance, skewness and kurtosis [17].
The mean value� of the normalized direction histogramh with entriesh

0

; : : : ; h

n�1

is given by

� =

n�1

X

i=0

i h

i

(7)

and the variance�2 by
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The skewness�
3

of the direction histogram is defined as
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and the kurtosis as
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4

h

i
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wheren is the number of angles used in the histogram.
The mean value� gives an estimate of the average orientation of the edges within the object
and the variance�2 is an indication of the dispersion. The histogram skewness is a measure of
the histogram’s symmetry. Kurtosis is a measure of the peakedness of the histogram. The main
advantage of all these texture measures is their computational simplicity compared with other
methods based on gray value co-occurrence matrix or spectral features.

5 Classification

There are many different classification methods from the areas of neural networks and statistical
decision theory [16]. For the problem considered in this report we adopted a decision tree based
approach. The reason is that decision trees resemble the wayhuman experts identify a diatom.
Moreover, because of the huge number of classes involved (see Section 1), a one level decision
procedure, as performed by a neural network or a statisticalclassifier, seems infeasible. An
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Figure 5: Example decision tree for diatom identification

additional problem with the application of a statistical classifier or a neural network is the lack
of enough training data.
A decision tree based classification method is a supervised learning technique that builds a
decision tree from a set of training samples. The result of the learning procedure is a tree
in which each leaf carries a class name, and each interior node specifies a test on a particular
feature, with one branch corresponding to each possible value or range of that feature. In Figure
5 a simple tree using the proposed features is shown. In this example in the first step the number
of symmetry axes is chosen to distinguish between differentkinds of diatoms. Subsequently
length and width are used until classesA;B;E andG are reached.
Such a kind of a tree can easily be translated into a set of rules, or if-then-else clauses, which are
human readable. Hence, the classifier inferred from a set of training samples can be interpreted
by a human expert. For example the rule for Class B in Figure 5 is

IF Number of symmetry axes = 1 AND
Length >= 0.56

THEN class = Class B

This property, which distinguishes decision tree based classification from neural networks and
statistical approaches, is very important for taxonomic identification tasks, such as the one
considered in this report. It will allow a human expert to change or extend a tree obtained from
the decision tree induction procedure. Such a modification may be necessary to obtain a robust
system in case of many classes, particularly if training data are sparse.
In the decision tree induction process, a tree is grown top-down in the following way. Starting
with the whole training set represented by the root node, a feature-based search is done to
recursively construct the subsequent layers of the tree. The basic idea is to split the training set
into subsets in such a way that finally each subset holds only samples belonging to exactly one
class. In our system we have employed the well-known C4.5 algorithm [18]. In this algorithm
subsets are build based on an information theoretic gain criterion. At each node in the decision
tree, the training set is split into subsets choosing the feature that maximizes the information
gain.



Class of symmetry (0 : : : 4)
Moment invariants (1 : : : 7)
Fourier descriptors (30)
Geometric (length, width, ratio, size)
Texture (mean, variance, skewness, kurtosis)

Table 1: Proposed features for the retrieval of diatoms

For samples of the training setT the probability that the samples belongs to classC

i

can be
estimated as follows:

P (C

i

) =

number of samples inT belonging toC
i

number of samples inT
: (11)

The entropyI of the training setT is the sum over all classesC
1

; : : : ; C
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i
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If a feature is selected and the training set is split into subsets according to all possible values
of that feature, the entropy for the split can be expressed asthe weighted sum over all subsets
T

1

; : : : ; T

n

as

B(T;A) =

n

X

i=1

jT

i

j

jT j

I(T

i

): (13)

In Equation (13),A indicates the selected feature andn is the number of possible values of
featureA. The entropy is small if and only if the subsetsT

i

hold samples from only a single or
a few classes. Based on this criterion, for each featureA the information gained by splittingT
according to the possible outcomes is measured by

G(T;A) = I(T )�B(T;A): (14)

Consequently, when dividing the training set that feature is selected at each node of the tree
which maximizes the information gain according to Equation(14). The set of samples asso-
ciated with the node is divided into subsets according to thedifferent values of featureA, and
each subset represents a child node. The test is recursivelycontinued for all child nodes until
the associated subsets hold only samples belonging to a single class.
In the next section experimental results for the use of decision tree induction to categorize our
test image database based on the features described in Sections 2 to 4 are shown.

6 Experimental Results

The proposed methods were tested using a database of 468 graylevel images of diatoms. In
the near future a significantly extended version of this database will be available on the ADIAC
web page [1].



Feature Errors Size
Test with single groups of features

Class of symmetry 380 6
Moment invariants 16 535
Fourier descriptors 7 391
Geometric features 26 431
Textural features 24 627

Fourier descriptors and
Class of symmetry 0 427
Moment invariants 1 373
Geometric features 0 383
Textural features 0 389

Fourier descriptors, moment invariants and
Class of symmetry 1 408
Geometric features 1 355
Textural features 0 373

Fourier descriptors, moment invariants, geometric
features and

Class of symmetry 0 386
Textural features 0 359

All features 0 381

Table 2: Number of errors occurring during tree induction and size of the constructed tree using
the C4.5 algorithm for different combinations of features

For each of the images in the database the class1 of the diatom is known. At the moment the
database holds images of59 different genus which is further divided into191 different species.
In most cases there are one to three images available per species. As this is not sufficient for
decision tree learning and testing, we decided to distinguish between82 classes with an average
of 5 samples per class. The classes considered in our experiments are partly on genus level and
partly on species level.
First we evaluated the discriminatory power of the different features. In Table 1 all features are
listed. The classes of symmetry correspond to the number of symmetry axes, where number
4 stands for all cases with 4 or more symmetry axes. Some of thefeatures listed in Table 1
are expected very important for classification, while others may be less important. To evaluate
the usefulness of each feature we started to build the decision tree with just a single group of
features, and subsequently combined the most powerful features. For this test the number of
errors obtained during tree induction was considered as quality measure.
In Table 2 the experimental results are given. In the first column the employed features are listed
while the second column gives the number of errors. The number of errors corresponds to the
number of samples in the training set which were assigned to awrong class. An error occurs

1in terms of biologist diatoms are classified ingenus, species, subspeciesand so forth, but here we use the term
classin the pattern recognition sense



if no combination of features can be found to distinguish between two diatoms that belong to
two different classes. In column 3 of Table 2, the size of the tree which reflects the complexity
of the decision procedure dependent on the chosen features is shown. All numbers reported
in Table 2 are based on the full training set of468 images. It can be observed that no single
group of features is strong enough to allow an error free treeinduction. The minimum number
of errors resulted from the Fourier descriptors. CombiningFourier descriptors with any of the
other features except for moment invariants gives an error free decision tree already. In general
there are various combinations of features that lead to an error free decision tree. The size of all
possible error free decision trees varies from359 to 427.
The results shown in Table 2 indicate that it is easy to construct a decision tree that can classify
the given training set without any error. However, for practical applications it is more interesting
to know how well the induced tree is able to generalize the training set, i.e., how well it classifies
unknown samples from a test set that were not used for decision tree construction. In order
to test this ability, the error rate was measured under theleave-one-outmethod. Using the
combination of all features, all but one image from the training set were used to build the tree,
and the single image not involved in the decision tree induction process was used as test sample.
This procedure was repeated using each sample in the training set exactly once for testing. This
leads to a recognition rate of approximately45%. The low recognition rate is due to classes
with only a small number of samples included in the training set. If only samples of classes
with at leastn samples are considered, the recognition rate continuouslyincreases withn.
This behaviour can be seen in Figure 6(a.). The maximum recognition rate of69% was achieved
if only classes with at least10 samples were considered. It has to be taken into account thatthe
number of images involved in the test decreases with the number of images per class as shown
in Figure 6(b.). At present there are not more than10 examples per class available. But in the
near future the database will be significantly enlarged. Thus a further increase in recognition
performance can be expected as more samples per class becomeavailable.

7 Conclusions

In this report, we first have proposed several features for use in a system for content based
image retrieval. The proposed features include two different methods for symmetry detection,
moment invariants, Fourier descriptors, and texture measures based on the central moments
of the direction histogram. We have tested the discriminatory power of these features for the
purpose of content based retrieval of microscopic images from an image database using decision
trees. While no individual group of the low-level features has the strength to allow an error
free tree induction, it can be concluded that the combination of features has this potential. The
performance of the decision tree classifier was tested usingthe “leave-one-out” technique. It has
been shown that the recognition rate continuously rises with the number of available samples
per class. The methods described in this report are very useful for the retrieval of diatoms
in the image database developed in the context of the ADIAC project. It has to be pointed
out, however, that none of the methods described in this report includes any assumptions or
knowledge specific to the domain of diatoms. Therefore thesemethods are potentially useful
for other content based image retrieval tasks as well. Future work will include the identification
of not only one candidate from the database, but the retrieval of then most similar classes.



(a)

40

45

50

55

60

65

70

1 2 3 4 5 6 7 8 9 10

R
ec

og
ni

tio
n 

ra
te

Number of samples per class

(b)

50
100
150
200
250
300
350
400
450
500

1 2 3 4 5 6 7 8 9 10

S
am

pl
es

Number of samples per class
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